Length-Based Risk Analysis of Management Options for the Southern Florida USA Multispecies Coral Reef Fish Fishery

Jerald S. Ault¹, Laura Jay W. Grove², Jeremiah Blondeau², Jiangang Luo¹, Steven G. Smith², Michael W. Feeley³ and Vanessa McDonough⁴

- ¹University of Miami, Rosenstiel School of Marine, Atmospheric & Earth Sciences, Miami, FL USA
- ²NOAA Southeast Fisheries Science Center, Miami, FL USA
- ³National Park Service, South Florida/Caribbean Network, Miami, FL USA
- ⁴National Park Service, Biscayne National Park, Miami, FL USA

Exploitation impacts and management options for 15 coral reef fish species central to the commercial and recreational fisheries of the southern Florida USA coral reef ecosystem were evaluated using a length-based risk analysis (LBRA) framework. Population abundance-at-length composition data were obtained from several regional federal-state sampling programs. These updated life history demographic data were integrated into a length-based numerical cohort model to generate LBRA fishery sustainability metrics from a probabilistic perspective. Three of five groupers, eight of eight snappers, and two of two grunts were below the 40% spawning potential ratio (SPR) stock sustainability minimum; ten of these stocks are at < 20% of their historical spawning biomass, some as low as 5%. Therefore, to ameliorate overfishing for the 13 stocks with sustainability risks \geq 98%, fisheries management requires increased minimum sizes of first capture (Lc) and significant reductions in fishing mortality (F). To achieve sustainability and reduce sustainability risks, area-time protections are also needed. While lack of data often limits the evaluation of management options, this paper establishes benchmarks from which data-limited approaches can move forward. In addition, the approach can be used to cross-check other data-rich analyses. A goal of this work is to effectively balance sustainability risks with fishery production to mitigate overfishing likelihoods and to increase the probability of sustainable fisheries.