
Applying Motor Data to Setup Motor Protective Relay

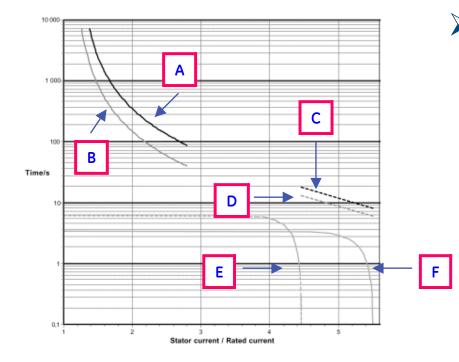
Craig Wester GE Multilin Craig.Wester@GE.com

imagination at work

- Setting of the motor protection relay is based on the motor datasheets information and system configuration.
- Datasheets are normally provided by motor manufacturer.
- System configuration data can be obtained from single line diagram.

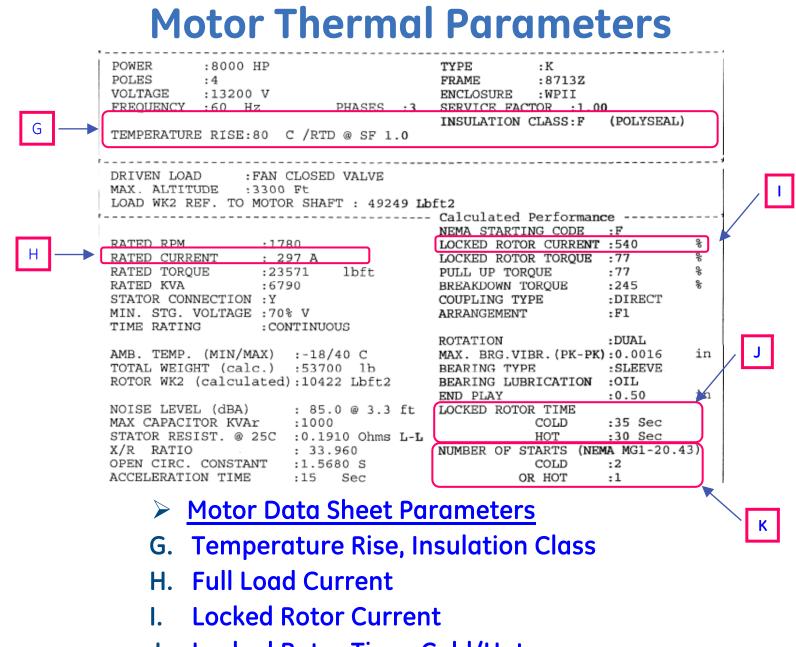
Motor Data Sheets

Induction Machines				OF MOTOR	
Department&utor J.Leino/PIE	21.08.2001	ետց En	Flow . clobe	04000 0400 0400 0400 0400 0400 0400 04	
Vetamernet YE10377 Possum Point BFP m	otors		Sevingblant 8000993A	New/Char A	gadby Pagaa 1/4
Driven Machine: Pum	p				
Machine type code				AMA 500L2W BSY	
Machine type				Squirrel cage moto	or
Mounting designation				Horizontal	
Protected by enclosur	e			WP-II	
Method of cooling				WP-II	
Insulation Service factor				Class F 1.0 Temp rise 85°	O DTD
Service factor Standards				1.0 Temp rise 85" NEMA	GRID
Ambient temperature.	may			NEWA 40 °C	
Altitude, max.	THEA.			3300 ft.a.s.l.	
Duty type			_	Continuous	
Rated output				3400 HP	
Voltage				4000 V	
Frequency				60 Hz	
Speed				3581 rpm	
Current				413 Amps	
Locked rotor Amps				550 % Code E	
Locked rotor torque				60 % 230 %	
Breakdown torque No load current				230 % 74 Amps.	
Rated torque				4986 lb-ft	
Load characteristics	1	oad %	Current		% Power Factor
Load characteristos	-	00	413	96.7	0.92
		5	311	96.8	0.91
	5	0	215	96,4	0,89
Connection of stator v	vinding			Star	
Direction of rotation				Uni-directional	0/01 2.0
Sound pressure level: (sinus supply, no load				83 dB(A), tol. + 0 d	1B(A), 3 ft.
Inertia rotor / load)			634 lb-ft² / 200 lb-f	2
Bearings				Sleeve	L
Maximum stalling time				6.0 s (Warm)	
Starting time				3,4 s (U=Un)	
				6,1 s (U=0,80 Un)	
Number of consec. st				3/2 (Cold/Warm)	
Maximum number of s				1000 / year	
Warm-up time consta				25 min	
Cool-down time const	<mark>ant</mark> a is final and th			150 min	


Motor Performance Data

Induction Machine	s					
J.Leino/PIE	21.08.2001	En	6946	SHD200		
VE10377		5aa 80	elder 00993A	A	dby Pages 3/4	
Possum Point BFP	motors					
Machine type code: /	A MA 6001 2W RSV	чч				
Rated output	340	0 HP	Power Factor		0,92	
Voltage		00 V	Rated torque		4906 lb-ft	
Frequency	60		Locked rotor An	nps	550 %	
Speed	350	31 rpm 3 Amps	Locked rotor tor Breakdown torg	que	60 % 230 %	
Current	413	Allps	Dieakuowi iuiq	ue	230 %	
		Therm	al limit			
10 000						
1						
	1					
1	\					
1	1					
1 000						
	$\langle \mathbf{X} =$					
1						
	× •	~				
100		<u> </u>				
		- ~				
Time/s						
10						
1						
				- \ ·		
				1 1		
1				+	\rightarrow	
					1	
				1		
0,1		,	<u> </u>	<u>↓</u> , , , , , , , ,	5	
1	2		s urrent / Rated curre	-	5	
Thermal remain	lity, running(sold)		urrent / Rated curro	- Time-current, L	- 1008	

Thermal Limit Curves


Motor Thermal Limit Curves

Thermal Limit Curves:

- A. Cold Running Overload
- B. Hot Running Overload
- C. Cold Locked Rotor Curve
- D. Hot Locked Rotor Curve
- E. Acceleration curve @ 80% rated voltage
- F. Acceleration curve @100% voltage

- J. Locked Rotor Time; Cold/Hot
- K. Number of Starts; Cold/Hot

Motor Specifications

Information required to set Thermal Model:

- Motor FLA
- Locked Rotor Current
- Locked Rotor Time Hot
- Locked Rotor Time Cold
- Service Factor
- Motor Damage Curves

Settings Example

- > CT Rating, Voltage Sensing
- FLA & Ground CT
- Thermal Model Settings
 - Overload Pickup, Overload Curve, Unbalance Bias K Factor, Stopped & Running Cooling Time Constants Hot/Cold Safe Stall Ratio, RTD Bias
- Short Circuit Trip
- Current Unbalance Alarm & Trip
- Ground Fault
- > Acceleration Trip
- Start Inhibit
- > Starts per hour, Time Between Starts
- > RTD Alarm & Trip
- Phase Differential Trip
- Undervoltage, Overvoltage Trip

The following is example of how to determine the relay setpoints for a specific motor that has been applied conservatively. This is only an example for teaching purposes and may not address all issues relating to your specific application. It is recommended that the setpoints for your motor protective relaying application be determined by your local protection engineer.

Select CT Rating, Voltage Sensing

FREQUENCY :60 Hz PHASES :3	TYPE :K FRAME :8713Z ENCLOSURE :WPII SERVICE FACTOR :1.00 INSULATION CLASS:F (POLYSEAL)	Phase CT The phase CT should be chosen such that
DRIVEN LOAD :FAN CLOSED VALVE MAX. ALTITUDE :3300 Ft LOAD WK2 REF. TO MOTOR SHAFT : 49249 Lbf		the FLA is 50% to 100% of CT primary. Since the FLA is 297 a 300:5 CT may be chosen.
RATED RPM :1780 RATED CURRENT : 297 A RATED TORQUE :23571 lbft RATED KVA :6790 STATOR CONNECTION :Y MIN. STG. VOLTAGE :70% V	Calculated Performance NEMA STARTING CODE :F LOCKED ROTOR CURRENT :540 % LOCKED ROTOR TORQUE :77 % PULL UP TORQUE :77 % BREAKDOWN TORQUE :245 % COUPLING TYPE :DIRECT ARRANGEMENT :F1	CT: 50% <fla <100%<br="">300/5</fla>
AMB. TEMP. (MIN/MAX) :-18/40 C TOTAL WEIGHT (calc.) :53700 lb ROTOR WK2 (calculated):10422 Lbft2 NOISE LEVEL (dBA) : 85.0 @ 3.3 ft MAX CAPACITOR KVAr :1000 STATOR RESIST. @ 25C :0.1910 Ohms L-L	ROTATION :DUAL MAX. BRG.VIBR.(PK-PK):0.0016 in BEARING TYPE :SLEEVE BEARING LUBRICATION :OIL END PLAY :0.50 in LOCKED ROTOR TIME COLD :35 Sec HOT :30 Sec NUMBER OF STARTS (NEMA MG1-20.43) COLD :2 OR HOT :1	Voltage Sensing Enter the connection type and ratio. Enter motor nameplate voltage. In this case, a 14400/120 PT will be used, so 120:1 ratio.

Current Sensing		
SETTING	PARAMETER	
Phase CT Primary	300 A	
Motor Full Load Amps	297 A 5 A Secondary	
Ground CT Type		
Ground CT Primary	50 A	
Phase Differential CT Type	5 A Secondary	
Phase Differential CT Primary	300 A	
Enable Two Speed Motor Option	Off/No	

Voltage Sensing	
SETTING	PARAMETER
VoltageTransformer Connection Type	Open Delta
Enable Single VT Connection	Off
Voltage Transformer Ratio	120.00 :1
Motor Nameplate ∀oltage	13200 ∨

Select FLA, Ground CT

,	
POLES :4 FRAME VOLTAGE :13200 V ENCLOS FREQUENCY :60 Hz PHASES :3 SERVIC	:K :8713Z SURE :WPII CE FACTOR :1.00 ATION CLASS:F (POLYSEAL)
DRIVEN LOAD :FAN CLOSED VALVE MAX. ALTITUDE :3300 Ft LOAD WK2 REF. TO MOTOR SHAFT : 49249 Lbft2 Calcul	lated Derformance
	STARTING CODE :F
	D ROTOR CURRENT :540 %
RATED CURRENT : 297 A LOCKER	D ROTOR TORQUE :77 %
RATED TOROUE :23571 lbft PULL U	JP TORQUE :77 %
RATED KVA :6790 BREAKI	JP TORQUE :77 % DOWN TORQUE :245 %
STATOR CONNECTION :Y COUPLI	ING TYPE :DIRECT
MIN. STG. VOLTAGE :70% V ARRANG TIME RATING :CONTINUOUS	GEMENT :F1
ROTATI	ION :DUAL
	BRG.VIBR. (PK-PK):0.0016 in
TOTAL WEIGHT (calc.) :53700 lb BEARIN	
	NG LUBRICATION :OIL
	LAY :0.50 in
NOISE LEVEL (dBA) : 85.0 @ 3.3 ft LOCKEI MAX CAPACITOR KVAr :1000	COLD :35 Sec
STATOR RESIST. @ 25C :0.1910 Ohms L-L	HOT :30 Sec
	R OF STARTS (NEMA MG1-20.43)
OPEN CIRC. CONSTANT :1.5680 S	COLD :2

Motor FLA

Set the Motor Full Load Amps to 297A, as specified by the data sheets.

Ground CT

For high resistive grounded systems, sensitive ground detection is possible with the 50:0.025 CT. On solidly grounded or low resistive grounded systems where the fault current is much higher, a 1A or 5A secondary CT should be used. If residual ground fault connection is to be used, the ground fault CT ratio most equal the phase CT ratio. If residual connection is used, pickup levels and timers must be set with respect to the acceleration time. The zero sequence CT chosen needs to be able to handle all potential fault levels without saturating.

<u>Set:</u>

(

FLA = 297 A

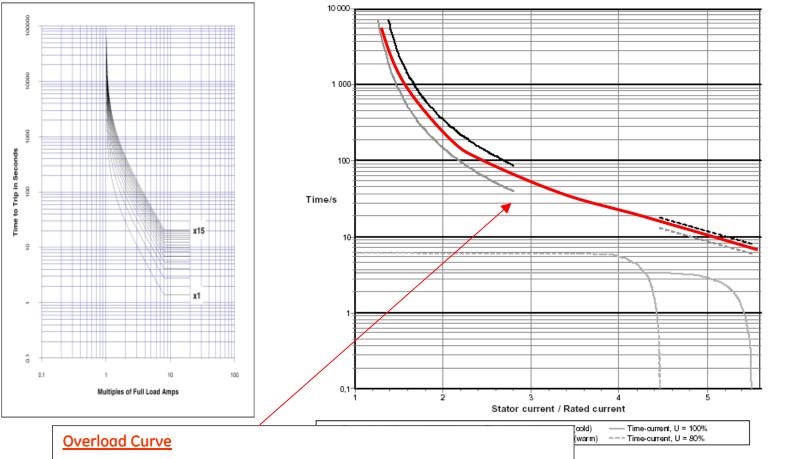
GF = System

Current Sensing	
SETTING	PARAMETER
Phase CT Primary	300 A
Motor Full Load Amps	297 A
Ground CT Type	5 A Secondary
Ground CT Primary	50 A
Phase Differential CT Type	5 A Secondary
Phase Differential CT Primary	300 A
Enable Two Speed Motor Option	Off/No

Settings Example Thermal Overload Pickup

POWER :8000 HP		TYPE :K	
POLES :4		FRAME :8713Z	
VOLTAGE :13200 V		ENCLOSURE :WPI1	
FREQUENCY :60 Hz	PHASES 3		0
		INSULATION CLACC. P	(POLIISEAL)
TEMPERATURE RISE:80 C	/RTD @ SF 1.0		
	0000 IN 199		
DRIVEN LOAD :FAN CL MAX. ALTITUDE :3300 F			
LOAD WK2 REF. TO MOTOR		F+ 2	
		Calculated Performan	
		NEMA STARTING CODE	:F
RATED RPM :1780)	LOCKED ROTOR CURRENT	
RATED CURRENT : 297		LOCKED ROTOR TORQUE	
RATED TORQUE :2357			
RATED KVA :6790		BREAKDOWN TORQUE	:245 %
STATOR CONNECTION :Y		COUPLING TYPE	:DIRECT
MIN. STG. VOLTAGE :70%		ARRANGEMENT	:F1
TIME RATING :CONT	INUOUS		
		ROTATION	:DUAL
AMB. TEMP. (MIN/MAX) :	-18/40 C	MAX. BRG.VIBR. (PK-PK)):0.0016 in
TOTAL WEIGHT (calc.) : ROTOR WK2 (calculated):			
ROTOR WK2 (Calculated):	10422 LDIt2	END PLAY	:0.50 in
NOISE LEVEL (dBA) :	95 0 @ 2 3 ft		:0.50 111
MAX CAPACITOR KVAr :		COLD	-35 Sec
STATOR RESIST. @ 25C :		HOT	
X/R RATIO :		NUMBER OF STARTS (NEI	
OPEN CIRC. CONSTANT :		COLD	:2
ACCELERATION TIME :	15 Sec	OR HOT	:1
			-

Overload Pickup


This setting defines the current level at which the motor is considered to be overloaded.

Motor Thermal Overload function can not be disabled.

469 Thermal Model	
SETTING	PARAMETER
Curve Style	Standard
Overload Pickup Level	1.15 FLA
Unbalance k Factor	8
Cool Time Constant Running	15 min
Cool Time Constant Stopped	30 min
Hot/Cold Safe Stall Ratio	0.86
RTD Blasing	On/Yes
RTD Blas Minimum	40 °C
RTD Blas Center Point	130 °C
RTD Blas Maximum	155 °C
Thermal Capacity Alarm	Latched
Thermal Capacity Alarm Relays	Alarm
Thermal Capacity Alarm Level	75 % used
Thermal Capacity Alarm Events	On/Yes
Overload Trip Relays	Trip

Select Overload Curve for Thermal Model

Set the overload curve below cold thermal limit and above hot thermal limit. If only hot curve is provided by mfgr, then must set at or below hot thermal limit

The best fitting curve is curve # 9 in this example.

Settings Example Determine Unbalance Bias K Factor for Thermal Model

POWER :8000 HP POLES :4 VOLTAGE :13200 V FREQUENCY :60 Hz PHASES :3 TEMPERATURE RISE:80 C /RTD @ SF 1.0	TYPE :K FRAME :8713Z ENCLOSURE :WPII SERVICE FACTOR :1.00 INSULATION CLASS:F (POLYSEAL)	Unbalance Bias Of The Enable the Unbalance Capacity so that the he unbalance currents is Thermal Capacity Used	Bias of Thermal eating effect of added to the
DRIVEN LOAD :FAN CLOSED VALVE MAX. ALTITUDE :3300 Ft LOAD WK2 REF. TO MOTOR SHAFT : 49249 Lb		469 Thermal Model	
r	Calculated Performance	SETTING	PARAMETER
RATED RPM :1780	LOCKED ROTOR CURRENT :540	Curve Style	Standard
RATED CURRENT : 297 A	LOCKED RETOR TORQUE .77 %	Overload Pickup Level	1.15 FLA
RATED TORQUE :23571 lbft RATED KVA :6790	PULL UP TORQUE :77 % BREAKDOWN TORQUE :245 %	Unbalance k Factor	8
STATOR CONNECTION :Y	COUPLING TYPE :DIRECT	Cool Time Constant Running	15 min
MIN. STG. VOLTAGE :70% V	ARRANGEMENT :F1	Cool Time Constant Stopped	30 min
TIME RATING :CONTINUOUS		Hot/Cold Safe Stall Ratio	0.86
AMB. TEMP. (MIN/MAX) :-18/40 C	ROTATION :DUAL MAX. BRG.VIBR.(PK-PK):0.0016 in	RTD Blasing	On/Yes
TOTAL WEIGHT (calc.) :53700 lb	BEARING TYPE :SLEEVE	RTD Blas Minimum	40 °C
ROTOR WK2 (calculated):10422 Lbft2	BEARING LUBRICATION :OIL	RTD Blas Center Point	130 °C
	END PLAY :0.50 in	RTD Blas Maximum	155 °C
NOISE LEVEL (dBA) : 85.0 @ 3.3 ft MAX CAPACITOR KVAr :1000	LOCKED ROTOR TIME COLD :35 Sec	Thermal Capacity Alarm	Latched
STATOR RESIST. @ 25C :0.1910 Ohms L-L	HOT :30 Sec	Thermal Capacity Alarm Relays	Alarm
X/R RATIO : 33.960	NUMBER OF STARTS (NEMA MG1-20.43)	Thermal Capacity Alarm Level	75 % used
OPEN CIRC. CONSTANT :1.5680 S	COLD :2	Thermal Capacity Alarm Events	On/Yes
ACCELERATION TIME :15 Sec	OR HOT :1	Overload Trip Relays	Trip

$K=175/LRA^{2} = 175/5.4^{2} = 6$

(Typical)

 $K=230/LRA^2 = 230/5.4^2 = 8$

(Conservative)

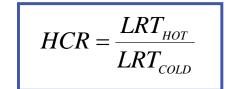
Stopped & Running Cool Time Constants

POWER :8000 HP TYPE :K :4 FRAME POLES :8713Z VOLTAGE :13200 V ENCLOSURE :WF11 FREQUENCY :60 Hz PHASES :3 SERVICE FACTOR :1.00 INCLLATION CLASS:F INSULATION CLASS: F (POLYSEAL) TEMPERATURE RISE:80 C /RTD @ SF 1.0 DRIVEN LOAD : FAN CLOSED VALVE MAX. ALTITUDE :3300 Ft LOAD WK2 REF. TO MOTOR SHAFT : 49249 Lbft2 ----- Calculated Performance -----NEMA STARTING CODE :F RATED RPM:1780LOCKED ROTOR CURRENT :540RATED CURRENT: 297 ALOCKED ROTOR CURRENT :540RATED TORQUE: 23571lbftPULL UP TORQUE :77RATED KVA: 6790BREAKDOWN TORQUE :245STATOR CONNECTION:YCOUPLING TYPE :DIRIMIN.STG. VOLTAGE :70% VSTATURE CONSTRUCTION : 100 Minimum 읗 8 ₿ * COUPLING TYPE :DIRECT TIME RATING : CONTINUOUS :DUAL ROTATION AMB, TEMP, (MIN/MAX) :-18/40 C MAX. BRG.VIBR. (PK-PK):0.0016 in TOTAL WEIGHT (calc.) :53700 1b BEARING TYPE :SLEEVE ROTOR WK2 (calculated):10422 Lbft2 BEARING LUBRICATION :OIL END PLAY :0.50 in NOISE LEVEL (dBA) : 85.0 @ 3.3 ft LOCKED ROTOR TIME MAX CAPACITOR KVAr :1000 COLD :35 Sec STATOR RESIST. @ 25C :0.1910 Ohms L-L HOT :30 Sec NUMBER OF STARTS (NEMA MG1-20.43) X/R RATIO : 33.960 OPEN CIRC. CONSTANT :1.5680 S COLD :2 ACCELERATION TIME :15 Sec OR HOT :1

469 Thermal Model		
SETTING	PARAMETER	
Curve Style	Standard	
Overload Pickup Level	1.15 FLA	
Unbalance k Factor	8	
Cool Time Constant Running	15 min	
Cool Time Constant Stopped	30 min	
Hot/Cold Safe Stall Ratio	0.86	
RTD Blasing	On/Yes	
RTD Blas Minimum	40 °C	
RTD Blas Center Point	130 °C	
RTD Blas Maximum	155 °C	
Thermal Capacity Alarm	Latched	
Thermal Capacity Alarm Relays	Alarm	
Thermal Capacity Alarm Level	75 % used	
Thermal Capacity Alarm Events	On/Yes	
Overload Trip Relays	Trip	

Stopped and Running Cool Time Constants

This information is usually supplied by the motor manufacturer but is not part of the data that was given with this motor. If RTD's are present and will be wired to the relay biasing of the thermal model will be used so it is not critical to have these cooling times from the manufacturer: the default values of 15 and 30 minutes can be used for the running and stopped cool times respectively.


Settings Example

Determine Hot/Cold Safe Stall Ratio for Thermal Model (method 1)

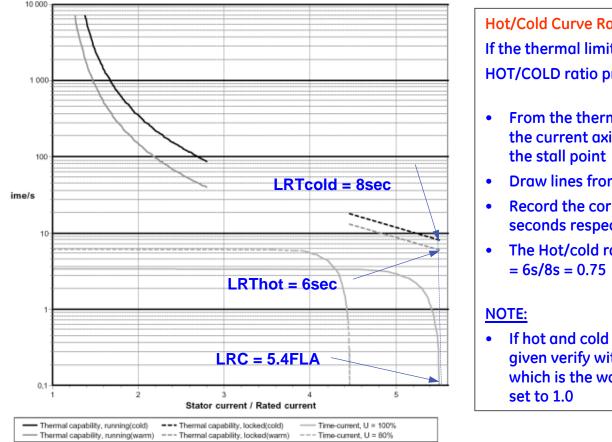
τ									
	POWER POLES VOLTAGE FREQUENCY TEMPERATURE	:4 :13200 V :60 Hz	PHA	SES : SF 1.0	3	INSULATION	:8713Z :WPII TOR :1.00 CLASS:F	(POLYSEAL)	
	DRIVEN LOAD MAX. ALTITU LOAD WK2 RE	DE :3300 F. TO MOTOR	Ft SHAFT :	LVE 49249	Lbf				
1						Calculated NEMA STARTI			
	RATED RPM	:178	10			LOCKED ROTO			90
	RATED RPM RATED CURRE	NT 20	97 A			LOCKED ROTO	R TOROUR	.77	8
	RATED TORQU	E •239	71 lb	f+		DUILL UP TOP	OUE	-77	8
						BREAKDOWN T	OROUR	.245	8
	CTATOR CONN	POTION V	0			COUPLING TY	DE	DIRECT	0
	RATED KVA STATOR CONN MIN. STG. V	OUTACE .709	. 17			ARRANGEMENT			
	TIME RATING					ARRANGEMENT		:11	
	TIME RATING	:COI	TINUOUS			ROTATION		DUAT	
		(NATES (NATES)	20/40	~		ROTATION		:DUAL	4
	AMB. TEMP.	(MIN/MAX)	:-18/40 0			MAX. BRG.VI	BR. (PK-PK)	0.0016	in
	TOTAL WEIGH								
	ROTOR WK2 (calculated)	:10422 L	DICZ		BEARING LUB			
	NOTOR LEVEL	(100)	05 0 0			END PLAY LOCKED ROTO	D DTMD	:0.50	111
	NOISE LEVEL	(dBA)	: 85.0 @	3.3 II	t i			25 0	
	MAX CAPACIT				\sim		COLD		
	STATOR RESI						HOT		21
	X/R RATIO OPEN CIRC.	00107733177	: 33.960	-		NUMBER OF S			3)
	OPEN CIRC.	CONSTANT	:1.5680 5	5			COLD		
	ACCELERATIO	N TIME	:15 Sec	2		0	R HOT	:1	

Hot/Cold Curve Ratio

The hot/cold curve ratio is calculated by simply dividing the hot safe stall time by the cold safe stall time or use the motor thermal limits curve. For this example, both are available. Using the data sheets the Hot/Cold Curve Ratio equals 30/35 = 0.86

Hot/Cold Ratio = 30/35

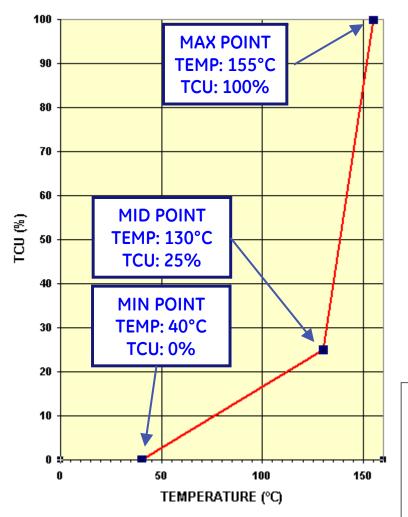
=> 0.86


469 Thermal Model	
SETTING	PARAMETER
Curve Style	Standard
Overload Pickup Level	1.15 FLA
Unbalance k Factor	8
Cool Time Constant Running	15 min
Cool Time Constant Stopped	30 min
Hot/Cold Safe Stall Ratio	0.86
RTD Blasing	On/Yes
RTD Blas Minimum	40 °C
RTD Blas Center Point	130 °C
RTD Blas Maximum	155 °C
Thermal Capacity Alarm	Latched
Thermal Capacity Alarm Relays	Alarm
Thermal Capacity Alarm Level	75 % used
Thermal Capacity Alarm Events	On/Yes
Overload Trip Relays	Trip

Settings Example

Determine Hot/Cold Safe Stall Ratio for Thermal Model (method 2)

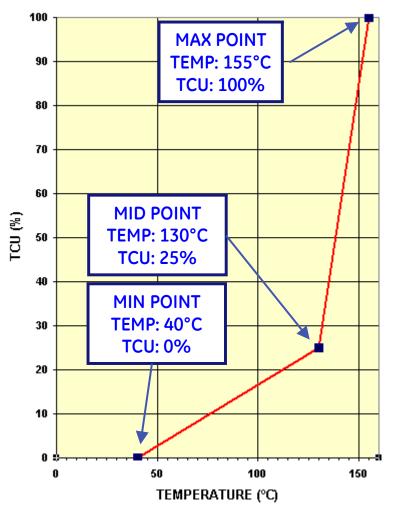
Overload Curve Method



If the thermal limits curves are being used to determine the HOT/COLD ratio proceed as follows:

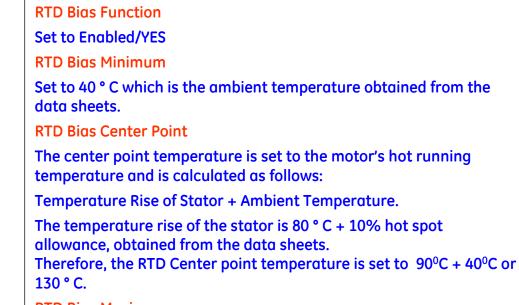
- From the thermal limits curves run a line perpendicular to the current axis that intersects the hot and cold curves at
- Draw lines from each points of intersection to the time axis.
- Record the corresponding times. In this case, 6 and 8 seconds respectively.
- The Hot/cold ratio can now be calculated as follows:
- If hot and cold times are not provided and only one curve is given verify with the manufacturer that it is the hot curve (which is the worst case), then the Hot/ Cold ratio should be

Settings Example Determine RTD Bias Setpoints for Thermal Model

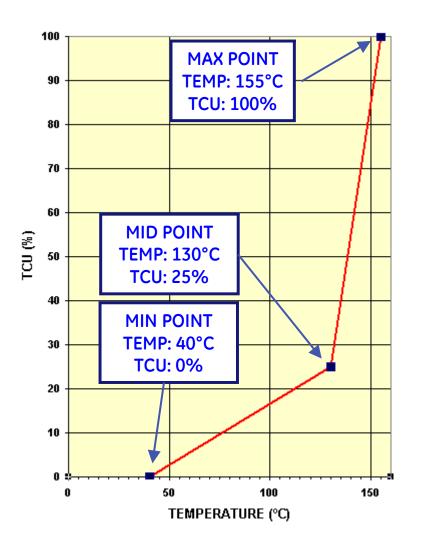


POWER :8000 HP		TYPE	:K		
POLES :4		FRAME	:8713Z		
POLES :4 VOLTAGE :13200 V		ENCLOSURE	:WPII		
FREQUENCY :60 Hz PHASE	ES :3	SERVICE FAC	TOR :1.00		
		INSULATION	CLASS:F	(POLYSEAL)	\supset
TEMPERATURE RISE:80 C /RTD @ SE	F 1.0				
DRIVEN LOAD : FAN CLOSED VALV	/E				
MAX. ALTITUDE :3300 Ft					
LOAD WK2 REF. TO MOTOR SHAFT : 4			D		
F		NEMA STARTI		:F	
DATED DDM .1700					8
RATED RPM :1780 RATED CURRENT : 297 A RATED TORQUE :23571 lbft		LOCKED ROIC	DR CORRENT	. 77	
RAIED CORRENT : 297 A	_	DULL UD TOP	OUT	.77	de de
RAIED IORQUE :23571 IDIU	-	PULL OF ION	VOROUR	.245	P 06
STATOP CONNECTION .V		COUDLING TY	DE	DIPECT	.0
RATED KVA :6790 STATOR CONNECTION :Y MIN. STG. VOLTAGE :70% V		ADDANGEMENT	PD .	.F1	
TIME RATING :CONTINUOUS		ARRANGERENT			
		ROTATION		DUAL	
AMB. TEMP. (MIN/MAX) :-18/40 C TOTAL WEIGHT (calc.) :53700 11		MAX. BRG. VI	BR. (PK-PK)	:0.0016	in
TOTAL WEIGHT (calc.) :53700 1b	2	BEARING TYP	E	SLEEVE	
ROTOR WK2 (calculated):10422 Lbf	t2	BEARING LUE	RICATION	:OIL	
		END PLAY		:0.50	in
NOISE LEVEL (dBA) : 85.0 @ 3	3.3 ft	LOCKED ROTO	R TIME		
MAX CAPACITOR KVAr :1000			COLD	:35 Sec	
STATOR RESIST. @ 25C :0.1910 Oh			HOT	:30 Sec	
X/R RATIO : 33.960					3)
OPEN CIRC. CONSTANT :1.5680 S			COLD		
ACCELERATION TIME :15 Sec		C	R HOT	:1	

Enable RTD Biasing


This will enable the temperature from the Stator RTD sensors, to be included in the calculations of Thermal Capacity. RTD bias model determines the Thermal Capacity Used based on the temperature of the Stator and is separate from the overload model for calculating Thermal Capacity Used. RTD biasing is a back up protection element which accounts for such things as loss of cooling or unusually high ambient temperature. This measured temperature is used to bias or modify the thermal capacity value stored in the motor relay.

Settings Example Determine RTD Bias Setpoints for Thermal Model


- Motor relay will use the calculated thermal capacity <u>unless</u> the RTD thermal capacity is higher.
- This feature will not trip the motor at the max point temp unless the average current is greater than the overload pickup setting

RTD Bias Maximum

This setpoint is set to the rating of the insulation or slightly less. A class F insulation is used in this motor which is rated at 155 $^{\circ}$ C, so setting should be 155 $^{\circ}$ C.

Settings Example Determine RTD Bias Setpoints for Thermal Model

SETTING	PARAMETER
Curve Style	Standard
Overload Pickup Level	1.15 FLA
Unbalance k Factor	8
Cool Time Constant Running	15 min
Cool Time Constant Stopped	30 min
Hot/Cold Safe Stall Ratio	0.86
RTD Blasing	On/Yes
RTD Blas Minimum	40 °C
RTD Blas Center Point	130 °C
RTD Blas Maximum	155 °C
Thermal Capacity Alarm	Latched
Thermal Capacity Alarm Relays	Alarm
Thermal Capacity Alarm Level	75 % used
Thermal Capacity Alarm Events	On/Yes
Overload Trip Relays	Trip

Settings Example Determine Short Circuit Trip Settings

Short Circuit Trip

The short circuit trip should be set above the maximum locked rotor current but below the short circuit current of the fuses. The data sheets indicate a maximum locked rotor current of 540% FLA or 5.4 x FLA. A setting of 6 x FLA with a instantaneous time delay will be ideal but nuisance tripping may result due to the asymmetrical starting currents and DC offset. If asymmetrical starting currents limits the starting capability, set the S/C level higher to a maximum of 9.2 x FLA to override this condition (1.7 x 5.4 = 9.2 where 1.7 is the maximum DC offset for an asymmetrical current). With 300:5 CT, 9.2 x FLA = 9.2 x 297/300 = 9.10 CT

Short Circuit Trip	
SETTING	PARAMETER
Short Circuit Trip	Latched
Overreach Filter	Off/No
Short Circuit Trip Relays	Trip
Short Circuit Trip Pickup	9.1 CT
Intentional Short Circuit Trip Delay	Oms
Short Circuit Trip Backup	Off/No

Current Sensing	
SETTING	PARAMETER
Phase CT Primary	300 A
Motor Full Load Amps	297 A
Ground CT Type	5 A Secondary
Ground CT Primary	50 A
Phase Differential CT Type	5 A Secondary
Phase Differential CT Primary	300 A
Enable Two Speed Motor Option	Off/No

Settings Example Determine Current Unbalance Alarm/Trip Settings

Unbalance Alarm and Trip

The unbalance settings are determined by examining the motor application and motor design. The heating effect of unbalance will be protected by enabling unbalance input to thermal memory; described previously.

A setting of 10-15% x FLA for the Unbalance Alarm with a delay of 5-10 seconds would be appropriate.

Trip can be set to 20-25% x FLA with a delay of 2-5 seconds.

Current Unbalance	
SETTING	PARAMETER
Current Unbalance Alarm	Unlatched
Current Unbalance Alarm Relays	Alarm
Current Unbalance Alarm Pickup	15 %
Current Unbalance Alarm Delay	6s
Current Unbalance Alarm Events	On/Yes
Current Unbalance Trip	Latched
Current Unbalance Trip Relays	Trip
Current Unbalance Trip Pickup	20 %
Current Unbalance Trip Delay	2 \$

Settings Example Ground Fault & Acceleration Trip Settings

Ground Fault Limit the ground fault current to less than 7.5 to 10amps.

In this example, use $0.15 \times CT$ or $0.15 \times 50 = 7.5A$

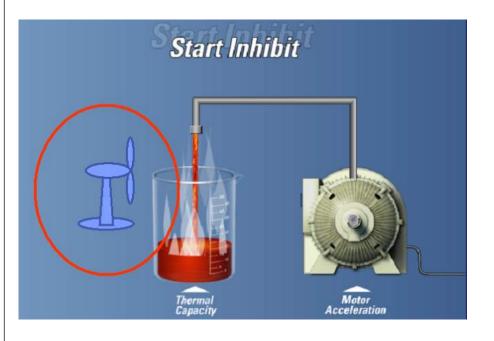
Acceleration Trip

This setpoint should be set higher than the maximum starting time to avoid nuisance tripping when the voltage is lower or for varying loads during acceleration. A value greater than 15 seconds should be entered (based on motor data sheet).

SETTING	PARAMETER
Ground Fault Alarm	Unlatched
Ground Fault Alarm Relays	Alarm
Ground Fault Alarm Pickup	0.10 CT
Intentional GF Alarm Delay	200 ms
Ground Fault Alarm Events	On/Yes
Ground Fault Trip	Latched
Ground Fault Trip Relays	Trip
Ground Fault Trip Pickup	0.15 CT
Intentional GF Trip Delay	0 ms
Ground Fault Trip Backup	Off/No
Ground Fault Overreach Filter	Off/No

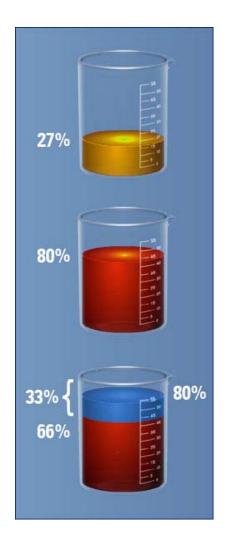
Current Sensing	
SETTING	PARAMETER
Phase CT Primary	300 A
Motor Full Load Amps	297 A
Ground CT Type	5 A Secondary
Ground CT Primary	50 A
Phase Differential CT Type	5 A Secondary
Phase Differential CT Primary	300 A
Enable Two Speed Motor Option	Off/No

Acceleration Timer	
SETTING	PARAMETER
Accleration Timer Trip	Latched
Acceleration Timer Trip Relays	Trip
Acceleration Timer from Start	20.0 s


Settings Example Enable Start Inhibit

Enable Start Inhibit

This function will limit starts when the motor is already hot. The motor relay learns the amount of thermal capacity used at start. If the motor is hot, thus having some thermal capacity used, the relay will not allow a start if the available thermal capacity is less than the required thermal capacity for a start.


If Start Inhibit is not used, must wait until Thermal Capacity Used (TCU) falls below 15% before the motor can be re-started.

Using Start Inhibit allows one to start a hot motor sooner.

TCU / Start Inhibit Example

Thermal Capacity required to start

For example, if the THERMAL CAPACITY USED for the last 5 starts is 24, 23, 27, 25, and 21% respectively, the LEARNED STARTING CAPACITY is $27\% \times 1.25 = 33.75\%$ used.

Thermal Capacity used due to Overload

If the motor had been running in an overload condition prior to stopping, the thermal capacity would be some value; say 80%.

If Motor is Stopped:

When the motor has cooled and the level of thermal capacity used has fallen to 66%, a start will be permitted.

Start Inhibit	
SETTING	PARAMETER
Start Inhibit Block	On/Yes
Thermal Capacity Used Margin	25 %

Settings Example Starts/Hr, Time Between Starts

Starts/Hour

Starts/Hour can be set to the # of cold starts as per the data sheet. For this example, it is 2

Time Between Starts

In some cases, the motor manufacturer will specify the time between motor starts. In this example, this information is not given so this feature can be disabled or set at a typical 20 min between starts.

Jogging Block	
SETTING	PARAMETER
Jogging Block	On/Yes
Maximum Starts/Hour Permissible	2
Time Between Starts	20 min

Settings Example RTD Alarm & Tripping

Stator RTDs

RTD trip level should be set at or below the maximum temperature rating of the insulation. For example, a motor with class F insulation that has a temperature rating of 155°C could have the Stator RTD Trip level be set between 140°C to 145°C, with 145° C being the maximum (155°C - 10°C hot spot). The RTD alarm level should be set to a level to provide a warning that the motor temperature is rising.

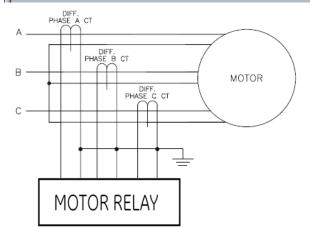
Bearing RTDs

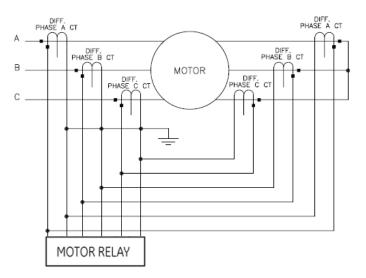
The Bearing RTD alarm and trip settings will be determined by evaluating the temperature specification from the bearing manufacturer.

RTD #1	
SETTING	PARAMETER
RTD #1 Application	Stator
RTD #1 Name	ST Ph A1
RTD #1 Alarm	Unlatched
RTD #1 Alarm Relays	Alarm
RTD #1 Alarm Temperature	130 °C
RTD #1 Alarm Events	On/Yes
RTD #1 Trip	Latched
RTD #1 Trip Voting	RTD #4
RTD #1 Trip Relays	Trip
RTD #1 Trip Temperature	145 °C
RTD #1 Hi Alarm	Off

Settings Example Phase Differential

Core Balance Method


Phase Differential	
SETTING	PARAMETER
Phase Differential Trip	Latched
Phase Differential Trip Relays	Trip
Differential Trip Pickup While Starting	0.10 CT
Differential Trip Delay While Starting	0 ms
Differential Trip Pickup While Running	0.10 CT
Differential Trip Delay While Running	0 m s


Summation/Residual Method

Phase Differential	
SETTING	PARAMETER
Phase Differential Trip	Latched
Phase Differential Trip Relays	Trip
Differential Trip Pickup While Starting	0.25 CT
Differential Trip Delay While Starting	200 ms
Differential Trip Pickup While Running	0.10 CT
Differential Trip Delay While Running	0 m s

To prevent nuisance tripping in this configuration, the differential level may have to be set less sensitive, and the differential time delay may have to be extended to ride through the CT differences during motor starting.

Current Sensing		
SETTING	PARAMETER	
Phase CT Primary	300 A	
Motor Full Load Amps	297 A	
Ground CT Type	5 A Secondary	
Ground CT Primary	50 A	
Phase Differential CT Type	5 A Secondary	
Phase Differential CT Primary	300 A	
Enable Two Speed Motor Option	Off/No	

Settings Example Undervoltage & Overvoltage Tripping

> The overall result of an under or overvoltage condition is an increase in current and motor heating and a reduction in overall motor performance.

- The undervoltage trip should be set to 80-90% of nameplate unless otherwise stated on the data sheets. Motors that are connected to the same source, may experience a temporary undervoltage when one of motors starts. To override these temporary sags, a time delay setpoint should be set.
- The overvoltage element should be set to 110% of the motors nameplate unless otherwise started in the data sheets.

Undervoltage		
SE	TTING	PARAMETER
Undervoltage Active	Only If Bus Energized	Off/No
Undervoltage Alarm		Off
Undervoltage Trip		Latched
Undervoltage Trip Re	elays	Trip
Undervoltage Trip Pi	ckup	0.90 Rated
Starting Undervoltag	e Trip Pickup	OFF
Undervoltage Trip De	elay	3.0 s

Overvoltage		
SETTING	PARAMETER	
Overvoltage Alarm	Off	
Overvoltage Trip	Latched	
Overvoltage Trip Relays	Trip	
Overvoltage Trip Pickup	1.10 Rated	
Overvoltage Trip Delay	3.0 s	

