Welcome to the 14th Annual Formula Hybrid+Electric International Competition!

We never dreamed that this year's competition would be so different from ever before, with a complete restructuring made necessary by the coronavirus pandemic. But the innovative spirit of Formula Hybrid has never been stronger. Our steadfast volunteers and sponsors, and most importantly, our inspirational teams have risen to this unprecedented challenge, competing virtually in static events and being willing to forego being on track until safer times. We salute your adaptiveness and socially distanced but unwavering camaraderie.

This year's 18 teams include 17 previous competitors and one new team. Also, several new companies have joined the ranks of our dedicated sponsors who make Formula Hybrid+Electric possible.

In addition, our logo now emphasizes both of the classes—hybrid and electric—we’ve had at competition for several years. Our new logo reflects the fact that there’s more than one road to the future—and that each track requires the cross-disciplinary teamwork, ingenuity, commitment, and perseverance that have been the hallmarks of our competition from the start.

As always, Formula Hybrid+Electric greatly appreciates the contributions of the hundreds of individuals—from our sponsors and volunteers to our team members and advisors—to the success of the competition and its mission of challenging students to work together to do great things.

Mike Chapman, Director
Michael.C.Chapman@dartmouth.edu

Doug Fraser, Co-founder and Director Emeritus
Coordinating Manager
jessica.d.kinzie@dartmouth.edu

Formula Hybrid Competition Organizers

Thayer School of Engineering at Dartmouth • 14 Engineering Drive • Hanover, NH 03755 • 603-646-6580 • formula-hybrid.org

Schedule

Sun April 26

- **8:00 AM**: Registration
- **9:00 AM**: Electric Tech. Inspection (Electrical only) North Garage Bay 1
- **10:00 AM**: Lunch Break
- **11:00 AM**: Electric Tech. Inspection Mechanical North Garage Bay 1
 - **12:00 PM**: Electrical* Electrical Tech. Building

Mon April 27

- **8:00 AM**: Mechanical North Garage Bay 1
 - **9:00 AM**: Electrical* Electrical Tech. Building
- **10:00 AM**: Design Event* Center Garages
- **11:00 AM**: Presentation Event* Jack Ratta Media Center

Tue April 28

- **8:00 AM**: Design Event* Center Garages
- **9:00 AM**: Presentation Event* Jack Ratta Media Center
- **10:00 AM**: Lunch Break
- **11:00 AM**: Acceleration Event NASCAR Main Straight

Wed April 29

- **8:00 AM**: Presentation Event* Jack Ratta Media Center
- **9:00 AM**: Mechanic Inspectors Mtg. North Garage Bay 1
- **10:00 AM**: Electrical* Electrical Tech. Building

Thu April 30

- **8:00 AM**: Mandatory Elect. Safety Class Electrical Tech. Building
- **9:00 AM**: Autocross Guided Walk Turn 4, Oval
- **10:00 AM**: Endurance Event NASCAR Main Straight
- **11:00 AM**: Lunch Break

Note: Garages closed from 12:00 midnight until 8:00 AM the following morning.

Registration Main Gate

Optional

- **Electrical Tech. Inspection**
- **Mechanical North Garage Bay 1**
- **Electrical* Electrical Tech. Building**

Endurance Event NASCAR Main Straight

Note: A half-hour lunch break will be scheduled based on track activity.

Endurance Course Guided Walk

Note: Garages closed from 12:00 midnight until 8:00 AM the following morning.

Received For Advisors, Officials, and VIPs

- **Brotton's Suite Overlooking the Speedway**
- **North East Motorsports Museum**
 - **Shuttle Transport**

Group Photo

NASCAR Oval—Main Straight

Autocross Drivers Meeting

Center Garages

Design Finals

- **Top 2–4 Teams**
- **Center Garages**

Reception

For Advisors, Officials, and VIPs

Autocross Drivers Meeting

Center Garages

Endurance Event NASCAR Main Straight

Note: A half-hour lunch break will be scheduled based on track activity.

School Visit Day

Note: Garages closed from 12:00 midnight until 8:00 AM the following morning.

Awards Ceremony

Victory Lane

Schedule subject to change—watch for postings.
Q: What made you interested in cars and racing?
A: For as long as I can remember, I’ve been interested in cars, motorcycles, sailboats—really anything mechanical. I’ve always had an interest in engineering. And, as with a lot of engineers, I’ve taken apart a lot more things than I’ve put together.

My first car was a ‘69 Austin Healey Sprite that I bought while still in high school. Well, Dad bought it and I spent many years paying him back for it. It was a lovely machine: small, light, quick but not too quick. You could throw it into corners, and it had excellent manners—it always let you know when you were pushing things too far before things got too exciting. I never raced it, but it was a blast to drive.

Q: When and why did you get involved with Formula Hybrid?
A: I was invited to get involved with Formula Hybrid by founding director Doug Fraser right from the start in 2006. I’ve been involved in the Thayer School Annual Fund since 1982 and would run into Doug when I came up to Dartmouth for meetings. He was THE car guy and I always enjoyed talking with him. When he started Formula Hybrid, he asked if I would like to participate. I couldn’t say yes fast enough.

In a weird cosmic way, I could say that my involvement with Formula Hybrid was due to a car that I’ve never owned or driven. I grew up in a rural area outside of Philadelphia where they didn’t do a great job of plowing snow. A neighbor couple in a Porsche 356 got bogged down in a snowbank and ended up spending the night at our house. It so happened that the woman’s mother lived in Beverly, Mass, and when my family moved to the Boston area, we looked at houses near Beverly, ending up in Manchester, Mass. My high school principal there was a Dartmouth grad, and that was how I ended up at Dartmouth and Thayer School. Fast forward many years: I moved back to Massachusetts from Illinois and met with a recruiter. We spent most of the time talking about the Porsche 356 model on his desk and how he had one in his garage. He invited me to go with the Porsche 356 club on a tour to Paul Russell & Co, a local very high-end restoration shop. The next time at I was at Thayer, I mentioned it to Doug Fraser and found out that he had worked with all of the Paul Russell folks in the past. Maybe that’s why he asked me to come on as a Formula Hybrid volunteer.

Q: What’s your favorite aspect of Formula Hybrid?
A: For me, Formula Hybrid checks all the boxes: engineering, cars, education, and Thayer’s approach of readying the next generation of engineers to solve the problems we can’t even conceive of. Formula Hybrid mirrors my own educational style. I struggled mightily with some of the more theoretical courses, but when I got into solving project problems, something really clicked. When I got into upper-level mechanical design courses, things really took off.

Q: What would you like students to get out of Formula Hybrid?
A: A few things: An appreciation for working in multi-disciplinary teams and the fact that you can get so much more done in a much shorter time if you work at it. The knowledge that real engineering is more than a problem set. Sometimes there is no “right” answer but by taking into account all the myriad factors, there is a “best” answer. An understanding that hard work, failure, and ultimate success can be fun when shared with the right team of people. The chance to rub elbows with practicing engineers and racers and to make those connections that will help them chart their careers.

Q: What is the most satisfying part of Formula Hybrid for you?
A: Seeing the faces at Thursday’s awards ceremony, knowing that these students have just worked an unbelievable number of hours just to get to the track, let alone get the car on track. Maybe things didn’t go perfectly, but seeing the sense of accomplishment on their faces makes it all worthwhile.

Q: Is there anything you’d like more people to know about Formula Hybrid?
A: Formula Hybrid is the only college/university competition to offer both electric and hybrid categories. You’ll commonly hear that hybrid is “old technology” and that battery electric vehicles are the way of the future. But if that’s true, why is Formula 1, the technological pinnacle of racing, based on hybrid vehicles? We hear from some of our sponsors that a few more top-level racing series are going to go hybrid within the next year or so. Originally founded to immerse students in the very complex and challenging world of hybrid vehicles, Formula Hybrid is proudly already at the starting line.
<table>
<thead>
<tr>
<th>Team Name</th>
<th>Car Name</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Victoria</td>
<td>UVI920</td>
<td>Dr. Zuomin Dong</td>
</tr>
<tr>
<td>R.V. College of Engineering</td>
<td>RZXXH</td>
<td>Dr. Nandakumar S. Kulkarni</td>
</tr>
<tr>
<td>Milwaukee School of Engineering</td>
<td>MPS</td>
<td>Dr. Matt Schaefer</td>
</tr>
<tr>
<td>UVic Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saieetta 119R</td>
<td>25.2 kW @ 3,751 RPM</td>
<td></td>
</tr>
<tr>
<td>KTM 250 SX-F</td>
<td>31 kW @ 13,000 RPM</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>345 kg* (including driver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming Motorsports</td>
<td>7220 Honey</td>
<td>Dr. Lawrence Willey</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Saietta 119R</td>
<td>20 kW @ 5,500 RPM</td>
<td></td>
</tr>
<tr>
<td>Energuin 142</td>
<td>3,110.04 W-h</td>
<td></td>
</tr>
<tr>
<td>Parker GVM-142</td>
<td>43.9 kW @ 12,000 RPM</td>
<td></td>
</tr>
<tr>
<td>Helvenco Swissauto 250 EFI</td>
<td>28.3 kW @ 9,500 RPM</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-speed, parallel drivetrain for an effortless driving experience. Octagonal frame for increased torsional rigidity. Adjustable Hybrid Control Strategy to maximize energy use.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRM Engineering College, Chennai</td>
<td>MP5</td>
<td>Dr. P. Nandakumar</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Saietta 119R</td>
<td>25.2 kW @ 3,751 RPM</td>
<td></td>
</tr>
<tr>
<td>Honda CBR 250R</td>
<td>28.3 kW @ 9,500 RPM</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 kg*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series Hybrid, Electronic Throttle Control, Modular Accumulator Container, DAQ System (Data Acquisitions System), PMDC Motor (high efficiency).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVic Hybrid</td>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Saietta 119R</td>
<td>22.5 kW @ 3,751 RPM</td>
<td></td>
</tr>
<tr>
<td>KTM Duke 200</td>
<td>18.97 kW @ 10,000 RPM</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>345 kg* (including driver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming Motorsports</td>
<td>7220 Honey</td>
<td>Dr. Lawrence Willey</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Winston Battery Ltd.</td>
<td>1,917 W</td>
<td></td>
</tr>
<tr>
<td>Saieetta Agni 119R</td>
<td>25.2 kW @ 3,751 RPM</td>
<td></td>
</tr>
<tr>
<td>KTM 250 SX-F</td>
<td>31 kW @ 13,000 RPM</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This car features a very compact pushrod suspension design that fits almost completely outside of the monocoque frame. It allows for additional room inside of the vehicle for other components.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vehicle Specifications

University of Vermont

Team Name: Alternative Energy Racing Organization
Car Name: ClearSpeed AS
Advisor: Dustin Rand

Drive Type: Electric
Accumulator: Battery
Drive Motor: Enrg Austria (2)
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: Rear
Weight: 287 kg
Unique Features: Team Designed Data Acquisition system.

Rensselaer Polytechnic Institute

Team Name: Rensselaer Formula Hybrid
Car Name: VMR-xe
Advisor: George Gala

Drive Type: Electric
Accumulator: Battery
Drive Motor: (4) Neumann 50kW
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: Front, Rear
Weight: 348 kg
Unique Features: Active rear wing. Custom carbon fiber body kit and diffuser. 4-wheel drive with electronic differential. 440 cell Li-ion battery.

Tufts University

Team Name: Tufts Electric Racing
Car Name: TER11
Advisor: Dr. Mahesh Krishnamurthy

Drive Type: Electric
Accumulator: Battery
Drive Motor: Enstroj Enras 228
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: Rear
Weight: 340 kg
Unique Features: TER 11 will feature a fully integrated data acquisition system, completely redesigned accumulators, a custom steering wheel with a built-in display, and for the first time in team history, an aero package featuring a front and rear wing.

Boston University

Team Name: BU Racing
Car Name: Stella
Advisor: Enrique Gutierrez-Wing

Drive Type: Electric
Accumulator: Battery
Drive Motor: (2) Zero Motorcycles FX 75.5 kW @ 4,000 RPM
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: Rear
Weight: 348 kg
Unique Features: Custom accumulators with LifePO4 pouch cells.

Lawrence Technological University

Team Name: Blue Devil Motorsports
Car Name: BDE 20
Advisor: Hamid Vojdani and Gary Lowe

Drive Type: Electric
Accumulator: Battery
Drive Motor: (4) Custom
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: Front, Rear
Weight: 204 kg
Unique Features: 4 in-wheel Direct Drive Hub Motors, Student Designed Custom Motor Controllers, Student Designed Custom Internally Mounted Brake Calipers.

Illinois Institute of Technology

Team Name: Illinois Tech Motorsports
Car Name: Hawkrod
Advisor: Dr. Mahesh Krishnamurthy

Drive Type: Electric
Accumulator: Battery
Drive Motor: LG HG2 cells in AllCell packs
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: None
Weight: 360 kg
Unique Features: Torque vectoring differential action. Brake-actuated active aerodynamics. Carbon fiber skin.

Rensselaer Polytechnic Institute

Team Name: Rensselaer Polytechnic Institute
Car Name: VMR-xe
Advisor: George Gala

Drive Type: Electric
Accumulator: Battery
Drive Motor: (4) Neumann 50kW
Engine: N/A
Fuel Type: N/A
Generator: N/A
Regen Braking: Front, Rear
Weight: 348 kg
Unique Features: Custom accumulators with LifePO4 pouch cells.
<table>
<thead>
<tr>
<th>Team Name</th>
<th>Car Name</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana University</td>
<td>Jaguars</td>
<td></td>
</tr>
<tr>
<td>Purdue University</td>
<td>Da JAG</td>
<td>Dr. Jing Zhang</td>
</tr>
<tr>
<td>Northeastern University</td>
<td>MEG20</td>
<td>Andrew Gouldstone</td>
</tr>
<tr>
<td>Yale University</td>
<td>Bulldogs Racing</td>
<td>Corey O’Hearn</td>
</tr>
<tr>
<td>University of Waterloo</td>
<td>BB16</td>
<td></td>
</tr>
<tr>
<td>Lafayette College</td>
<td>Lafayette Motorsports</td>
<td>Christopher Nadovich, Jeffrey Helm, Sally Sadidian</td>
</tr>
</tbody>
</table>

Vehicle Specifications

Drive Type
- Electric

Accumulator
- Battery
- Enredel 4,300 W/h

Drive Motor
- Hi Performance EV Systems AC-9-03.27-1

Engine
- N/A

Fuel Type
- N/A

Generator
- N/A

Regen Braking
- None

Weight
- 230.6 kg*

Unique Features
- Custom PCB Electronics.
- FreeRTOS based custom firmware.
- 2 Independently driven motors.

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- Torque Vectoring
- Vintage Body Aesthetics

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- CAN Bus communication between CP Display, Accumulators and TS interface.
- In house designed Accumulator Management System.
- Data Acquisition System with On-Car viewing and Offline viewing.

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- Custom Central Vehicle Controller.
- In-house Designed Gearbox.
- Rear Torque Vectoring Capabilities.

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- Custom PCB Electronics.
- FreeRTOS based custom firmware.
- 2 Independently driven motors.

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- Custom PCB Electronics.
- FreeRTOS based custom firmware.
- 2 Independently driven motors.

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- Custom PCB Electronics.
- FreeRTOS based custom firmware.
- 2 Independently driven motors.

Vehicle Specifications

Drive Type	Electric
Accumulator	Battery
Power	3,563 W-h
Drive Motor	Emrax 228
Power	100 kW @ 5,500 RPM
Engine	N/A
Fuel Type	N/A
Generator	N/A
Regen Braking	None
Weight	300 kg

Unique Features
- Custom PCB Electronics.
- FreeRTOS based custom firmware.
- 2 Independently driven motors.
With more than 12,000 electric hybrid propulsion systems and nearly 300 zero emission systems operating around the globe, BAE Systems is providing electric propulsion and power solutions for transit buses and motor coaches. Contact us to learn about the many ways we’re helping buses be more efficient and getting transit emissions to zero.

Good Luck Formula Hybrid 2020!

We hope we helped you with:
- Resins
- Carbon Fiber
- Fiberglass
- Vacuum Bagging Materials
- Scissors and Cutters
- Composite Finishing Tools
- ChromaGlast® Paint
- Carbon, Kevlar and Fiberglass Tapes
- Vacuum Pumps and Equipment
- Sandwich Cores
- Color Gel Coats

We Help People Make Amazing Things.

www.fibreglast.com

A proud sponsor of the Formula Hybrid Competition... and the engineering innovators of the future!

www.ieee.org
HARD WORK PAYS OFF

Toyota commends the 2020 SAE Formula Hybrid student competitors

Prius
best-selling hybrid of all time

Prius Prime
best MPGe of any plug-in hybrid

RAV4 HV
best-selling hybrid 2019

RAV4 Prime
new plug-in hybrid for 2021

Mirai
best-selling fuel cell electric vehicle with new model for 2021

TS050 Hybrid
three-time winner FIA World Endurance Champion 2019-2020

Toyota.com/USA/careers

DARTMOUTH ENGINEERING

Join a collaborative, integrated, entrepreneurial community that’s passionate about engineering in service to society.

GRADUATE DEGREE PROGRAMS

PhD for collaborative research and preparation for a career in industry or academia

PhD Innovation Program for research and entrepreneurial training

MD/PhD with highly ranked Geisel School of Medicine

MD/MS for both clinical practice and research skills in engineering

MS for research and project management experience

MEng for depth and specialization in biomedical engineering

Master of Engineering Management (MEM), co-taught with top-ranked Tuck School of Business at Dartmouth, for both the engineering and business aspects of technology

ENGINEERING RESEARCH

Biological & Chemical
Biomedical
Electrical & Computer
Energy
Materials
Mechanical & Systems

engineering.dartmouth.edu

Toyota.com/USA/careers
GRADUATING?
Get a year of professional membership FREE.

As part of your student member benefits, you’ll receive a free year of professional membership upon graduation. Professional members can:

- Network with peers; seek advice directly from industry veterans and more via Member Connection at connection.sae.org
- Utilize discounts on technical resources (books, events, training)
- And more...

Visit sae.org/membership for a complete list of benefits.

When you renew, you’ll continue to save afterward:

- $50 for the second year
- $70 for the third year
- $95 for the fourth year

Email membershipteam@sae.org with any questions.

Learn more at macleanfogg.com/careers

Let’s form new paths together.
We would like to thank all of the volunteers for their time and generous support. Their hard work and dedication make the event possible.

Acknowledgements

DOCUMENT REVIEWERS
Wahed Ahmad, Project Computer Engineer, Lutron Electronics
Pavel Dutacs, System Engineer, Tesla
Doug Fraser, P.E.
Mike Irvine, Principal Hardware Designer, Analog Devices
Edward March, Ph.D., Thayer School of Engineering
Paul Messier, Senior Principal Electrical Engineer, BAE Systems
Trenton Miao, Product Line Director, Product Marketing Director, Analog Devices (Ret.)
Doug Van Citters, Ph.D., Assistant Professor, Thayer School of Engineering
Ricky Williams, Formula Hybrid Chief Electrical Examiner
Rob Wells, P.E., Integral, LLC
Lake Amber, Harley Davidson
Chris Chapman, Principal Engineer, General Electric Aviation
Gary Grise, BSEE (ret.), IEEE
Maay Cherchiouche, General Motors
Giannetta Grunfos, Professor, Politecnico di Milano
Sabin Carpiuc, MathWorks
Richard Smith, National Transportation Research Center
Lisa Dorn-Gamba, M/Master University

TECHNICAL INSPECTORS / MECHANICAL
Michael Royce, Albion Associates, LLC
Doug Van Citters, Ph.D., Assistant Professor, Thayer School of Engineering
Peter Berger, Senior QA Engineer, TomTom
Roland Clark, New England Region, SCCA
Phil Gott, New England Region, SCCA
David Hyman, Omvis, LLC
Ahmed Nasser Korka, R&D Engineer, AEG Egypt
Susanne Royce, Principal, Albion Associates LLC

TECHNICAL INSPECTORS / ELECTRICAL
Rob Wells, P.E., Integral, LLC
Paul Dutacs, Systems Engineer, Tesla
Paul Messier, Senior Principal Electrical Engineer, BAE Systems
Ricky Williams, Electrical Engineer and Product Designer, Harley-Wad & Deck
Chris Chapman, Principal Engineer, General Electric Aviation
Gary Grise, BSEE (ret.), IEEE
Jon Goelnick, Jon Goelnick Consulting
Jenna Pollock, EV Systems Engineer, Harley Davidson
Charlie Sullivan, Professor, Thayer School of Engineering
Trenton Miao, Product Line Director, Product Marketing Director, Analog Devices (Ret.)
Wahed Ahmad, Project Computer Engineer, Lutron Electronics
Eric Carlson, Electromechanical Engineer

FORMULA HYBRID RULES COMMITTEE
Mike Chapman, Director, Formula Hybrid
Doug Fraser, P.E., Director Emeritus, Formula Hybrid
Jessica Krost, Formula Hybrid Coordinating Manager, Thayer School of Engineering
Athena MacCartney, University Partnership Program Manager, IEEE
Paul Messier, Senior Principal Electrical Engineer, BAE Systems
Jenna Pollock, Ph.D., EV Systems Engineer, Harley Davidson
Michael Royce, Albion Associates, LLC
Susanne Royce, Albion Associates, LLC
Charlie Sullivan, Ph.D., Professor of Engineering, Thayer School of Engineering
Doug Van Citters, PDS, Assistant Professor, Thayer School of Engineering
Rob Wells, P.E., Integral, LLC
Robert Wills, Project Energy, TomTom

SPECIAL JUDGES
McLaren Applied Technologies
Richard Hull, Business Development Manager, McLaren Applied Technologies
Gregory Scott, Massachusetts Institute
Kathy Grise, Senior Program Director, IEEE
Brenda Fraser, Director Program Management, Program Manager, IEEE
Kristen MacCartney, University Partnership Program Manager, IEEE

PRESENTATION JUDGES
Bill Tonti, Future Directions, IEEE
Sandy MacPherson, New England Region, SCCA
Steve Locke, New England Region, SCCA
Jeff Hubbell, New England Region, SCCA
Phil Gott, New England Region, SCCA
Steve Locke, New England Region, SCCA
William Fralick, New England Region, SCCA
Wiley Cox, New England Region, SCCA

SPECIAL THANKS
Akola Abrams, Dean, Thayer School of Engineering
Ted Arko, Senior Account Manager, Test Equity
Carlin Balch, Advanced Battery PSTD and Electrical Hardware Engineer, General Motors
Julie Bontetto, Associate Director of Communications, Thayer School of Engineering
Alba Cusco, Director of Competition Systems, Hendrik Motorsports
Ethan Darling, Web Information Manager, Thayer School of Engineering
Karen Endress, Director of Communications, Thayer School of Engineering
Eric Forshimer, Director of Marketing, Xcel Fleet
Alex Guilmant, New Hampshire Motor Speedway
Greg Gran, Regional Director, New England SAE
C. Monica Kaczyk, Harvest Moon Design, Inc.
Lee Lack, Director of Communication, Thayer School of Engineering
Colin Lumen, Senior Science Writer & Digital Content Manager, Thayer School of Engineering
Katy Lapiere, Associate Director of Creative Services, Thayer School of Engineering
Margaux LeBlanc, Associate Control Systems Engineer and CDO Lead – 470, Algorithm, C4S, Cells, Systems, General Motors
Lisa McGuire, Director of Operations, New Hampshire Motor Speedway
Dwayne McKenzie, Director of Key Accounts, New Eagle
Naveenkumar Manani, Video
Tom Nethers, Executive Director, North East Motor Sports Museum
Patricia Sarzosa, Graphic Designer, Thayer School of Engineering
Rudy Spydek, Video Production Specialist, Thayer School of Engineering
Alina Tomaszewski, Project Manager, IEEE
Katy Zundel, SAE Collegiate Program Manager, SAE International

THANKS TO OUR SPONSORS

To our sponsors and planners, we would like to offer our appreciation and gratitude for their contributions and support. The event would have been impossible without their generous support. We would like to take this opportunity to thank all of our sponsors for their contributions and support, and know that the event was made all the better due to their help. Thanks again!
THE FUTURE ON TRACK.