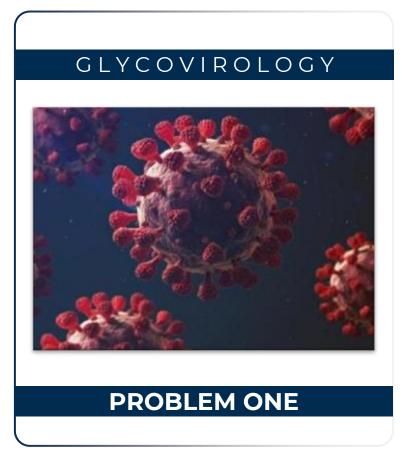
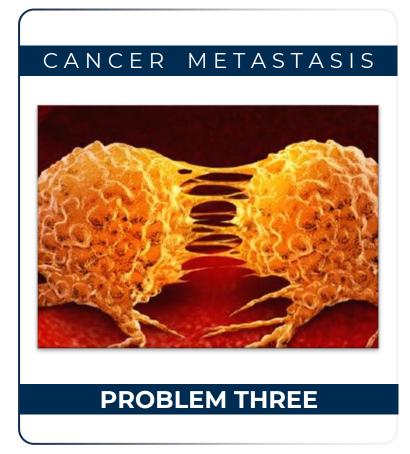


BiQXyTran Inc.

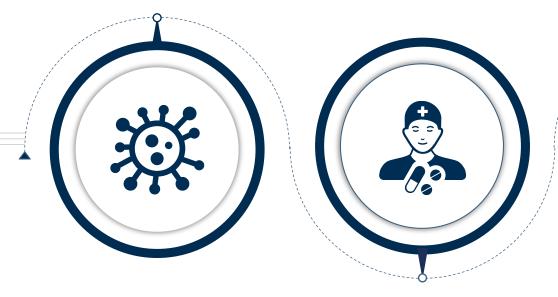
A Complex Carbohydrate
Chemistry Drug
Company


Forward Looking Statement

This Descriptive Presentation (the "Presentation") has been prepared by Bioxytran, Inc (the "Company") and recipients are not entitled to rely on the accuracy or completeness of the Presentation. Statistical information contained in this Presentation is based on information available to the Company that the Company believes is accurate. It is generally based on publications that are not produced for the purposes of securities offerings or economic analysis. The Company has not reviewed or included data from all sources and cannot assure prospective parties of the accuracy or completeness of the data included in this Presentation. Forecasts and other forward-looking information obtained from these sources are subject to the same qualifications and the additional uncertainties accompanying any estimates of future market size, revenue and market acceptance of products and services. The Company undertakes no obligation to update forward looking information to reflect actual results or changes in assumptions or other factors that could affect those statements.

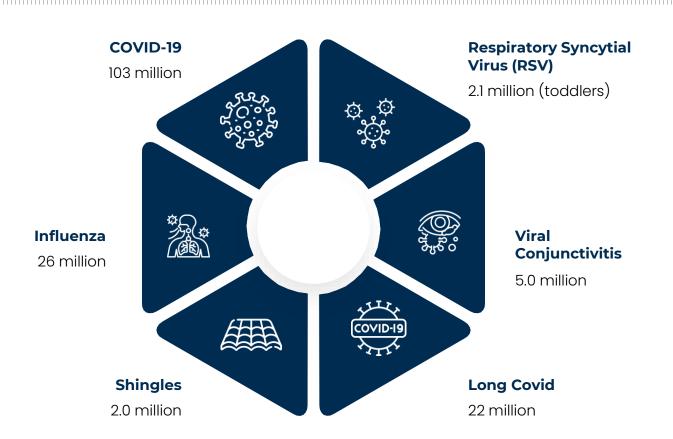

This Presentation has not been filed or reviewed by the Securities and Exchange Commission ("SEC") or any securities regulatory authority of any state, nor has the SEC or any such authority passed upon the accuracy or adequacy of this Presentation. This Presentation does not constitute an offer to sell or solicitation of an offer to buy any securities. This Presentation does not purport to contain all information which may be material to a prospective party, and recipients of this Presentation should conduct their own independent evaluation and due diligence of the Company. Each recipient agrees, and the receipt of this Presentation serves as an acknowledgment thereof, that if such recipient determines to engage in a transaction with the Company, its determination will be based solely on the terms of the definitive agreement relating to such transaction and on the recipient's own investigation, analysis and assessment of the Company and the transaction. The Company does not intend to update or otherwise revise this Presentation following its distribution.

Platform Technologies Addressing 3 Major Problems



The Problems

No Effective Treatments for Cancer Metastasis


No Treatment for Early-Stage Stroke

Bio XyTran[®] PROBLEM NUMBER #1

No Effective Treatment for Viral Infections

United States Virology Data

2600+ RNA Viruses Identified

No Broad-Spectrum solution for Viruses unlike Penicillin For Bacterial Infection

Vaccines are unable to keep pace with Mutations

In 1992 David Platt for the first time identified and named the Galectin

Key Leadership in Galectin Science

David Platt PhD, CEO, CSO, Chairman

40+ years of research in Galectins (carbohydrate-binding proteins)

Co-author of 2 Textbooks

Founder of 5 Public Companies

Publication of numerous Journal Articles and Patents

Developer of numerous drugs FDA regulatory clinical trials

First Expression of the "Galectin" Protein - 1993

Biochemistry 1993, 32, 4455-4460

4455

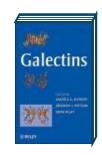
Structure-Function Relationship of a Recombinant Human Galactoside-Binding Protein[†]

Josiah Ochieng, David Platt, Li Larry Tait, Victor Hogan, Tirza Raz, Pnina Carmi, Li and Avraham Raz'.

Metastasis Research Program, Michigan Cancer Foundation, 110 East Warren Avenue,

Detroit, Michigan 48201

Received October 9, 1992; Revised Manuscript Received January 7, 1993


ABSTRACT: A galactoside-binding lectin (hL-31) containing a collagen-like sequence was identified in human tumor cells. It was found to be the homologue of the IgE-binding protein, the macrophage cell-surface Mac-2 antigen, and the murine CBP33, RL-29, and mL-34 lectins. Here we report on the expression in Escherichia coll and functional analysis of recombinant hL-31 (rhl-31). The rhL-31 was purified in one step through an asialofetuin affinity column. The rhL-31 was reactive to anti-lectin antibodies and retained its lactose-dependent hemagglutination of trypsin-treated glutaraldehyde-fixed rabbit erythrocytes. The rhL-31 elutes from an affinity column as a 31-kDa monomer and undergoes homodimerization at relatively high protein concentrations, comparable to those used to mediate hemagglutination. Electron microscopy showed that the rhL-31 appears as a Y-shaped structure. Lactoperoxidase-catalyzed iodination of murine tumor cell-surface proteins followed by collagenase treatment revealed that the lectin is probably a peripheral membrane protein whereby both the amino and the carboxy termini are exposed on the outer cell membrane. These results point to the membrane disposition and orientation of the lectin and suggest a mechanism for a structure-function relationship of lectin activity.

Galectin Science Leader Resulted in

4,000+

Journal Articles on Target Receptors

Coined the Name "Galectin" - 1992

1992, U.S. Department of Health and Human Services; Journal of the National Cancer Institute

J Natl Cancer Inst 1992; 84: 438-442

March 18, 1992

SECTION: REPORTS

LENGTH: 2382 words

TITLE: Modulation of the Lung Colonization of B16-F1 Melanoma Cells by Citrus Pectia

AUTHOR: David Platt, Avraham Raz <1>

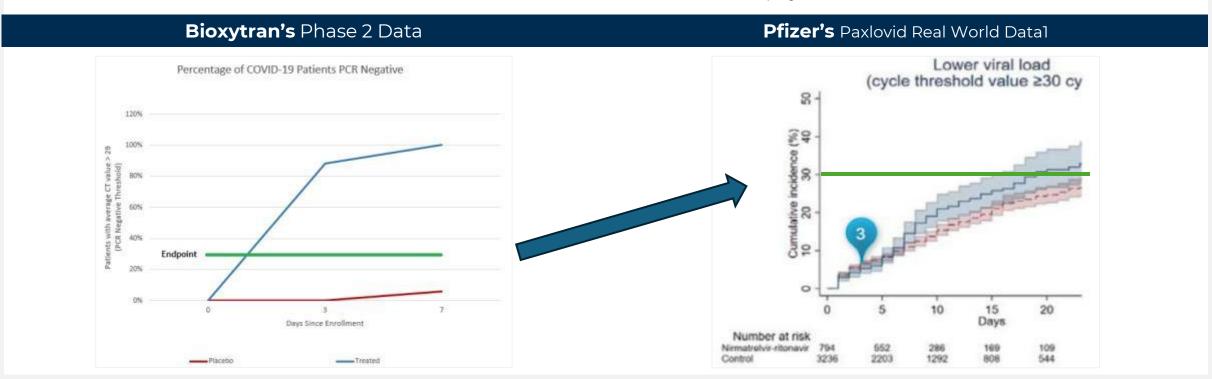
ABSTRACT: Cowin: Studies have shown that the galactoside-continuing simple sugars and antigalactoside-binding locin antibodies may affect experimental tumor cell metastasis. However, the limited number of surgerits used thus fire necessitate further observations. Purpose: Natural citrus poetin (CP) and pH-modified CP (MCP), inch in galactose residues, were used to study the involvement of carbohydrates containing galactoside residues in cellular interaction in vitro and in lung colonization in vivo of B16-F1 melanoma cells. Methods: B16-F1 melanoma cells were incobated with various concentrations of CP and MCP. Their ability to firm hostotypic aggregation is vitro and tumor lung colonization in vivo in 8-week-old female C57BL/6 mise was then analyzed. Recasts: The CP binds to the surface of B16-F1 melanoma cells; this binding can be inhibited by lactose at a concentration of 0.15 M Intravenous injection of the mutine B16-F1 melanoma cells with the natural CP resulted in a significant increase (up to therefold) in the appearance of nanoe colonies in the lung and in increased homotypic aggregation properties of the cells, while injection of MCP significantly decreased B16-F1 experimental metastasis (> 90%). Conclusions: Tumor galactoside-binding proteins mediate cellular recognition by linking oligosaccharides with terminal Dgalactoside residues on adjucent cells. Successful interference with such a process with terminal Dgalactoside residues on adjucent cells. Successful interference with such a process with terminal Dgalactoside residues on adjucent cells. Successful interference with such a process with terminal Dgalactoside residues on adjucent cells.

Developing Broad-Spectrum Antiviral Galectin Antagonists for Humans & Animals

Complete Viral Clearance shown in 2 Randomized Controlled Clinical trials in a COVID19 Case Study

Expansion planned for follow on indications

COVID-19 * Influenza RSV * HIV * Conjunctivitis * Shingles * Bird Flu



Bio,XyTran[®]

Bioxytran's ProLectin-M vs Pfizer's Paxlovid

- Day 3 14 out of 17 were PCR negative (88%)
- Day 7 17 out of 17 were PCR negative (100%) No toxicity signals
- Standard Risk Patients w/o limitations

- Day 20 PCR negative (30%)
- O Toxicity (Drug to Drug Interactions)
- Limited to Underlying Medical Conditions.

Bioxytran Releases Positive Top-line Results from Phase 2 Trial of Galectin Antagonist on COVID-19 Patients in medRxiv Pre-print

Press Release 11/16/2022

PR Newswire

BOSTON, Nov. 16, 2022

- Complete elimination of viral load in 100% of patients at day 7 vs 6% in placebo (p=.001)
- Complete elimination of viral load in 88% of patients at day 3 vs 0% in placebo (p=.001)
- Treated population experienced no viral rebounds within the 14-day observation period

BOSTON, Nov. 16, 2022 /PRNewswire/ -- BIOXYTRAN, INC. (OTCQB: BIXT), (the "Company"), a clinical stage biotechnology company developing oral drugs to treat COVID-19 and other viral diseases, announced positive topline safety and efficacy results of its randomized, placebo-controlled Phase 2 clinical trial in 34 patients with mild-to-moderate COVID-19. During the 7 days of treatment, an orally administered Galectin Antagonist in the form of a chewable tablet was administered 8 times per day on an hourly basis. The endpoint was a statistically significant reduction in viral load measured by the number of patients reaching a below threshold PCR value (Ct value ≥ 29) by day 7. The trial met its endpoint with a 100% response rate by day 7 versus 6% in placebo, which was statistically significant (p-value = .001). Our analysis also revealed an 88% response rate by day 3, which was statistically significant (p-value = .001). There were no drug-related serious adverse events (SAE's) in the patient population or viral rebounds by day 14 in the patient population. The positive data from this clinical trial provided the rationale of dosing and protocol design for study in an upcoming phase 2/3 registrational trial.

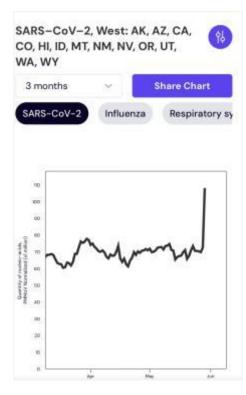
The full text of the preprint is located at the following link. https://www.medrxiv.org/content/10.1101/2022.11.09.22282151v1

Possible COVID Resurgence is Brewing

More virulent COVID variant Spreading in Asia Europe & US

- Highly transmissible and showing immune evasion
- Cases of NB.1.8.1 and"Stratus" (XFG) Variants rising globally

Current Antivirals – First& Last Line of Defense


- o Paxlovid
- Molnupiravir
- o Remdesivir

(\$4.0 Bil Annually)

Existing Solutions are Inadequate

Resistance Emerging Rebounds No Prevention Side Effects

First line of defense for all mutations of coronaviruses*

Clinical Trial Stage. Phase II successfully completed – Phase III Ready under the Central Drugs Standard Control Organization (CDSCO) in India

Safety

- o No Adverse Effects
- No Expected
- Limitations

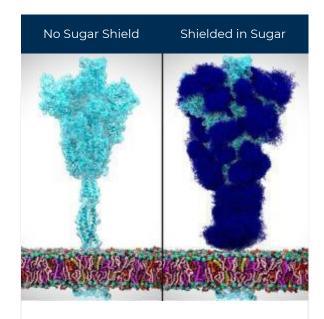
Versatility

- Mutation Agnostic
- Therapeutic

Efficacy

Eliminate Contagion

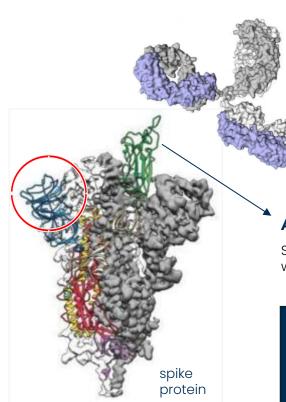
Fast Patient Sterilization


PCR neg in 5 Days

https://www.longdom.org/abstract/galectin-antagonist-use-in-mild-cases-of-sarscov2-pilot-feasibility-randomised-open-label-controlled-trial-61087.html Galectin approach to lower covid transmission - Drug Development for clinical use (medRxiv.org)

Neutralizing the Spike Protein on Viruses

Galectin Fold
Conserved binding site
Common to all variants



Part of the Problem

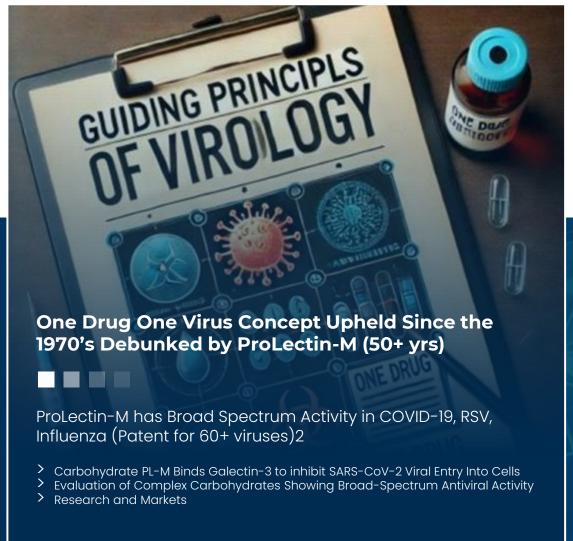
Antibodies need a place to attach. The sugar shield is not static, but rather a dynamic shape shifting like coating with windshield wipers on the surface that limit areas of attachment.

How it Works

ANTIBODY

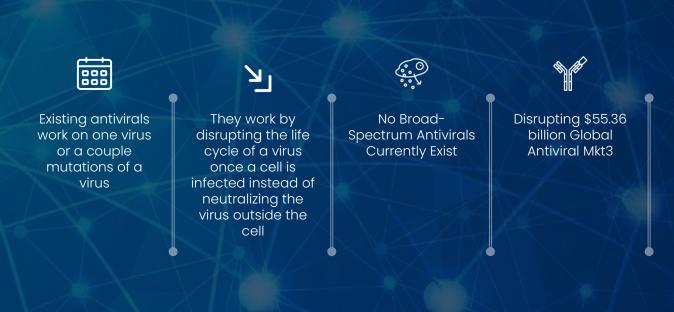
Galectin Fold Ideal Binding Site

- ✓ Binding to the spike protein prevents viral entry
- ✓ Immensely tighter bond to galectin fold vs tip (ProLectin-RX 99% binding affinity)
- ✓ Antibodies take time to be produced slower response to infection


Antibody Binding Site

Site prone to mutation Sugars can wipe off neutralizing antibodies

ProLectin Neutralizes the Virus by Binding to Galectin Receptors



Historic Discovery in Virology Similar to the discovery of Antibiotics

DISCOVERY

Viral adhesion to the cellular membrane is the first step in the process of viral entry and galectins facilitate this process. Both viruses and cells are covered in slippery membranes. Galectins act as the viral glue that can tether the virus to the cell enabling the process of viral entry.

Bio XyTran[®] PROBLEM NUMBER #2

No Effective Treatment for Early-Stage Stroke

The Brain Stroke Epidemic

The Golden Hour Dilemma

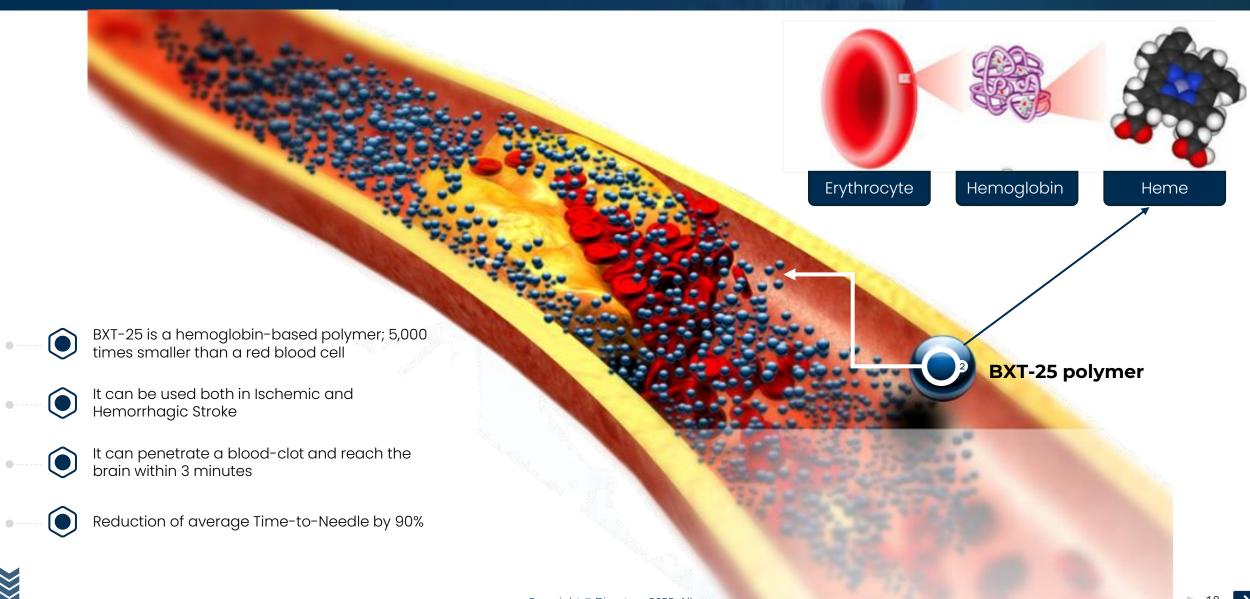
symptoms

Ambulance arrives at home

Arrival and initial assessment and treatment in ER

Thombolysis or PTCA/CABG

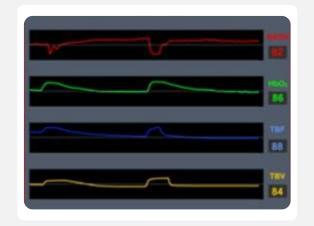
Blockage Removed



A Challenge to Worldwide Healthcare, a \$500 Billion Medical Indication Costs

Region	Strokes/yr	Population	Survivors	Direct cost	Indirect cost
US	0.8 million	330 million	5.8 million	\$44 billion	\$22 billion
World (total)	12.2 million	7,700 million	33.0 million	estimated \$500 billion	

BXT-25 Oxygen Bridge


FDA Approved 510K To Detect Brain Oxygenation



MDX Viewer solely and exclusively licensed to Bioxytran by MDX Lifesciences Inc. – A clinical end-point for measuring oxygen delivery to the brain in real-time

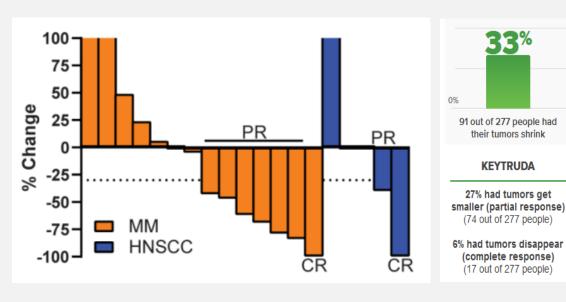
Measures real time tissue oxygenation levels

Assists in determining organ viability

Bio XyTran[®] Problem #3

No Effective Treatments for Cancer Metastasis

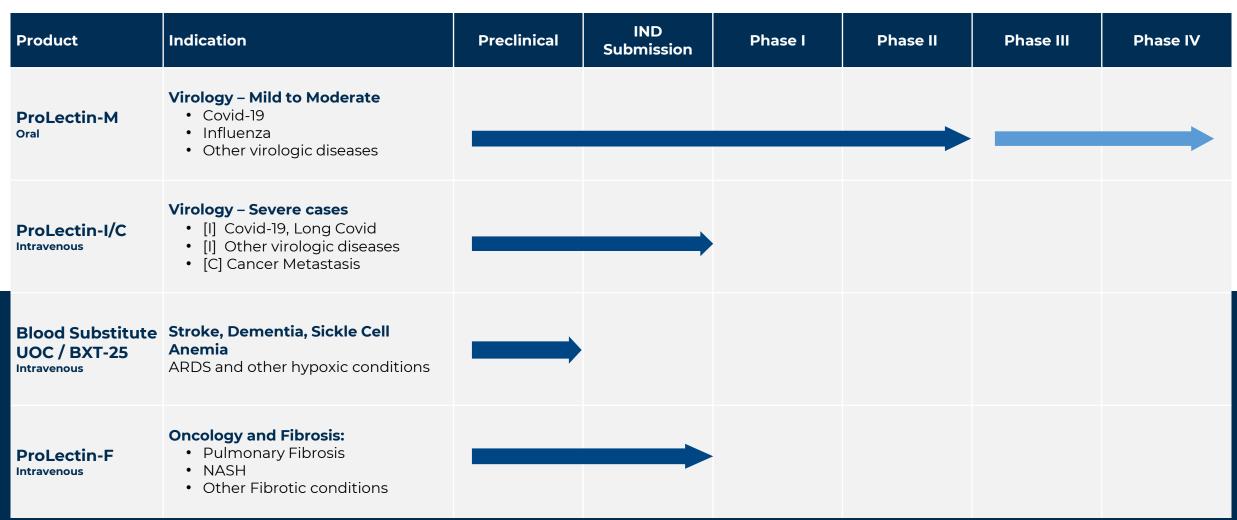
Bio, XyTran°


Clinical Evidence: Cancer Trial Results – Galectin-3

PET Scan Before and After of Melanoma patient is the Complete Response in Cohort 2 (All Tumors Resolved) Galectin Antagonist therapy in Cohort 2 had a 100% Objective Response in advanced Melanoma for an 85day trial using optimal dosage.

1 in 5 had a Complete Response

50% had Objective Response in Melanoma



Curti, B. D., et al. (2021). Enhancing clinical and immunological effects of anti-PD-1 with belapectin, a galectin-3 inhibitor. Journal for ImmunoTherapy of Cancer, 9(4). https://doi.org/10.1136/jitc-2021-002371

Development Pipeline

IP Strategy

Intellectual Property (IP)

Three (3) issued worldwide patents

One (1) licensed US patent

Additional applications to strengthen our IP position are ongoing

Future patents to be filed at commercialization stage

Pharmalectin has received an international trademark for ProLectin (WO0000001646681)

Patent issued in 2023 by the International Bureau of the Patent Cooperation Treaty (PCT) expiring in March 2042 (Lectin-binding carbohydrates for treating viral infections - WO2023178228A1)

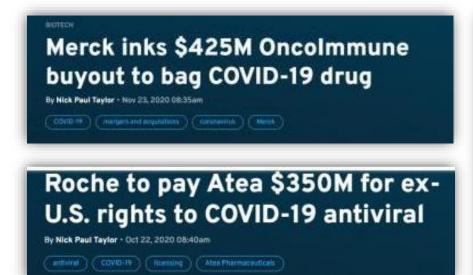
Patent issued in 2022 by the International Bureau of the Patent Cooperation Treaty (PCT) expiring in February 2041 (Polysaccharides for iv administration that treat sars-cov-2 infections - WO2022099061A1)

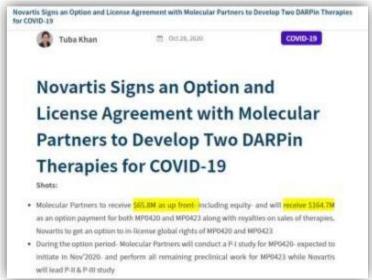
MDX LifeSciences has licensed a patent (Tissue Metabolic Score for Patient Monitoring - US20210153816A1). Issued in 2021 by the U.S. Patent and Trademark Office (USPTO) expiring in February 2040

Patent issued in 2022 by the International Bureau of the Patent Cooperation Treaty (PCT) expiring in February 2041 (Polysaccharides for use in treating sars-cov-2 infections - WO2022099052A1)

Bioxytran's Exit Strategy

COVID-19 Antiviral Comparables





\$425 million

\$850 million & 22% royalties

The Team

MANAGEMENT

David Platt PhD

CEO, CSO, Chairman

Leader in Carbohydrate chemistry, founded five public companies, and led the development of numerous drugs and FDA regulatory clinical trials. Author of two Textbooks and publication of numerous Journal Articles and Patents. Found five public companies such as NASDAQ: GALT, NASDAQ: LJPC.

Ola Soderquist CPA, MSA, MBA,

CFO

>30 years of senior international entrepreneurial management experience within technology companies where he has served in CFO and other capacities.

Mike Sheikh,

CCO

>10 years of business development in life sciences. Broker and Research Analyst. US Air Force Academy graduate and pilot.

Dr. Leslie Ajayi MD

CMO, Board Member

>20 years of clinical development experience in academia and industry. A fully trained physician leader with international specialty training in internal medicine, cardiovascular medicine, and clinical pharmacology.

Advisory Board

David Platt, PhD Chairman Director

Chemical Engineer. Specialized in Complex Carbohydrate Chemistry. Created 5 public companies. Managed multiple clinical trials under FDA. Published two textbooks.

Radka Milanova, PhD Director

Radka Milanova currently works at Allied Corp. (Canada), as Chief Scientific Director and BioXyTran, Inc., as Independent Director from 2024. Dr. Milanova received her doctorate degree from Simon Fraser University

Dale Conaway DVM Director

Veterinary Medical Officer, Federal Research. Formerly Manager of the Equine Drug Testing and Animal Disease Surveillance Laboratories for the Michigan Department of Agriculture

Alan Hoberman PhD

Director

President and CEO of Argus International

Anders Utter MBA Director Head of the Audit Committee

President and CEO Charles River Laboratories Preclinical Services (formerly Argus International, Inc. where he was the founder)

Avraham Mayevsky PhD, Professor Emeritus

Worldwide authority in the field of minimal invasive monitoring of tissue and organ physiology; and professor at the Faculty of Life Sciences, Bar-Ilan University, Israel. published over 170 papers in scientific journals three textbooks and is the author of twelve patents

Kevin H Mayo, PhD

Professor of Biochemistry, Molecular Biology & Biophysics at the University of Minnesota (UMN). Known authority in the field of structural biology and structure-based drug design

Alben Sigamani, MD

Professor and Head of Clinical Research Narayan Health, Bangalore. >17 years of experience in clinical research

Symbol: BIXT (OTCQB)

2,100 Shareholders

89M Shares Outstanding

65%+ Insider Ownership

37M Shares in Float

~ \$7M Market Cap

Location

Boston, MA

Formation

2017

Funding

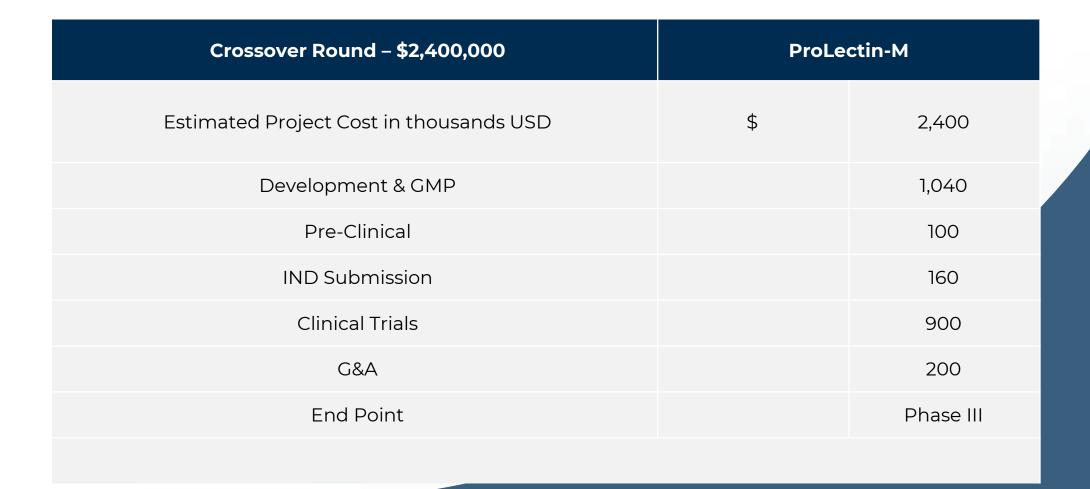
Accredited Investors

Licensing Strategy – Multiple Big Pharma Partners

All IP Developed In-House Focused on Carbohydrate Drug Design

OFFERING

Offering Amount


\$2.4M

One Share @\$0.06 Plus One Warrant @\$0.12 Warrant Expires in 5 years

INSIDERS	68 %	
OTHER RESTRICTED	100 %	
FLOAT	41 %	
TOTAL OUTSTANDING	89 million	
TOTAL FULLY DILUTED	319 million	

Use of Proceeds

Bio XyTran[®] David Platt

david.platt@bioxytraninc.com

Bio,XyTran[®]

Bio₂XyTran[®]

- 75 2nd Ave., Suite 605 Needham MA, 02494
- www.bioxytraninc.com
- info@bioxytraninc.com