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Abstract: Queries generated by modern data applications and BI tools often contain repetitive yet
similar, possibly correlated subqueries. We present how the Firebolt rule-based optimizer handles a
specific class of such queries that contain correlated scalar aggregate subqueries over similar inputs.
We do this by crafting a set of rules that work in tandem to achieve the desired end result. We discuss
each of these rules in detail and explain why our technique goes beyond the current state of the art.
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1 Introduction

Businesses are collecting ever larger and more complex data sets. This has given rise to a
wide range of data-intensive applications that allow interacting with data. Internally, these
applications are often powered by BI tools such as Looker or Tableau. Customer-facing data
applications frequently use custom query generators and visualization layers.

To understand the effects of data applications on the underlying DBMS, let us briefly
consider an application that visualizes summaries over large data sets in near real time.
Such applications are often interactive — for example, visualizing historical data might allow
for changing the presented time range. Additionally, the application can have widgets that
impact which data is to be considered. Typically, the application does this by translating
each widget into an SQL-level parameter or fragment, incorporating all fragments into a set
of queries, submitting the queries to a DBMS, and finally rendering the query results. This
means that data applications often act like SQL query generators. To provide an interactive
experience, the DBMS has to answer such machine-generated queries in near real-time.

In this work, we present such a machine-generated query, that — to the best of our knowledge
— is not optimized well by any major commercial or research DBMS other than Firebolt?.
The lack of sufficient optimization hinders processing the query in near real-time and renders
the data app impractical to work with. This poses a risk for our customers. The goal of this
work is to explain how the Firebolt query optimizer optimizes this query so that it can be
processed efficiently, and highlight why current state-of-the-art systems fail to do so.
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Listing 1 Example query Q computing for each customer the minimum and maximum order
price over all orders that are still open.

1 select c.x*,

2 (select min(price) from orders where status='0' and c.key=ckey) "min",
3 (select max(price) from orders where status='0' and c.key=ckey) "max"
4 from customers c;

To that end, our work makes the following contributions. In Sect. 1 we provide an example
query that highlights the limitations of current systems. As we cannot disclose customer
data, we present an anonymized customer query to drive the discussion. We analyze the
query and describe its optimization potential, identifying subquery decorrelation, common
aggregates discovery, and redundant join removal as necessary rules to optimize this query.
In Sect. 2 we elaborate decorrelation and common aggregate discovery. In Sect. 3 we present
redundant join removal. We discuss related work in Sect. 4 and conclude in Sect. 5.

1.1 A Running Example

Listing 1 shows an example query Q that is not optimized well by any major commercial
or research DBMS other than Firebolt. The query computes for every customer the mini-
mum and maximum price over all orders that are still open. The minimum and maximum
values are computed by two subqueries. Each subquery is correlated through the predicate
c.key=ckey, where c.key is the correlated, free variable. Each subquery applies the same
filter status='0", and each subquery aggregates without a grouping expression.
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Fig. 1: Two equivalent query plans for example query Q, one before and one after optimization.
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Fig. 2: Incremental optimization of the query plan for query Q.

Translating the SQL statement to an initial query plan can be done easily by following the
syntactic structure of the query. The correlated subqueries can be expressed with the help
of the dependent join operator X [NK15]. Fig. 1a shows the initial query plan built by the
Firebolt optimizer 3. Note that the query plan scans the orders relation twice, performs the
filter and aggregation twice, and then performs two dependent joins. The high degree of
redundancy in this plan tremendously impairs performance.

We would like to come up with an equivalent and more efficient plan for query Q. In
particular, we shall decorrelate the dependent joins and achieve scanning of and aggregating
over orders only once. The desired query plan is shown in Fig. 1b. In the next sections, we
describe the rules implemented in the Firebolt query optimizer that allow us to transform
the initial plan from Fig. 1a into this desired plan.

2 Decorrelation and Common Aggregate Discovery

Fig. 2a shows the query plan after full decorrelation, implemented as described in [GJ01]
and [NK15]. Observe that the dependent joins were converted to left outer joins, and the
aggregations contain the formerly correlated expression as a grouping key.

Evaluating an aggregate, global or with a GROUP BY key, is a costly operation that generally
requires a scan over the entire input relation. Conveniently, many of SQL’s aggregate
functions fall into the class of commutative-associative aggregates. Operators computing
such aggregates independently can be fused together into a single operator that computes all

3 Throughout the paper we use the relational algebra operators and notation by Neumann; Kemper [NK15].



aggregates simultaneously in a single pass [AKM19, Sect. 8.1.2]. In our running example,
both min and max are commutative-associative, so we can fuse the two I'c.y; ... operators
from Fig. 2a. The result is the DAG-shaped plan in Fig. 2b.

3 Redundant Join Removal

Finally, to reach our desired final plan in Fig. 1b, we need to remove the redundant join
in Fig. 2b. In that plan, one of the two joins is redundant because:

(i) Both joins are performed on the same grouping key orders. ckey that comes from
the same subplan shared by o1 and 02. Once we have performed one of the joins, the
other join will not duplicate or remove any tuples from the result set.

(ii) The two subqueries o1 and o2 project different sets of columns from a shared subplan.
With a minor rewrite, one subquery could provide all columns needed by the operators
above. This means that joining the other subquery will not be necessary in terms of
columns needed.

If a join does not duplicate or remove tuples and does not provide any new columns, it is
redundant. This allows us to remove one of the two joins in Fig. 2b.

Our join removal technique searches for redundant joins by analyzing the join graph. This
analysis is performed even in the absence of primary-key or foreign-key constraints. Within
a join graph, the process of removing a redundant join corresponds to removing a vertex
(which represents a subplan) and an associated edge (which represents the join) from the
graph. Upstream expressions that depend on the removed vertex are then rewritten in terms
of one of the remaining vertices which acts as a replacing vertex. To account for possible
differences between the removed and the replacing vertex, the rewritten expressions need to
insert extra filter or projection operators depending on the join type.

We use a more general example to illustrate the redundant join removal process. For
simplicity, the discussion here is limited to simple graphs, although the conditions can
be extended to work with hypergraphs [MNO8]. Consider a similar query on relations
customers (key,name), and maxord(ckey,price) which stores the largest order per
customer.

select * from customers c
left join(select * from maxord where price<10) ol on c.key=ol.ckey
left join(select * from maxord where 5<price<10) 02 on c.key=02.ckey

The logical plan and the join graph are shown in Fig. 3a and Fig. 3b (top), respectively.
Searching for the two conditions of redundant joins in Fig. 3a, we see that



(i) Joining 02 does not duplicate or remove any tuples from the c left join ol result
set because for any value of c.key in the result set, there is at most one value in
02.ckey to join (but customers that have not yet made an order might not be present).

(ii) Inthis case, the join graph vertex representing subplan o1 already provides all columns
needed by the operator above. We need a minor rewrite preserving the outer join
semantics, though.

As aresult, the join with 02 is identified as redundant. The simplified graph is shown at the
bottom of Fig. 3b.

Classic approaches detect condition (i) by checking primary-key and foreign-key constraints.
Note that we did not assume such constraints to exist when performing redundant join
removal. The analysis is done purely based on the semantics of relational operators. Our
algorithm is built on top of column provenance analysis. In addition, predicate range analysis
is integrated to include the cases in the example from this section. Of course, if primary-key
and foreign-key constraints are present, they can be used to derive the first condition, too.

To make sure the simplified query produces a correct result following the outer join semantics,
columns from o2 that are rewritten in terms of o1 have to be guarded by the extra predicates
that appear in local filters or in the join condition of the removed outer join 02. Generally,
the guard expression for a conjunction of extra predicates p and a column x is defined as

g(p,x) = case when p then x else null end

It ensures that columns from the redundant join vertex are correctly set to null in order to
adhere to the semantics of the removed outer join. In Fig. 3c, p is 5<ol.price.

Applying this join removal technique on Fig. 2b with further algebraic simplification, we
obtain the final in plan Fig. 1b. In our running example, there are no extra predicates for the
removed join, so the guard predicate p to handle outer joins is true. The plan therefore is
further reduced by removing the now obsolete case expressions and y operator altogether.
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Fig. 3: Redundant Join Removal example.



4 Related Work

Redundant Join Removal was first discussed in the 1980s as one of the heuristics of semantic
query optimization (SQO) [Ki81; SO89]. In this context, semantic knowledge is usually
represented as function-free clauses in predicate logic. Some of the clauses exist in relational
databases as constraints, sometimes referred to as functional dependencies.

To the best of our knowledge, the first commercial database that includes a join elimination
implementation is IBM DB2 Universal Database [Ch99]. It uses referential integrity (RI)
constraints to identify redundant joins. Today, the same approach is still being used in
modern data warehouses and databases.

However, the sheer amount of data needed to be processed in these systems today can easily
cause unbearable overhead in enforcing RI constraints. As a result, many systems do not
guarantee RI constraints, even allowing them to be defined. This means the chances of
classic join elimination kicking in stay low. From the systems that we surveyed, Materialize*
is the only one that attempts to simplify joins based on join graphs and column provenance
analysis. However, the redundant outer join case presented here is not currently detected.

5 Conclusion

Modern data applications provide interactive experiences that require the underlying DBMS
to serve query results in near-real time. Further, machine-generated SQL queries with
similar, possibly correlated subqueries are a natural consequence of how such applications
are currently programmed. To meet the demands of their customers, DBMS vendors such
as Firebolt therefore have to offer industry-grade query optimizers that can detect and
remove naturally occurring redundancies in such machine-generated queries before they are
executed.

In this paper, we focused on one such query pattern and demonstrated how the state-of-
the-art query unnesting strategy proposed by Neumann; Kemper. “Unnesting Arbitrary
Queries” [NK15] at this venue ten years ago leads to a query plan that has obvious redun-
dancies. Even after applying well-known common subplan discovery techniques, none of
the commercial or research systems that we surveyed was able to completely eliminate
the replicated query fragment. To solve this problem, we proposed a novel technique for
detecting and removing redundant joins based on join graph analysis.

The exposition in this paper was limited to a specific class of correlated aggregate subqueries.
However, we believe that by augmenting the redundant join removal technique from Sect. 3
with more cases and combining them with other well-known logical simplification rules,
a rule-based optimizer can be taught to detect and eliminate redundancies across an even
larger, syntactically more varied class of subqueries.
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