FGI Webinar: Part 2: Subsurface Elevated Temperature (SET)

Events in Landfills

Date: July 22, 2025

Presenters:

Dr. Timothy D. Stark, P.E. (University of Illinois at Urbana-Champaign / Flexible Geomembrane Institute)

- Expertise: Geotechnical engineering, landfill stability, and SET event mitigation.

Todd Thalhamer, P.E. (President, Hammer Consulting)

- Expertise: Regulatory compliance, landfill gas management, and SET event root-cause analysis.

Dr. Navid Jafari, P.E. (Texas A&M University)

- Expertise: Waste mechanics, thermal modeling, and landfill containment strategies.

Core Content Summary

1. SET Event Fundamentals

• **Definition:** Subsurface reactions causing sustained temperatures >131°F (55°C), exceeding landfill design thresholds.

Primary Causes:

- Chemical reactions: Aluminum waste oxidation, metal corrosion, exothermic hydration/carbonation.
- Aerobic decomposition: Oxygen intrusion via cracked covers, over-pulled gas wells (>2% O_2), or leachate recirculation–induced pressure changes.
- Insight: SET events are self-sustaining via a "disaster loop" (increased O₂ → elevated heat → expanded aerobic zones → further O₂ ingress).

2. Early Warning Signs & Progression

Initial Indicators: Odor complaints and off-site gas migration (earliest symptoms).

Progressive Symptoms:

- Temperature spikes (>20°F/24 hrs) measured via downhole thermocouples (surface probes lag).
 - Leachate outbreaks (hazardous at >180°F due to benzene/Mek contamination).

- Surface settlement (a delayed indicator; post-thermal degradation).
- Case Study: 90 ft waste column consumed in 6 years; thermal imaging showed 120°F differentials between surface/shallow probes.

3. Mitigation & Containment Strategies

- Small-Scale SET (<40 ft depth):
 - Excavation: Removal of smoldering waste (e.g., 4 ft-wide trenches).
 - Foam Suppression: Structural Class A foam (preferred over water).

• Large-Scale SET:

- Air Breaks: Isolation zones (e.g., 65 ft-deep berms) to halt lateral spread.
- Vertical Cutoffs: Bentonite-cement slurry barriers installed via augered borings (3-4 ft diameter).

Best Practices:

- Increase gas well density (5-6 wells/acre, shallower depths).
- Repair interim covers (≥12" soil or intact geomembranes) to minimize O₂ ingress.

4. Regulatory & Engineering Recommendations

- **Temperature Thresholds:** Revert action threshold to 131°F (55°C) from 145°F (63°C) to align with PVC geomembrane design limits (140°F max).
- Real-Time Monitoring: Mandate continuous O₂/temperature telemetry; monthly sampling inadequate.
- O₂ Concentration Limits:

Temperature Threshold Max O₂ Concentration

>140°F	≤3%
>170°F	≤2%
>200°F	≤1%

5. Critical Research Gaps

- Quarry-fill landfills act as thermal sinks, prolonging SET events (e.g., 200°F persists 15+ years post-containment).
- Need to define leachate temperature thresholds for hazardous classification (~180°F preliminarily).
- Evaluate CPVC vs. PVC well casing resilience at elevated temperatures.

Assessment Highlights (NY PDH Credit)

- 1. Primary SET causes: All chemical/aerobic factors, not just waste placement.
- 2. Settlement is a *delayed* indicator, not an early locator.
- 3. First signs: Odor complaints (87% of cases).
- 4. Containment feasible via trenches/barriers.
- 5. Heat extraction wells ineffective due to negligible BTU removal.
- 6. 2021 removal of 5% O₂ standard from NSPS is correct.

Key Takeaway: Early intervention (<131°F) with aggressive root-cause analysis is critical. Current regulatory thresholds (145°F) violate material design limits and exacerbate SET risks.

Appendix

- Figures: Thermal gradients, air break schematics, O₂/temperature curves.
- Citations: NSPS Commentary (2021), California Title 27 (interim cover standards), FGI containment guidelines.

Notice: This report synthesizes technical content for academic and regulatory dissemination. For detailed data, consult webinar slides or contact presenters.