Multidecadal Analysis of Fish Community Change Across the Florida Keys Reef Tract

Dakota M. Lewis¹, Laura Jay W. Grove², S.K. Morgan Ernest³, Ian C. Enochs⁴, Ana M. Palacio- Castro^{4,5}, Nicole Besemer^{4,5}, Derek P. Manzello⁶, & Andrew H. Altieri^{7,8}

- ¹School of Natural Resources and the Environment, University of Florida, Gainesville, FL, USA
- ² National Oceanic and Atmospheric Administration Fisheries, National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, FL, USA
- 3. Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- ⁴ Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
- ⁵ Rosenstiel School of Marine and Atmospheric Science, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, FL, USA
- ⁶ Coral Reef Watch, Center for Satellite Applications and Research, Satellite Oceanography and Climate Division, U.S. National Oceanic and Atmospheric Administration, College Park, MD, USA
- ⁷ Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
- 8 Smithsonian Tropical Research Institute, Apartado Postal, Panamá 0843-03092 Panamá

Ecological communities are changing. Biotic and abiotic factors determine community structure and function. As temperatures continue to warm and habitats are degraded in many regions, it is important to assess how and at what rate communities are changing over time. Both environmental and biotic interactions drive community diversity, structure, and stability. Here we evaluated regional community stability, identified the drivers of species richness patterns, and quantified how environmental factors interact to shape short-term (annual) and long-term (decadal) changes in fish community diversity and structure across the Florida Keys Reef Tract. Broadly community stability was negatively correlated with increasing synchrony. Fish species richness increased with habitat complexity, and both species richness and habitat complexity decreased annual community change, including species turnover and rank shifts. Further, fish communities demonstrated resilience to acute, annual-scale disturbances such as thermal stress events. However, long-term fish communities were becoming less similar over time when assessed over depth, with deeper sites exhibiting the most rapid shifts in community composition despite being less exposed to extreme temperatures. Geographic factors, including the influence of ecotones and tropicalization in transitional reef zones, may be contributing to observed community shifts. Changes in the fish community due to an increased number of species available in the regional species pool may be more apparent in desirable sites such as those that are thermally stable and highly complex. These findings highlight the need to consider temporal scale when assessing community change, as short- and long-term dynamics are likely driven by different processes. Rising temperatures that reduce habitat complexity and destabilize communities may be obscured by annual gains in species richness and biodiversity variability. Overall, the results emphasize the central role of diversity, habitat complexity, and environmental change in shaping community dynamics and resilience.