

REPORT:

PORTFOLIO OF SKILLS AND COMPETENCES FOR KNOWLEDGE VALORISATION AMBASSADORS

Activity 2.3

June 2025

Project Ref Number: 2024-1-NO01-KA220-HED-000255098

CONTENT

EX	ECUT	IVE S	SUMMARY	2
1.	INTF	RODU	JCTION	3
1	.1.	ОВ	IECTIVES OF THE WP AND ACTIVITIES	3
1	.2.	COI	NTENT OF THE REPORT	3
2.	MET	HOD	OLOGY	4
2	2.1.	SUF	RVEY DESIGN	4
2	2.2.	DAT	A COLLECTION AND ANALYSIS	6
3.	RESULTS AND DISCUSSION			6
3	3.1.	Prof	ile of the respondents	6
3	3.2.	Awa	reness and Expertise regarding KV among respondents	7
3	3.3.	KV i	n the ecosystems	8
3	3.4.	KV s	skills and competences and training demanded	10
	3.4.1.		Comunication and dissemination	10
	3.4.2	2.	Intellectual Assets Management	14
	3.4.3	3.	Open Science skills	16
3.4.		١.	Business skills- Strategic skills	18
	3.4.5	5.	Business skills- Operational skills	20
	3.4.6	3 .	Soft skills	22
	3.4.7	7 .	Intermediary skills for KV	24
4.	CON	ICLU	SIONS	26
ΑN	NEX 1	l: Su	rvey on Knowledge Valorisation Needs and Skills	28

EXECUTIVE SUMMARY

This report presents the key findings of a survey conducted to identify gaps in Knowledge Valorisation (KV) skills and competencies across academic, industrial, and public administration stakeholders within the ecosystems of five partner universities. The survey gathered responses from 125 individuals, including 54 support staff, 40 senior researchers, and 17 early-stage researchers, with 14 additional participants excluded from the target group analysis due to differing professional backgrounds.

The analysis of the survey reveals that most respondents are familiar with KV and acknowledge its importance. However, a disconnect remains between awareness and actual implementation. According to quadruple helix actors, support for KV from their ecosystem/institution is particularly strong in areas involving external engagement and knowledge transfer, providing a promising foundation for future growth. Nevertheless, inconsistent recognition, lack of rewards, and the absence of tailored training continue to impede a broader uptake of KV practices.

The analysis of the survey highlights a critical need for differentiated and inclusive capacity-building strategies tailored to the specific profiles of researchers and support staff. By addressing gaps in recognition, rewards, and training, especially in areas like commercialization, AI, societal engagement and policy recommendations, the participating institutions can strengthen their KV ecosystems and better align individual competencies with institutional ambitions.

1. INTRODUCTION

The objectives of Work Package (WP) 2 and the associated activities are designed to accomplish the overall goal of the WP. An overview of the objectives of the WP, activities and the content of the report is provided in the following subsections.

1.1. OBJECTIVES OF THE WP AND ACTIVITIES

The main goal of WP2 is to lay the groundwork for the following WPs. In particular, it is aimed to facilitate the ground to design the Knowledge Valorisation (KV) training package to be developed in WP3 and it has the following main objectives:

- Mapping the current status, best practices and state of the art not only at each partner institution and in its I&E ecosystem but also at the European level.
- Identify KV ambassadors' needs, knowledge, skills and competences' gaps as perceived by quadruple helix actors with the aim of facilitating the translation of research findings and knowledge into societal value effectively.
- Organise and systematise the collected information as a preparatory step for the next WPs with the aim to overcome the detected gaps in KV. Compare the skills and competences accomplished in the current learning opportunities offered at the five HEIs with the skills and competences detected by quadruple helix actors to fulfil the market needs.

The activities of WP2 are:

- 1) Status mapping of KV in local ecosytems;
- 2) Survey to identify skills and competences gaps design and
- 3) Portfolio of skills and competences for KV ambassadors.

1.2. CONTENT OF THE REPORT

This report analyses the data collected in Activity 2.2 (Survey on Skills and Competence Gaps) and discusses the results to support the development of the Portfolio of Professional Skills and Competences (Project Result 2). The portfolio will outline the key skills and competencies required to become an effective Knowledge Valorisation (KV) ambassador.

The survey was designed to identify gaps in Knowledge Valorisation (KV) skills and competencies through a co-creation process involving actors from the quadruple helix (QH). This collaborative approach ensures that diverse perspectives contribute to pinpointing the skills needed for effective KV, while also capturing stakeholders' perceptions of current capabilities and existing gaps.

The skills portfolio will feed into the design of the KV training package that will be done in WP3. The training packages will be shaped along the lines of the skills portfolio identified through the survey analysis.

2. METHODOLOGY

To identify the skills and competences gaps and subsequently develop the portfolio of skills and competences for KV ambassadors, the initial step was to design a survey that would generate meaningful insights to inform the next stages of the process.

The survey was intended to be distributed to at least 100 actors across the Quadruple Helix (QH) to collaboratively define the skills, competences, and values needed to fully realise the potential of knowledge valorisation. It aimed to pinpoint specific skills and competence gaps within each of the three target groups (early-stage researchers, senior researchers (academic staff) and support staff (non-academic staff)), forming the basis for designing tailored training packages that address the unique needs of each group.

The survey was distributed to Quadruple Helix (QH) actors from different target groups through various channels, including direct emails, institutional networks, social media platforms, and partner organisations, to ensure broad and diverse participation.

2.1. SURVEY DESIGN

The survey was structured into five different sections:

- **1. About You:** This section gathered information on the type of stakeholder, name of the institution, professional profile, education level, field of work, and gender.
- 2. About your KV awareness and practices: This section aimed to assess the respondent's familiarity with the concept and practices of Knowledge Valorisation (KV), as well as any related training they have undertaken.
- 3. KV in your ecosystem: This section aimed to evaluate, from the respondent's perspective, which aspects of KV are effectively addressed, and which require further attention or improvement within their institution, research and innovation (R&I) environment, or broader ecosystem.
- 4. About your KV skills and competences: This section invited respondents to self-assess their knowledge across a set of key skills identified as essential for Knowledge

Valorisation (KV), according to the Mutual Learning Exercise (MLE) on Topic 2B (Incentives and Skills)¹ in Vienna and based on relevant competence frameworks such as EntreComp², ResearchComp³, RMComp⁴, GreenComp⁵ and DigComp⁶.

KV requires more than technical or scientific expertise, it demands transversal and entrepreneurial skills that empower researchers and knowledge actors to manage intellectual assets, collaborate across sectors, communicate effectively, and address societal challenges. Intermediation is also crucial, enabling the connection between research and society through cocreation and knowledge exchange.

To structure this skill set, six core categories of competences were defined during the Mutual Learning Exercise (MLE) on Topic 2B (Incentives and Skills) in Vienna, June 2023:

- a. **Communication and Dissemination** (skills needed to effectively share research findings with diverse audiences)
- b. **Intellectual Assets Management** (skills that enhance the management and leveraging of scientific knowledge enhancing its impact and value for society)
- c. **Skills to Enable Open Science** (skills that foster transparency, collaboration, and accessibility in research)
- d. Business Skills
 - i. **Business Skills Strategic skills** (skills that focus on long-term planning, vision and direction-setting)
 - Business Skills operational skills (skills that focus on the execution, management and practical application of business activities in day-today operations)
- e. **Soft Skills** (skills that enhance interpersonal effectiveness and complement technical expertise)
- f. **Intermediary Skills for KV** (skills that enhance interpersonal effectiveness and complement technical expertise)

These categories serve as the basis for evaluating current competencies and developing the portfolio of skills required for effective KV ambassadors.

https://op.europa.eu/en/publication-detail/-/publication/9aa3c0bf-9325-11ee-8aa6-01aa75ed71a1/language-en

² https://publications.jrc.ec.europa.eu/repository/handle/JRC101581

³ https://research-and-innovation.ec.europa.eu/jobs-research/researchcomp-european-competence-framework-researchers en#other-eu-competence-frameworks

⁴ https://research-and-innovation.ec.europa.eu/jobs-research/rm-comp-european-competence-framework-research-managers en

⁵ https://publications.jrc.ec.europa.eu/repository/handle/JRC128040

⁶ https://joint-research-centre.ec.europa.eu/projects-and-activities/education-and-training/digital-transformation-education/digital-competence-framework-citizens-digcomp_en_

5. Training needs: This section aimed to identify which skills respondents feel they need further training on. By highlighting areas where additional support or development is desired, this input will help shape targeted training programs to strengthen the competences required for effective Knowledge Valorisation.

The complete survey questionnaire can be found in ANNEX 1.

2.2. DATA COLLECTION AND ANALYSIS

The survey was distributed through a Google Forms questionnaire in a decentralized manner by each ecosystem board member, while data collection and results analysis was managed centrally.

The data was downloaded in excel format and the analysis was performed using Power BI software.

3. RESULTS AND DISCUSSION

The following section provides a summary of the main findings regarding the skills of KV ambassadors as perceived by QH actors. It focuses on key results obtained for the three target groups (early-stage researchers, senior researchers and support staff) in the six areas evaluated: communication and dissemination, intellectual assets management, skills to enable open science, business skills, soft skills and intermediary skills for KV. To analyse the results we will go through the 5 sections of the survey

3.1. Profile of the respondents

The survey received 125 responses (*from Norway, Sweden, Lithuania, Italy, Spain, Finland, Ireland, Germany and Poland*), with input from early-stage researchers (13,6% of all respondents), established researchers (32%), non-academic support staff (43,2%), and other professionals (11,2%). In terms of disciplinary background, the majority of respondents came from the fields of engineering and technology (30,4% of all responses) and transversal working areas (30,4%), followed by humanities and social sciences (21,6%) and other fields including medical health and life science (17,6%). Regarding gender, 55 respondents identified as female, 67 as male, and 3 preferred not to disclose their gender. In terms of educational attainment, 63 held a PhD, 54 a master's degree, 7 a bachelor's degree, and 1 respondent had a high-school degree or lower.

As for professional affiliation, 91 respondents were from academia, 15 from innovation intermediaries (e.g., co-working spaces, incubators, facilitators), 11 from industry, and 7 from public administration, and 1 from civil society organisations. This information can be found in Figure 3.1.

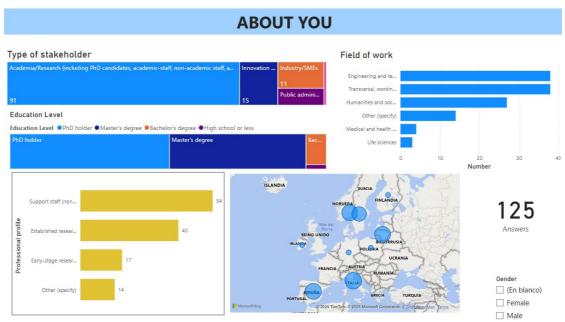


Figure 3.1: Summary of survey respondents' profile

3.2. Awareness and Expertise regarding KV among respondents

Based on the survey responses summarized in the Figure 3.2, several conclusions can be drawn regarding respondents' awareness, use, and stakeholder collaboration in relation to Knowledge Valorisation (KV):

1. Awareness of KV:

Awareness is relatively high—61% of respondents reported being either "very familiar" (27%) or "somewhat familiar" (34%) with the concept of Knowledge Valorisation. However, a significant minority (32%) reported being slightly or not familiar at all.

2. Application of KV Practices:

While 30% of respondents regularly apply KV practices in their work, and 26% use them occasionally, 13% have used them only rarely. Notably, 11% either expressed interest in learning more or were unsure if they apply KV at all (18%), indicating a need for further training or clarification. Only 2 respondents considered KV not relevant to their work.

3. Stakeholder Collaboration for Societal Impact:

A strong majority (76%) engage with stakeholders to enhance the societal impact of

research—33% do so extensively and 43% occasionally while 10% support others who do. Only 2 respondents indicated stakeholder collaboration is not applicable to their role.

4. Training in KV Skills:

A relatively low percentage (26%) of respondents have received training related to Knowledge Valorisation. However, there is a clear interest in development—36% have not been trained but expressed a desire to participate in such programs. Meanwhile, 36% indicated they have not received training, and 3% are not interested. These findings highlight the need and opportunity for structured training initiatives, especially for those who are interested but have not yet engaged.

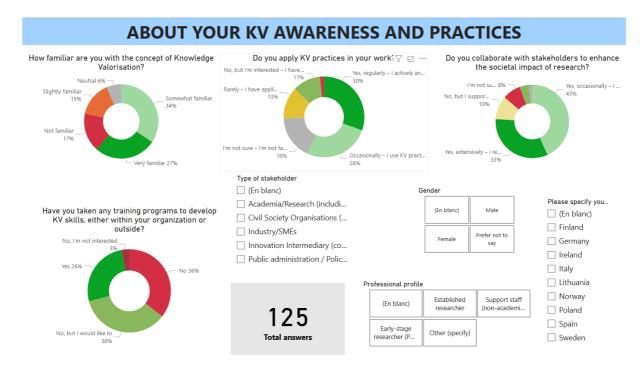


Figure 3.2. About the KV awareness and practices of the respondents

3.3. KV in the ecosystems

In this section, respondents were asked to identify the aspects of KV they believe are best and worst addressed (Figure 3.3) within their ecosystems.

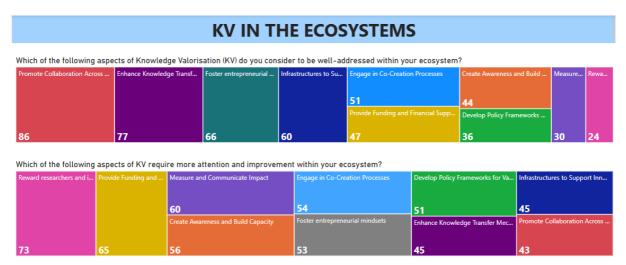


Figure 3.3. About the KV aspects better and worst addressed in the respondents ecosystem.

Among the aspects better addressed to support KV within these ecosystems, the following stand out:

- Promotion of collaboration across sectors (86 responses)
- Support for knowledge transfer mechanisms (77)
- Encouragement of entrepreneurial thinking (66)
- Innovation-focused funding and support (60)
- Involvement of non-academic stakeholders (51)

These results suggest that institutions are relatively strong in fostering environments conducive to external engagement and innovation, though not all areas are equally developed.

Among the aspects needing improvement within the respondents' ecosystems to support KV, the following stand out:

- Reward systems and incentives for applying KV practices (73 responses)
- Promote funding and financial support (65)
- Measure and communicate impact (60)
- Create awareness and build capacity (56)
- Support for engaging in co-creation processes (54)

This reveals a gap between institutional structures and individual capabilities, pointing to a need for more consistent support, recognition, and training opportunities for staff and researchers engaged in KV.

3.4. KV skills and competences and training demanded

In this section, respondents were asked for self-evaluation from a list of pre-selected skills and competencies in relation to their relevance to KV.

For each skill deemed relevant, respondents were required to indicate their level of proficiency, categorized as 'Foundational Understanding, Intermediate Proficiency, Advanced Proficiency, or Expert Level.

Before digging into the results of each skills category, it is worth to mention some general findings that apply to this section in general:

- 1. The survey included 54 support staff, 40 senior researchers, and 17 early-stage researchers, who were used to develop the skills portfolio. 14 others, from different professional groups, were excluded from the target group analysis. While the early-stage researcher sample is small, the low response variation and strong agreement provide some confidence in the results.
- 2. Female respondents showed significantly greater interest in training than their male counterparts, with 50–66% expressing willingness to train in nearly all skills except one. In contrast, only 12 out of the 40 skills received interest from at least 50% of male respondents, indicating a notably lower overall demand for training among men.

To facilitate this assessment, the skills were grouped into six categories. Also, respondents were asked whether they would be interested in receiving training on the pre-selected skills as part of the Section 5 of the survey. Below the results obtained for each category are presented:

3.4.1. Communication and dissemination

Figure 3.4 shows the detailed breakdown of all the respondents' self-assessed proficiency levels and training interests in Communication and Dissemination skills relevant to Knowledge Valorisation (KV). As reflected in the figure, the skill with the highest training demand is "Increase the impact of science on policy and society", showing a strong interest in enhancing the societal and political relevance of research outputs. Communicating to the broad public" and "Disseminating results to the research community" also show notable training needs (78 and 65 respondents respectively), reflecting the ongoing challenge of effectively translating complex scientific information for diverse audiences. "Media liaison and social media engagement" garners moderate interest (68 respondents), suggesting a recognition of the role of digital and traditional media channels in effective dissemination. In contrast, "Preparing and writing reports" appears to be a more established skill among respondents, with 71 respondents having a proficiency level advanced or expert and with 74 respondents indicating that they do not require additional training in this area.

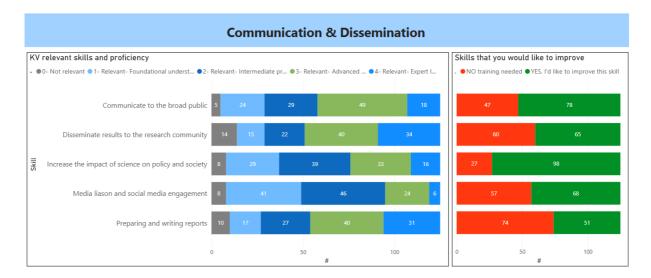


Figure 3.4: Overview of respondents' self-rated proficiency and training needs in Communication and Dissemination skills

When examining the three target groups—early-career researchers, senior researchers, and support staff—several notable patterns emerge:

1. Senior researchers: As shown in Figure 3.5 this group demonstrates higher levels of proficiency across the assessed skills, which correlates with a lower overall demand for training. As expected, they show particularly strong competence in "disseminating results to the research community" and "preparing and writing reports," reflecting their experience with academic outputs. The least developed skill among this group is "media liaison and social media engagement." However, despite being their weakest area, it is only the second most requested for further training. The top training priority for senior researchers is "increasing the impact of science on policy and society," aligning with the interests expressed by the other target groups and highlighting a shared recognition of the importance of bridging science and policy.

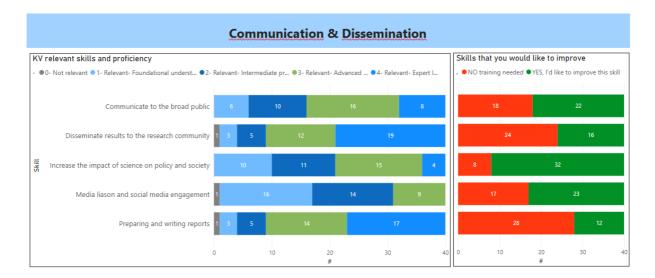


Figure 3.5: Overview of senior researchers' self-rated proficiency and training needs in Communication and Dissemination skills

2. Early-stage researchers: As shown in figure 3.6 early-stage researchers show strong interest in improving KV-related communication skills, especially in *increasing the impact of science on policy and society*. While proficiency is generally lower, particularly in *media liaison and social media engagement*, training demand is high across most skills. It must be noted that with only 17 respondents, the sample size limits the strength of conclusions for this target group.

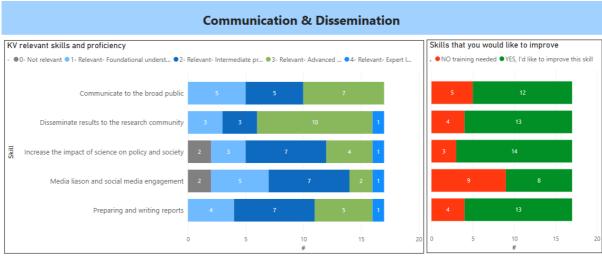


Figure 3.6: Overview of early-stage researchers' self-rated proficiency and training needs in Communication and Dissemination skills

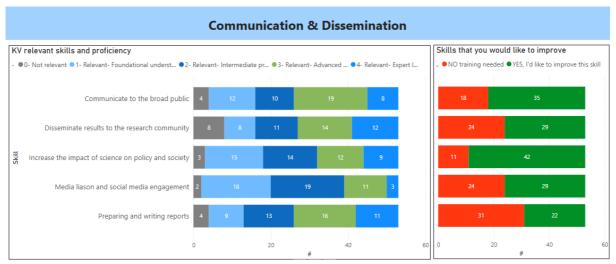


Figure 3.7: Overview of support staff self-rated proficiency and training needs in Communication and Dissemination skills

3. Support staff: As shown in Figure 3.7, support staff display moderate proficiency across communication and dissemination skills, with strengths in communicating to the broad public and preparing and writing reports. However, media liaison and social media engagement remains the area of lowest proficiency, accompanied by a relatively high demand for training. Notably, increasing the impact of science on policy and society emerges as the top training priority, reinforcing its cross-cutting relevance across all groups.

3.4.2. Intellectual Assets Management

Figure 3.8 illustrates respondents' self-assessed proficiency and training interests in skills related to Intellectual Assets Management (IAM). The strongest training demand is seen for *evaluating the value of intellectual assets* and *developing strategies for licensing and commercialization* (88 and 87 respondents respectively), highlighting a widespread need to strengthen capacities in technology transfer and commercialization. *Promoting the transfer of knowledge* also shows high interest (76 respondents), reflecting a broader commitment to ensuring research results reach societal and industrial beneficiaries. The highest level of proficiency is in *promoting the transfer of knowledge* and *identifying and protecting research outputs* areas but still attract substantial training interest.

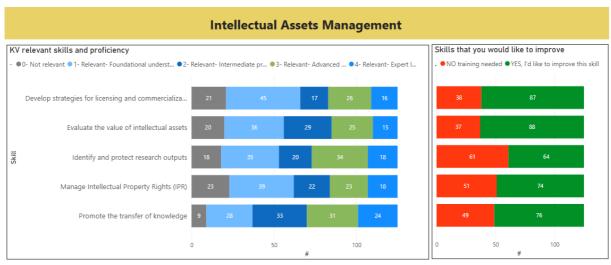


Figure 3.8: Overview of respondents' self-rated proficiency and training needs in Intellectual Assets Management

In this case, no clear trends emerge across the three target groups (Figure 3.9), except that senior researchers appear slightly less inclined to seek training compared to early-stage researchers and support staff.

Figure 3.9: Overview of senior researchers' (top), early-stage researchers (middle) and support staff' (bottom) self-rated proficiency and training needs in IAM skills

3.4.3. Open Science skills

As shown in Figure 3.10, which summarizes the results of all respondents about Open Science skills, the training demand remains above 50% across all skills except promoting open science, indicating that while these are not prioritized by the majority, there is still a significant interest in improving them. The most requested training is Promote open innovation (68) and Promote citizen science (66). Proficiency levels vary, with most respondents reporting intermediate to advanced understanding. However, a substantial portion still rated themselves at foundational levels or found some skills not relevant, especially for Promote citizen science.

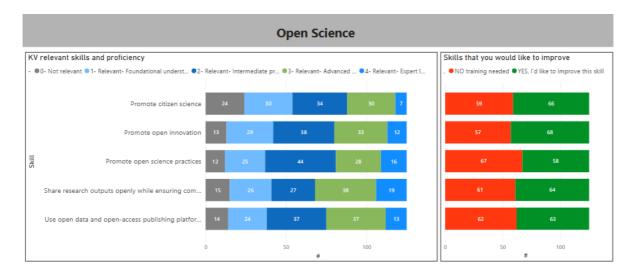


Figure 3.10: Overview of respondents' self-rated proficiency and training needs in Open Science

When comparing the three target groups (Figure 3.11), **Senior researchers** show strong proficiency, especially in sharing research outputs openly and promoting open innovation, and using open data and open-access publishing platforms but their interest in further training is somewhat lower. In contrast, **early-stage researchers exhibit lower overall proficiency**, with a relatively balanced demand for skill development, suggesting a stronger need for foundational and intermediate-level training across most open science competencies. It is also interesting to note that within the support staff group, a considerable number considers some open science skills as not relevant to the Knowledge Valorisation (KV) context; nevertheless, their eagerness to engage in further training is consistently high, with over 50% expressing interest in improving these skills across all areas.

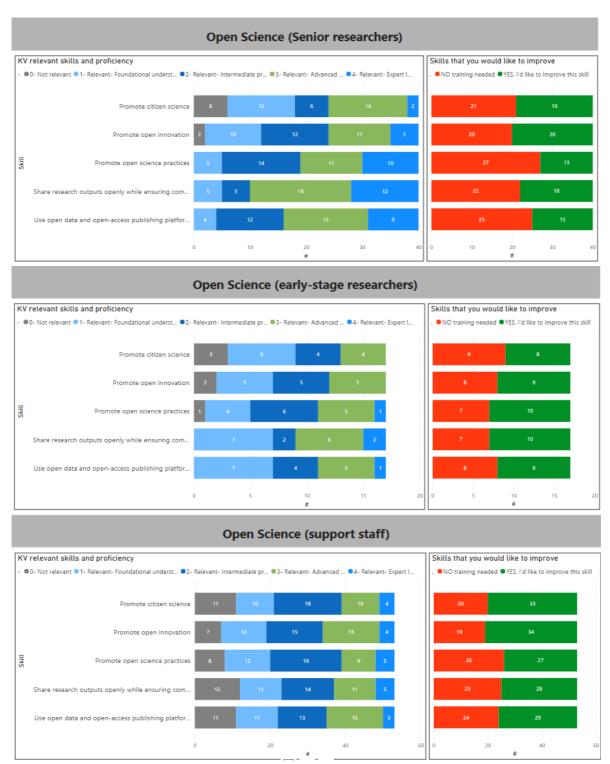


Figure 3.11: Overview of senior researchers' (top), early-stage researchers (middle) and support staff' (bottom) self-rated proficiency and training needs in Open Science related skills

3.4.4. Business skills- Strategic skills

Figure 3.12 presents the overall proficiency and training interest in strategic skills for all respondents. Across all six assessed areas, the majority of participants report at least an intermediate level of proficiency, with particularly strong results in *spotting opportunities*, *strategic thinking, taking initiative* and *vision and goal setting*, where a significant number also indicate advanced or expert-level competence. However, *financial and economic literacy* and *entrepreneurial mindset* reflect lower levels of expertise. Despite the generally solid skill base, there remains considerable interest in further development in all areas except taking initiative. This indicates a strong motivation for continued capacity building, even among those with existing competence in strategic skill domains.

Figure 3.12: Overview of respondents' self-rated proficiency and training needs in Strategic skills for KV

The comparison of the three target groups in terms of Strategic Skills (Figure 3.13) reveals distinct patterns in self-assessed proficiency and training needs. **Senior researchers** display relatively high levels of proficiency across all strategic skills. For instance, a large portion report advanced or expert levels in strategic thinking, vision and goal setting, and taking initiative. Training interest, however, is moderate; across most skills, around half or fewer express a desire to improve, indicating either confidence in their current skills or lower perceived necessity for further development. **Early-stage researchers**, in contrast, report much lower proficiency levels. Most responses fall within foundational or intermediate understanding. Despite this, their motivation to enhance these skills is notably high: the majority express a willingness to improve, particularly in financial literacy, entrepreneurial mindset, and strategic thinking, suggesting strong development potential in this group. **Support staff** demonstrate a more varied proficiency profile. While they show a mix of skill levels, a sizable number have achieved advanced proficiency in areas like vision and goal setting, strategic thinking, spotting opportunities and taking initiative. Importantly, their enthusiasm for further training is high, over 60%

of respondents consistently indicate a desire to improve each strategic skill area except for taking initiative and vision and goal setting.

Figure 3.13: Overview of senior researchers' (top), early-stage researchers (middle) and support staff' (bottom) self-rated proficiency and training needs in Strategic skills for KV

3.4.5. Business skills- Operational skills

Figure 3.14: Overview of respondents' self-rated proficiency and training needs in Operational skills

Figure 3.14 presents a breakdown of respondents' self-reported proficiency and training interests in Operational skills relevant to KV. A generally high level of proficiency is observed across all skills compared to the other two previous categories (Communication & Dissemination and IAM). Proficiency is particularly high in Problem-solving and Project management, with many respondents assessing themselves at an advanced or expert level. Training demand remains consistently above 50% for all skills. This suggests that, although these skills may not be top priorities for most respondents, a substantial number still expresses a desire to improve them. The highest interest is seen in "Project management" and "Interacting professionally with industry stakeholders" with 74 respondents indicating a need for further training.

A clear trend across the three target groups (Figure 3.15) is that **early-stage researchers** consistently report **lower proficiency levels** and **highest interest in training** compared to support staff and established researchers. In contrast, **established researchers** show the **lowest demand for training** across most skills, particularly in **problem-solving**, where a notable majority see no need for further development. Support staff fall in between, showing moderate proficiency and interest in improvement.

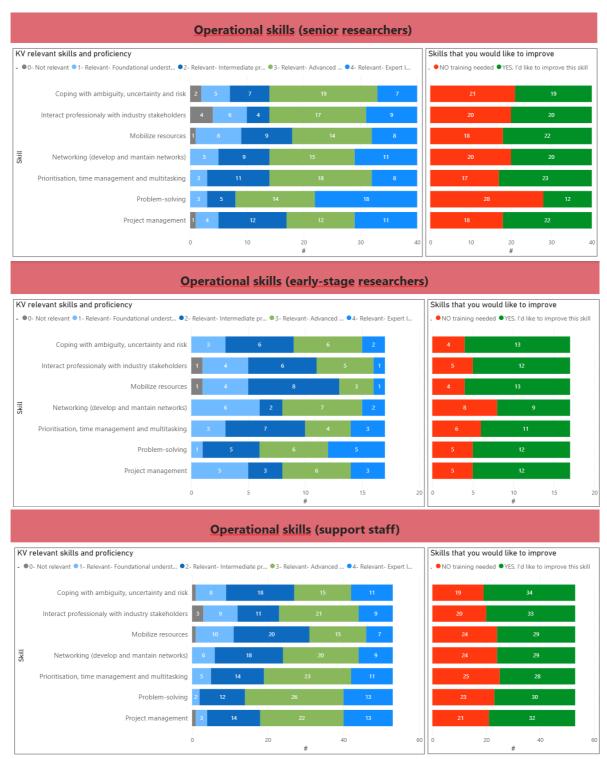


Figure 3.15: Overview of senior researchers' (top), early-stage researchers (middle) and support staff' (bottom) self-rated proficiency and training needs in Operational skills

3.4.6. Soft skills

The assessment of soft skills among KV respondents reveals consistent trends in both self-perceived proficiency and desire for further development (Figure 3.16).

Participants generally report strong proficiency across a wide range of soft skills. Skills such as critical thinking, analytical thinking, and systemic thinking show particularly high levels of advanced and expert self-assessments, with over 90 respondents placing themselves at these upper tiers. Similarly, ethical and sustainable thinking, digital skills, and adaptability and professional flexibility show solid proficiency levels, with most respondents at intermediate or above.

The interest in improving soft skills is among the lowest in the different areas. An exception is leadership, with 81 respondents expressing a desire to develop further—making it the highest-demand skill for improvement. Digital skills and systemic thinking also attract high training interest, with 72 and 64 respondents respectively indicating their willingness to improve.

At the other end of the spectrum, abstract thinking garners the least interest for further development, with only 50 individuals seeking training, despite a notable proportion of respondents assessing themselves at only foundational or intermediate levels.

Interestingly, for many skills such as creativity, critical thinking, and ethical and sustainable thinking, the number of individuals who do not feel they need training remains high, suggesting a perceived sufficiency in current capabilities.

Overall, the data suggests a workforce that is relatively confident in its soft skills but still shows considerable motivation for continuous growth, especially in leadership, digital proficiency, and system-level thinking.

Figure 3.16: Overview of respondents' self-rated proficiency and training needs in Soft skills

Figure 3.17: Overview of senior researchers' (top), early-stage researchers (middle) and support staff' (bottom) self-rated proficiency and training needs in Soft skills

The comparison of the three target groups in terms of Soft Skills (Figure 3.17) reveals significant differences in both self-assessed proficiency and training interest.

Senior researchers show consistently high proficiency levels across all soft skills. The majority report advanced to expert levels in key areas like critical thinking, analytical thinking, leadership, and creativity. However, their training interest is lower in comparison. For many skills, fewer than half express a desire for further improvement. Leadership is an exception, with more than 60% indicating interest in further development.

Early-stage researchers report more modest proficiency levels. Despite the slightly lower proficiency, this group demonstrates strong motivation to improve, with a large majority expressing interest in training for nearly every soft skill. Notably, skills like digital skills, leadership, and cultural sensitivity attract particularly high improvement interest.

Support staff exhibit a broad range of proficiency levels, with a significant number reporting intermediate to advanced skill levels across most categories. In areas like creativity, systemic thinking, and ethical and sustainable thinking, a notable share reaches expert-level proficiency. What stands out, however, is their larger enthusiasm for training: over 50% express interest in improving nearly all soft skills. Skills such as leadership, digital skills, systemic thinking, and critical thinking are especially prioritized for development, suggesting a strong commitment to personal growth and career advancement within this group.

3.4.7. Intermediary skills for KV

The assessment of intermediary skills for KV shows varied proficiency and strong demand for further development (Figure 3.18). Most respondents report intermediate to advanced levels across skills like stakeholder engagement and participatory processes. However, artificial intelligence has the lowest proficiency, with many at foundational or beginner levels. Interest in training is high across the board, especially for Al (95), diplomacy and mediation (85), and technology scouting (85), indicating a clear motivation to upskill in these key areas.

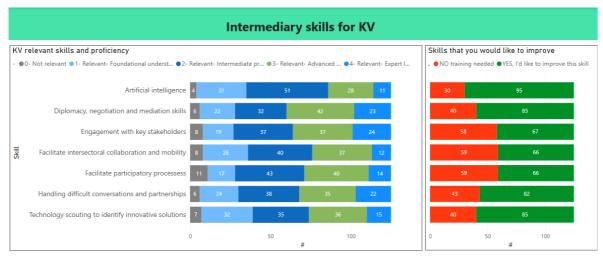


Figure 3.18: Overview of respondents' self-rated proficiency and training needs in Intermediary skills for KV

Figure 3.19: Overview of senior researchers' (top), early-stage researchers (middle) and support staff' (bottom) self-rated proficiency and training needs in Intermediary skills for KV

The assessment of intermediary skills across KV groups (Figure 3.19) shows differing proficiency levels and training interests.

Senior researchers report high proficiency in most skills but still show significant interest in improving areas like diplomacy, negotiation and mediation skills (24), handling difficult conversations (27), and AI (28).

Early-stage researchers generally rate their proficiency lower, especially in AI and stakeholder engagement, with strong interest in training across all skills except engaging with stakeholders. Support staff rate their proficiency in intermediary skills relatively high. Nonetheless, their training interest is also high, with highest training interest in AI (44), technology scouting (40) and diplomacy, negotiation and mediation skills (37).

Overall, training demand is highest for Al and cross-sector collaboration, especially among early-career and support staff.

4. CONCLUSIONS

The survey, designed to identify gaps in Knowledge Valorisation (KV) skills and competencies, was answered by 125 respondents belonging to academy, industry and public administration from the 5 partner's university ecosytsems.

While many respondents are familiar with the concept of KV and recognize its relevance, there remains a notable gap between understanding and implementation. Institutional environments appear generally supportive of cross-sector collaboration and innovation, but individual capacities often lag behind due to limited training and incentive structures.

Support for KV is strongest where external engagement and knowledge transfer are concerned, suggesting a solid foundation for future development. However, the lack of consistent recognition, reward mechanisms, and tailored training opportunities continues to hinder broader adoption.

The results of the survey point out that the three target groups, early-stage researchers, senior researchers, and support staff, show distinct strengths and needs, underlining the importance of a differentiated approach to skill-building.

The table below summarizes the most and least developed skills, the skills perceived as less relevant for KV, and those identified as priorities for further training for the three target groups.

Support staff Senior researcher Early-stage researcher Best acquired skills (advanced and expert Best acquired skills (advanced and expert Analytical thinking Disseminate results to the research level): 1. Critical thinking Best acquired skills (advanced and expert level): community Disseminate results to the research Problem solving Creativity Critical thinking community Analytical thinking Analytical thinking Project management Worst acquired skills (foundational level): Worst acquired skills (foundational level): Develop strategies for licensing and commercialization Evaluate the value of Intellectual assets Worst acquired skills (foundational level): Develop strategies for licensing and Media liaison Manage IPR Develop strategies for licensing and Media liaison and social media commercialization Identify and protect research outputs Use open-data and open-source platforms Share research outputs openly Evaluate the value of Intellectual assets Manage IPR Financial and economic literacy Not relevant: Not relevant: Not relevant: Share research outputs openly Promote citizen science Use open-data and open-access Promote citiz Manage IPR Develop strategies for licensing and Evaluate the value of Intellectual assets Promote citizen science Training wanted: Increase the impact of science on policy Training wanted: Increase the impact of science on policy Diplomacy, negotiation and mediation skills Increase the impact of science on policy and society Coping with ambiguity, uncertainty and risk Technology scouting Evaluate the value of intellectual assets Technology scouting Develop strategies for licensing and Mobilitze resources Evaluate the value of intellectual assets Entrepreneurship. Technology scouting

A total of 54 support staff, 40 senior researchers, and 17 early-stage researchers participated in the survey and were included in the analysis to develop the skills portfolio. An additional 14 respondents identified as belonging to other professional groups and were therefore excluded from the target group analysis. It should be noted that the sample size of 17 may not be sufficient to draw definitive conclusions for the early-stage researchers' group, although the low dispersion of responses and strong agreement among participants lend some confidence to the findings.

Another clear pattern observed is that female respondents are significantly more eager to participate in training than their male counterparts. Between half and two-thirds of the women expressed interest in receiving training across nearly all skills, with only one exception. In contrast, male respondents showed considerably less interest, with only 12 out of the 40 evaluated skills being selected by at least 50% of them for improvement.

It highlights distinct patterns across the three groups. Senior researchers and early-stage researchers excel in critical thinking and disseminate results to the research community but lack competencies in licensing, commercialization, and managing intellectual assets. Support staff show strength in project management and problem-solving but need training in financial literacy and IPR management. Across all groups, there is a strong demand for training in AI, increasing science's societal impact, and technology scouting, while skills like promoting citizen science are often viewed as less relevant or sufficiently developed.

CEETNOVA

ANNEX 1: Survey on Knowledge Valorisation Needs and Skills