

10 VFD Selection Procedure

Selection Procedure

- 1. Business Model
 - 2. Voltage Power
 - 3. Application Focus
 - 4. Braking Requirements
 - 5. Communication Protocols
- 6. Enviornmental Conditions
- 7. Installation Type
- 8. Harmonic Solutions
- 9. Motor Protection
- 10. Options and Accessories

Step 1: Identify the Business Model Type

Power Requirement

- Less than 90kW / 125HP:
 - Transactional Business Model
- Up to 315kW / 500HP:
 - Transactional or Project Business Model
- More than 315kW / 500HP:
 - Project Business Model and MV Drives

Support in the Selling Process

- Transactional Business Model:
 - SE sales channels including:
 - Distributors, PnB, SI, OEMs, and others.
- Project Business Model:
 - Global Drives Presales Team and the Local Country Technical and Commercial Team.
 - PAEs, SAEs, KAM, PM, and others.

Step 2: Voltage and Power Selection

	Voltage	HP	kW	
Altivar 12	115	0.25 - 1	0.18 - 0.75	
Aluvar 12	208/230	0.25 - 5	0.18 - 4	
	208/230	0.25 - 20	0.18 - 15	
Altivar 320 Compact	480	0.5 - 5	0.37 - 4	
	600	1 - 20	0.75 - 15	
Altivar 320 Book	208/230	0.25 - 20	0.18 -15	
AILIVAI 320 DOOK	480	0.5 - 20	0.37 - 15	
Altivar 320 washable drives	208/230	0.25 - 3	0.18 - 2.2	
Aitivar 520 Washable drives	480	0.5 - 10	0.37 - 7.5	
Altivar 340	480	1 - 100	0.75 - 75	
	208/230	1 - 100	0.75 - 75	
Altivar 630	480	1 - 900	0.75 - 800	
Aitivai 030	600	1 - 200*	0.75 - 150	
	690	1 - 900*	0.75 - 800	
Altivar 650	480	1 - 125	0.75 - 90	
	208/230	1 - 100	0.75 - 75	
Altivar 930	480	1 - 900	0.75 - 800	
Altival 930	600	1 - 200	0.75 - 150	
	690	1 - 900	0.75 - 800	
Altivar 950	480	1 - 125	0.75 - 90	

^{* 600}V &690V 125 HP+ are enclosed Drives Nema 1 or w 12

Step 3: Application Focus

Machinery Complexity									
Reference	Simple Machines	Advanced Machines	Complex Machines						
ATV12	\bigcirc	\bigcirc							
ATV320	\bigcirc	\bigcirc							
ATV340	\bigcirc	\bigcirc	\bigcirc						
ATV212	\bigcirc	\bigcirc							
ATV600	\bigcirc	\bigcirc	\bigcirc						
ATV900	\bigcirc	\bigcirc	\bigcirc						
ATV6000	\bigcirc	\bigcirc							
ATV6100	\bigcirc	\bigcirc							

- Simple machines are often standalone, semi-automated machines.
- Advanced machines are often equipped with a PLC in a cabinet or distributed architectures.
- Complex machines are typically integrated into fully automated production processes based on a PLC and fieldbus communication.

Targeted Use										
Reference	Water Pumps	Torque Control	High Cycling Machines	Hoisting and dragging loads	Medium Voltage	Solar Applications				
ATV12	\bigcirc		\bigcirc							
ATV320	\bigcirc		\bigcirc	\bigcirc						
ATV340	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc				
ATV212	\bigcirc									
ATV600	\bigcirc									
ATV900	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
ATV6000	\bigcirc	\bigcirc			\bigcirc					
ATV6100	\bigcirc	\bigcirc			\bigcirc					

- Water or liquid pumping applications.
- Torque control such as paper, cable, and other winding machines or applications.
- High cycle machines where fast response and high accuracy is required.
- Lifting and dragging loads such as downhill conveyors or similar.
- Medium voltage motors and pumps driven by solar systems where AC power is not available.

Step 4: Braking Requirements

Reference	Adaptive Deceleration Ramp	Braking Transistor	Breaking Resistor	Regenerative Module	Regenerative Technology AFE
ATV12	\bigcirc				
ATV320	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
ATV340	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
ATV212	\bigcirc				
ATV600	\bigcirc				\bigcirc
ATV900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
ATV6000	\bigcirc				
ATV6100	\bigcirc				

- Adaptive deceleration means that the drive adjusts the deceleration ramp to achieve the desired deceleration time without using brake resistors.
- Braking Units: It's the power transistor needed to power the braking resistors.
- Braking Resistor: It's the device used to dissipate the energy generated during motor braking.
- Regen units: This device can replace the braking resistors in regenerating the braking energy back to the grid.
 Used in drives products.
- AFE Regenerative Technology: Does the same as Regen Units, but it's integrated into the drive for Drive Systems.

Step 5: Communication Capabilities

Reference	Modbus RTU	Modbus TCP	Ethernet IP	Profibus	Profinet	CanOpen	DeviceNet	Bacnet	Metasys	Apogee	Lonworks
ATV12	\bigcirc					•					·
ATV320	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
ATV340	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
ATV212	\bigcirc							\bigcirc	\bigcirc	\bigcirc	\bigcirc
ATV600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
ATV900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
ATV6000	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
ATV6100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				

Step 6: Protection Degree

	Environmental Conditions										
Reference	IP00	IP20	IP21	IP23	IP31	IP41	IP42	IP54	IP55	IP65	IP66
ATV12		\bigcirc									
ATV320		\bigcirc								\bigcirc	\bigcirc
ATV340		\bigcirc									
ATV212			\bigcirc						\bigcirc		
ATV600	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc		
ATV900	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc		
ATV6000					\bigcirc	\bigcirc	\bigcirc				
ATV6100					\bigcirc	\bigcirc	\bigcirc				

A combination of letters and numbers indicates the VSD's protection against ingress of foreign objects and water.

Step 6: Chemical and Mechanical Active Substances

⊗ Build-in

Environmental Conditions - IEC60721									
Reference	Chemical Active Substance 3C1	Chemical Active Substance 3C2	Chemical Active Substance 3C3	Mechanical Active Substance 3S1	Mechanical Active Substance 3S2	Mechanical Active Substance 3S3			
ATV12			\bigcirc		\bigcirc				
ATV320			\bigcirc		\bigcirc				
ATV340			\bigcirc		\bigcirc				
ATV212	\bigcirc				\bigcirc	\bigcirc			
ATV600		\bigcirc	\bigcirc		\bigcirc	\bigcirc			
ATV900		\bigcirc	\bigcirc		\bigcirc	\bigcirc			
ATV6000		\bigcirc		\bigcirc					
ATV6100		\bigcirc		\bigcirc					

- Chemical Active
 Substances refers to Sea
 Salts, Sulphur dioxide,
 Hydrogen Sulfide, Chlorine,
 Ammonia, Nitrogen Oxide.
 3C1 is the lowest and 3C4
 is the highest protection
 classification according to
 the standard.
- Mechanical Active
 Substances refers to Sand,
 Dust, and Sedimentation.
 3S1 is the lowest and 3S3
 the highest protection
 classification according to
 the standard.

Step 7: Installation Type

Available

Reference	Inside Cabinet	Directly on the machine	Wall Mounting	Modular	Floor Standing	Liquid Cooling	High Reduced
ATV12	\bigcirc	\bigcirc					
ATV320	\bigcirc	\bigcirc	\bigcirc				
ATV340	\bigcirc	\bigcirc		\bigcirc			
ATV212	\bigcirc		\bigcirc				
ATV600	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
ATV900	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
ATV6000					\bigcirc		
ATV6100					\bigcirc		

- Modular allows paralleling drives to get a higher power.
- Floor standing includes the cabinet integration and it's ready to connect.
- Liquid cooling involves a dedicated water circuit for cooling the drive.
- High reduced drives are integrated in a cabinet, but the cabinet's height is reduced compared with the other versions.

Step 8: Harmonic Solutions

Reference	Integrated DC Choke	Line Chokes	C-Less Technology	Passive Filters	Active Front End	Multipulses
ATV12						
ATV320		\bigcirc				
ATV340	\bigcirc	\bigcirc				
ATV212			\bigcirc			
ATV600	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc
ATV900	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc
ATV6000						\bigcirc
ATV6100						\bigcirc

- DC Choke is the internal inductance located in the DC Bus for harmonics reduction. THD ~ 40%
- Line Chokes are external inductance located at the drive's input for harmonic reduction.
 THD ~ 35%
- C-Less is the technology that reduces the harmonics down to 30% without any accessories thanks to its low capacitance DC Bus.
- Passive Filters are located at the drive's input for harmonic reduction. THD ~ 5–10%
- Active Front End is the technology for harmonic reduction and regenerative braking energy. THD ~ 2%
- Multipulse is the technology used in MV Drives to keep the THD less than 5%.

Step 9: Motor Protection against dV/dt and reflected waveform

Reference	Motor Choke	dV/dt Filter	Sinus Filter	Multi-Level Technology
ATV12	\bigcirc			
ATV320	\bigcirc			
ATV340		\bigcirc		
ATV212	\bigcirc		\bigcirc	
ATV600		\bigcirc	\bigcirc	
ATV900		\bigcirc	\bigcirc	
ATV6000				\bigcirc
ATV6100				\bigcirc

- Motor Choke and dV/dt Filters
 are output filters to reduce the
 dV/dt and reflected waveform,
 protecting the motor's windings
 insulation and the motor's cable
 insulation.
- Sinus Filters: Output filter to transform the PWM voltage into sinus voltage, being motorfriendly and allowing an increase in the motor cable up to 1 km.
- Multilevel Technology refers
 to the power electronic
 architecture inside the drive to
 produce the voltage provided
 to the motor trying to simulate
 a sinus voltage waveform by
 providing voltage steps.

Options and Accessories

- **Communication Cards:** Extend the communication protocols capabilities e.g., Profibus.
- Input and Output Expansions Cards: Extend the number of Digital and Analog I/O.
- **Special functions cards:** E.g., Safety Functions or Encoder card.
- **Graphic Keypad:** Improve the customer interaction by adding a graphic keypad.
- **Braking Units:** It's the Power Transistor required to supply the braking resistors.
- **Braking Resistors:** It's the device used to dissipate the energy producing during braking the motor.

- Regen Units: This device can replace the braking resistors in regenerate the braking energy back to the grid.
- Passive Filters: Input filters to reduce the harmonic distortion produced by the drive down to 5% or 10%.
- **Line Chokes:** Input filters to reduce the harmonic distortion produced by the drive down to 40% approx.
- **dV/dt Filters:** Output filter to reduce the dV/dt and reflected waveform protection the motor friendly.
- RFI filters: Input filter that protect the grid from the high frequency noise produced by the PWM.