## Restoration Strategies are Preventing the Local Extirpation of Two Critically Endangered Coral Species

**Erinn M. Muller**<sup>1</sup>, Mark C Ladd<sup>2</sup>, Richard Karp<sup>3</sup>, Phanor H Montoya-Maya<sup>4</sup>, Ilsa B. Kuffner<sup>5</sup>, Andrew C. Baker<sup>3</sup>, Erich Bartels<sup>6</sup>, Amanda Bourque<sup>7</sup>, Abigail S. Clark<sup>8</sup>, Nikkie Cox<sup>4</sup>, Martine D'Alessandro<sup>3</sup>, Ben Daughtry<sup>9</sup>, Beth Firchau<sup>10</sup>, Leneita Fix<sup>11</sup>, David Gilliam<sup>12</sup>, Dalton Hesley<sup>3</sup>, Cindy Lewis<sup>13</sup>, Diego Lirman<sup>3</sup>, Caitlin Lustic<sup>14</sup>, Kevin Macauley<sup>15</sup>, Jennifer Moore<sup>16</sup>, Ken Nedimyer<sup>15</sup>, Keri O'Neil<sup>17</sup>, Kristene T. Parsons<sup>18</sup>, Kylie M. Smith<sup>19</sup>, Jason Spadaro<sup>6</sup>, Bailey C. Thomasson<sup>4</sup>, Joseph D. Unsworth<sup>3</sup>, David Vaughan<sup>20</sup>, Margaret W. Miller<sup>21</sup>

- <sup>1</sup> Mote Marine Laboratory, Sarasota, Florida, USA
- <sup>2</sup> NOAA Southeast Fisheries Science Center, Miami, Florida, USA
- <sup>3</sup> Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
- <sup>4</sup> Coral Restoration Foundation, Tavernier, Florida, USA
- <sup>5\*</sup> U.S. Geological Survey, St. Petersburg Coastal & Marine Science Center, St. Petersburg, Florida, USA
- <sup>6</sup> Mote Marine Laboratory, Summerland Key, Florida, USA
- <sup>7</sup> Biscayne National Park, Homestead, Florida, USA
- 8 Scouting America, Sea Base, Brinton Environmental Center, Summerland Key, Florida, USA
- <sup>9</sup> Dynasty Aquarium, Marathon, Florida, USA
- $^{
  m 10}$  Association of Zoos and Aquarium, Coral SAFE Program, Silver Spring, Maryland, USA
- <sup>11</sup>The Reef Institute, West Palm Beach, Florida, USA
- <sup>12</sup> Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
- <sup>13</sup> Keys Marine Laboratory, Layton, Florida, USA
- <sup>14</sup>The Nature Conservancy, Big Pine Key, Florida, USA
- <sup>15</sup> Reef Renewal USA, Tampa, Florida, USA
- <sup>16</sup> Protected Coral Recovery Coordinator, Southeast Region, National Oceanic and Atmospheric Administration, St. Petersburg, FL, USA
- <sup>17</sup> The Florida Aquarium, Ruskin, Florida, USA
- <sup>18</sup> Florida Fish and Wildlife Conservation Commission, Marathon, Florida, USA
- <sup>19</sup> I.CARE, Islamorada, Florida, USA
- <sup>20</sup> Plant A Million Corals, Summerland Key, USA
- <sup>21</sup> SECORE International, Miami, Florida, USA

The unprecedented marine heatwave of 2023 and 2024 caused widespread coral bleaching and mortality throughout the Caribbean. In the Florida Keys, two foundation species that particularly suffered were the elkhorn coral, Acropora palmata, and the staghorn coral, A. cervicornis (Lamark, 1816), which have been the primary focus of reef restoration in Florida for decades. Substantial losses of these species occurred in outplanted populations, ocean-based nurseries, and among remnant wild colonies. The near extirpation of these species on Florida's Coral Reef leads to uncertainty over their future in the Florida Keys and their utility as restoration species given the observed trends in climate conditions. However, we posit that the past two decades of restoration activity created a community of experts, a network of ocean-based and land-based coral-rearing infrastructure, and two independent land-based coral gene banks, which prevented regional extirpation and preserved much of the genetic richness of these critically endangered coral species. Without the past decades of effort and the emergency response associated with the 2023 bleaching event, Florida acroporids would largely have been lost. This outcome afforded by the restoration network in Florida demonstrates the value of proactively establishing resources prior to major disturbances. We identified several critical strategies that may be applied in other regions prior to major threats to prevent local extirpation of coral species including: i) extending collaborative restoration efforts to solidify a network of trained experts, ii) establishing trust-focused relationships among management agencies and restoration groups, iii) testing direct interventions to reduce light/temperature stress early during thermal anomalies, iv) developing redundant ocean-based and land-based nurseries, and v) establishing living coral gene banks prior to major threats to prevent the local extirpation of coral species.