

 Content
 1 Introduction 1

 2 Our Multi-Agent Architecture 2

 2.1 The Planner: The Master Strategist 2

 2.2 The Executor: The Diligent Worker 3

 2.3 The Feedbacker: The Quality Inspector 3

 3 Performance & Competitive Analysis 3

 4 Conclusion and Future Work 5

 Appendix A: Example Reasoning Trace 5

 White Paper | Agentic AI for Multi-Step Data Analysis

 1. Introduction
 In the rapidly evolving landscape of data analytics, the demand for sophisticated AI agents
 that can autonomously interpret complex queries, interact with diverse data sources, and
 generate accurate insights is paramount. Traditional single-agent systems often struggle with
 multi-step reasoning and dynamic tool utilization.

 This Whitepaper introduces a novel, multi-agent architecture designed to overcome these
 challenges. Our system is composed of three distinct yet collaborative components:
 a Planner , an Executor , and a Feedbacker . This modular design enables a robust and
 transparent workflow, from initial query decomposition to final solution validation. We
 demonstrate the state-of-the-art (SOTA) performance of this architecture, achieving
 significant scores on benchmark datasets and setting a new standard for AI-driven data
 analysis.

 The Challenge: Moving Beyond Single-Agent Systems

 Modern data environments are complex, heterogeneous, and ever-changing. Answering a
 seemingly simple business question like "What is our top market for fraudulent
 transactions?" requires a multi-faceted approach. An agent must first understand the user's
 intent, identify the relevant data tables and fields, formulate a precise query, execute it, and
 then interpret the results correctly.

 Most current agentic systems operate as a single, monolithic block, combining planning,
 execution, and reasoning. This can lead to a lack of transparency and difficulty in debugging
 when errors occur. Inspired by the need for specialization and clarity, we have developed a
 new paradigm based on a division of labor.

 1

 White Paper | Agentic AI for Multi-Step Data Analysis

 2. Our Multi-Agent Architecture
 Our architecture deconstructs the analytical process into three specialized agent roles.
 This separation of concerns allows each agent to excel at its specific task, leading to a more
 efficient, accurate, and auditable system.

 The overall workflow is designed as a pipeline, ensuring a structured and logical progression
 from query to validated answer.

 Figure 1: High-level overview of the Planner, Executor, and Feedbacker architecture

 2.1 The Planner: The Master Strategist

 The first point of contact for any user query is the Planner. Its primary role is not to answer
 the question directly, but to create a comprehensive, step-by-step blueprint for how to solve
 it. This involves a four-stage process:

 1. Deconstruct the Question: The Planner breaks down the user's request into
 smaller, manageable sub-problems.

 2. Extract Entities: It identifies key entities, metrics, and filters within the query
 (e.g., 'ip_country', 'fraud').

 3. Explore and Constrain: The agent performs a preliminary exploration of the
 available data schemas to understand their structure, limitations, and constraints.
 This prevents the formulation of invalid or inefficient queries later on.

 4. Outline the Solution Approach: The Planner creates an actionable plan that
 explicitly outlines which tools to use and in what sequence. It selects from a suite of
 available tools, including:

 ○ Text-to-SQL Engine: For querying structured databases.
 ○ Code Interpreter: For running Python code for complex transformations or

 calculations.
 ○ Search Engine: For retrieving external information or context.
 ○ MCP Server (Model Context Protocol Server): For interacting with the

 custom data source.

 2

 White Paper | Agentic AI for Multi-Step Data Analysis

 2.2 The Executor: The Diligent Worker

 The Executor's task is to meticulously carry out the blueprint created by the Planner.
 It operates on a Reasoning and Action (ReAct) basis, which involves a continuous loop of
 thought and execution. This is not a single action but a sequence of them, forming the core
 of its multi-step reasoning capability. For example, the result from a first action (like
 fetching a list of top-selling products) becomes the context for a second thought process and
 subsequent action (like analyzing the customer demographics for those specific products).
 This iterative chain allows the Executor to break down complex analytical problems, handle
 dependencies between steps, and dynamically adapt its approach based on the output of its
 actions. If a SQL query returns an error or an unexpected result, the Executor can reason
 about the cause and attempt a different action, all while staying within the strategic confines
 of the original plan.

 2.3 The Feedbacker: The Quality Inspector

 Once the Executor produces a final answer, it is passed to the Feedbacker. This final agent
 acts as an automated quality assurance layer. The Feedbacker reads the final solution and
 the original query, then assigns a reward score based on its correctness, format, and
 relevance. This scoring mechanism is crucial for performance tracking, reinforcement
 learning, and error analysis.

 3. Performance & Competitive Analysis
 We evaluated our architecture on the DABstep benchmark , which tests an agent's ability to
 perform multi-step reasoning over diverse datasets. The results demonstrate the
 effectiveness of our multi-agent approach, not only in absolute terms but also in comparison
 to other leading industry agents.

 3

 White Paper | Agentic AI for Multi-Step Data Analysis

 Table 1, Figure 2: Performance comparison on the DABstep benchmark

 Our agent achieves the highest score on both Easy and Hard tasks, demonstrating its
 superior capability. Notably, our agent's 41.01% accuracy on hard tasks significantly
 outperforms the next-best competitor, showcasing the robustness of thePlanner-Executor-
 Feedbacker design for complex, multi-step analytical challenges. While the Mphasis agent
 matches our performance on easy tasks, our architecture provides a distinct advantage as
 task difficulty increases.

 The reference of our result can be accessed here .

 Figure 3: The reference of our DABStep Result

 4

https://huggingface.co/datasets/adyen/DABstep/sql-console/XDccDWx

 White Paper | Agentic AI for Multi-Step Data Analysis

 4. Conclusion and Future Work
 Our Planner-Executor-Feedbacker architecture represents a significant step forward in
 building intelligent, reliable, and transparent data analysis agents. By separating concerns,
 we empower each component to perform its function optimally, leading to state-of-the-art
 results that are highly competitive with major industry players.

 Future work will focus on:

 1. Enhancing the Planner's strategic capabilities with more complex by synthesizing and
 finetuning using GRPO technique and Test-Time Reinforcement Learning by utilizing
 the Grader which is built by Human Expert Data Analyst. (Ref1 , Ref2)

 2. Expanding the Executor's toolset to include more advanced statistical analysis and
 visualization libraries.

 Appendix A: Example Reasoning Trace
 To provide transparency into the agent's "thought process," we can examine its reasoning
 trace. The following is a real example from DABStep Datasets.

 Question: What is the top country (ip_country) for fraud? A. NL, B. BE, C. ES, D. FR

 Guideline: Answer must be in the form 'X. Y' where:
 X is the option's letter chosen
 Y is the option's country code.

 Reasoning Trace UI

 Figure 4: Reasoning Trace UI

 5

https://arxiv.org/pdf/2503.23157
https://arxiv.org/pdf/2504.16084

 White Paper | Agentic AI for Multi-Step Data Analysis

 Reasoning Trace Log

 Step 1 : Generating a plan to solve the problem...

 ====== PLAN ======

 Okay, I will break down the user query and provide the requested information based on `manual.md`.

 Sub-questions:

 - What is the definition of "fraud" or "fraud level" according to the `manual.md`?

 - How should "top country for fraud" be determined based on this definition?

 - Which data fields from the available data sources (like `payments.csv` described by

 ̀payments-readme.md`) would be used to identify the `ip_country` and measure fraud?

 - What are the specific `ip_country` options to evaluate?

 Entity Extraction:

 - `ip_country`: The country of the shopper at the time of the transaction. Options provided: NL, BE, ES,

 FR.

 - `fraud`: The metric to be measured. Based on `manual.md`, this is typically a ratio involving fraudulent

 volume.

 - `top country`: The `ip_country` with the highest calculated fraud metric among the given options.

 ========== START of Relevant Chunk ==========

 Relevant Chunk:

 ̀``manual.md

 ## 5 . Understanding Payment Processing Fees

 Payment Processing Fees depend on a number of characteristics. These characteristics belong to either the

 merchant or the transaction.

 Merchant characteritics include

 ...

 ̀``

 ========== END of Relevant Chunk ==========

 Constraints:

 ̀``

 - The user query asks to identify the "top country (ip_country) for fraud" from a specific list of

 options: A. NL, B. BE, C. ES, D. FR.

 - The `manual.md` (Section 7) defines fraud as "the ratio of fraudulent volume over total volume" . Section

 5 also refers to "monthly_fraud_level" as a "ratio between monthly total volume and monthly volume

 notified as fraud" . This definition should be used for calculation.

 - The actual calculation requires data from `payments.csv`, specifically the `ip_country`, `eur_amount`

 (for volume), and ̀has_fraudulent_dispute` (to identify fraudulent transactions/volume) columns. The

 ̀manual.md` itself does not contain this transactional data but provides the definition of fraud rate.

 - The answer must strictly follow the format 'X. Y', where X is the letter of the chosen option and Y is

 the country code.

 ̀``

 Solution Approach:

 - To answer the query, one would need to process the `payments.csv` file.

 - For each of the specified `ip_country` options (NL, BE, ES, FR):

 1 . Filter the transaction data for the specific ̀ip_country`.

 2 . Calculate the total transaction volume for that country (sum of ̀eur_amount`).

 3 . Calculate the total fraudulent transaction volume for that country (sum of ̀eur_amount` for

 transactions where `has_fraudulent_dispute` is True).

 4 . Compute the fraud rate for that country using the definition from `manual.md`: (fraudulent volume /

 total volume).

 - Compare the calculated fraud rates for NL, BE, ES, and FR.

 6

 White Paper | Agentic AI for Multi-Step Data Analysis

 - The country with the highest fraud rate among these options is the "top country for fraud" .

 - The final answer should be formatted as 'X. Y', where X is the letter corresponding to the top country

 and Y is its code (e.g., 'A. NL').

 ====================

 Step 2 : Starting execution loop ...

 --- Iteration 1 ---

 AI Output: **Explore**

 I need to determine the top country for fraud based on `ip_country` from the options NL, BE, ES, FR.

 Fraud is defined as the ratio of fraudulent volume over total volume.

 The relevant data is in ̀payments.csv`, specifically the columns: `ip_country`, `eur_amount`, and

 ̀has_fraudulent_dispute`.

 Let 's start by loading the `payments.csv` file and inspecting the relevant columns.

 Plan

 1 . Load `payments.csv` into a pandas DataFrame.

 2 . Filter the DataFrame for transactions where `ip_country` is one of 'NL ', 'BE ', 'ES ', 'FR '.

 3 . For each of these countries:

 a. Calculate the total volume (sum of ̀eur_amount`).

 b. Calculate the fraudulent volume (sum of ̀eur_amount` for transactions where `has_fraudulent_dispute`

 is True).

 c. Calculate the fraud rate (fraudulent volume / total volume).

 4 . Identify the country with the highest fraud rate among the given options.

 5 . Format the answer as 'X. Y'.

 Execute

 Step 1 : Load `payments.csv` and inspect.

 Thought: I will load the `payments.csv` file and display its head and info to understand its structure and

 data types, especially for the columns `ip_country`, ̀eur_amount`, and ̀has_fraudulent_dispute`.

 Code:

 ̀``python

 import pandas as pd

 # Load the payments.csv file

 payments_df = pd.read_csv("data/context/payments.csv")

 # Display the first few rows

 print("Payments DataFrame head:")

 print(payments_df.head())

 # Display DataFrame info

 print("\nPayments DataFrame info:")

 payments_df.info()

 # Check unique values for ip_country to confirm the options are present

 print("\nUnique values in ip_country:")

 print(payments_df['ip_country '].unique())

 # Check unique values for has_fraudulent_dispute

 print("\nUnique values in has_fraudulent_dispute:")

 print(payments_df['has_fraudulent_dispute '].unique())

 7

 White Paper | Agentic AI for Multi-Step Data Analysis

 # Check data type of eur_amount

 print("\nData type of eur_amount:")

 print(payments_df['eur_amount '].dtype)

 ̀``

 Is Final Answer ?: False

 Executing Code:

 ̀``python

 import pandas as pd

 # Load the payments.csv file

 payments_df = pd.read_csv("data/context/payments.csv")

 # Display the first few rows

 print("Payments DataFrame head:")

 print(payments_df.head())

 # Display DataFrame info

 print("\nPayments DataFrame info:")

 payments_df.info()

 # Check unique values for ip_country to confirm the options are present

 print("\nUnique values in ip_country:")

 print(payments_df['ip_country '].unique())

 # Check unique values for has_fraudulent_dispute

 print("\nUnique values in has_fraudulent_dispute:")

 print(payments_df['has_fraudulent_dispute '].unique())

 # Check data type of eur_amount

 print("\nData type of eur_amount:")

 print(payments_df['eur_amount '].dtype)

 ̀``

 Code Output:

 ̀``

 Payments DataFrame head:

 psp_reference merchant card_scheme year hour_of_day minute_of_hour ...

 shopper_interaction card_bin has_fraudulent_dispute is_refused_by_adyen aci acquirer_country

 0 20034594130 Crossfit_Hanna NexPay 2023 16 21 ...

 Ecommerce 4802 False False F NL

 1 36926127356 Crossfit_Hanna NexPay 2023 23 58 ...

 Ecommerce 4920 False False F NL

 2 31114608278 Belles_cookbook_store GlobalCard 2023 4 30 ...

 Ecommerce 4571 False False F US

 3 68442235288 Crossfit_Hanna NexPay 2023 3 5 ...

 Ecommerce 4017 False False D NL

 4 81404384199 Crossfit_Hanna NexPay 2023 17 30 ...

 Ecommerce 4532 False False F NL

 [5 rows x 21 columns]

 Payments DataFrame info:

 <class 'pandas.core.frame.DataFrame '>

 8

 White Paper | Agentic AI for Multi-Step Data Analysis

 RangeIndex: 138236 entries, 0 to 138235

 Data columns (total 21 columns):

 # Column Non-Null Count Dtype

 --- ------ -------------- -----

 0 psp_reference 138236 non-null int64

 1 merchant 138236 non-null object

 2 card_scheme 138236 non-null object

 3 year 138236 non-null int64

 4 hour_of_day 138236 non-null int64

 5 minute_of_hour 138236 non-null int64

 6 day_of_year 138236 non-null int64

 7 is_credit 138236 non-null bool

 8 eur_amount 138236 non-null float64

 9 ip_country 138236 non-null object

 10 issuing_country 138236 non-null object

 11 device_type 138236 non-null object

 12 ip_address 110589 non-null object

 13 email_address 124412 non-null object

 14 card_number 138236 non-null object

 15 shopper_interaction 138236 non-null object

 16 card_bin 138236 non-null int64

 17 has_fraudulent_dispute 138236 non-null bool

 18 is_refused_by_adyen 138236 non-null bool

 19 aci 138236 non-null object

 20 acquirer_country 138236 non-null object

 dtypes: bool(3), float64(1), int64(6), object(11)

 memory usage: 19.4 + MB

 Unique values in ip_country:

 ['SE ' ' NL ' ' LU ' ' IT ' ' BE ' ' FR ' ' GR ' ' ES']

 Unique values in has_fraudulent_dispute:

 [False True]

 Data type of eur_amount:

 float64

 ̀``

 Continuing execute the task with code output ...

 --- Iteration 2 ---

 AI Output: Thought: The data types and values are as expected. Now I will proceed to filter the

 DataFrame for the specified `ip_country` values and then calculate the fraud rates.

 I will perform these calculations in a loop for each country and store the results.

 Code:

 ̀``python

 import pandas as pd

 # Load the payments.csv file if not already loaded (it is in this session)

 # payments_df = pd.read_csv("data/context/payments.csv")

 # List of countries to analyze

 countries_of_interest = ['NL ', 'BE ', 'ES ', 'FR ']

 options_map = { 'NL ': 'A' , 'BE ': 'B' , 'ES ': 'C' , 'FR ': 'D' }

 # Filter the DataFrame for these countries

 filtered_payments_df = payments_df[payments_df['ip_country '].isin(countries_of_interest)]

 9

 White Paper | Agentic AI for Multi-Step Data Analysis

 # Calculate fraud rates for each country

 fraud_rates = {}

 for country in countries_of_interest:

 country_df = filtered_payments_df[filtered_payments_df['ip_country '] == country]

 # Calculate total volume

 total_volume = country_df['eur_amount '].sum()

 # Calculate fraudulent volume

 fraudulent_volume = country_df[country_df['has_fraudulent_dispute '] == True]['eur_amount '].sum()

 # Calculate fraud rate (handle division by zero if total_volume is 0)

 if total_volume > 0 :

 fraud_rate = fraudulent_volume / total_volume

 else :

 fraud_rate = 0.0 # Or handle as NaN, but 0.0 is fine for comparison if no transactions

 fraud_rates[country] = fraud_rate

 print(f "Country: {country}")

 print(f " Total Volume: {total_volume:.2f}")

 print(f " Fraudulent Volume: {fraudulent_volume:.2f}")

 print(f " Fraud Rate: {fraud_rate:.4f}")

 # Identify the country with the highest fraud rate

 top_country_code = None

 max_fraud_rate = - 1.0

 for country, rate in fraud_rates.items():

 if rate > max_fraud_rate:

 max_fraud_rate = rate

 top_country_code = country

 print(f "\nFraud rates: {fraud_rates}")

 print(f "Top country for fraud: {top_country_code} with rate {max_fraud_rate:.4f}")

 # Determine the option letter

 top_country_option_letter = options_map[top_country_code]

 final_answer_string = f "{top_country_option_letter}. {top_country_code}"

 print(f "\nFinal answer string: {final_answer_string}")

 ̀``

 Is Final Answer ?: False

 Executing Code:

 ̀``python

 import pandas as pd

 # Load the payments.csv file if not already loaded (it is in this session)

 # payments_df = pd.read_csv("data/context/payments.csv")

 # List of countries to analyze

 countries_of_interest = ['NL ', 'BE ', 'ES ', 'FR ']

 options_map = { 'NL ': 'A' , 'BE ': 'B' , 'ES ': 'C' , 'FR ': 'D' }

 10

 White Paper | Agentic AI for Multi-Step Data Analysis

 # Filter the DataFrame for these countries

 filtered_payments_df = payments_df[payments_df['ip_country '].isin(countries_of_interest)]

 # Calculate fraud rates for each country

 fraud_rates = {}

 for country in countries_of_interest:

 country_df = filtered_payments_df[filtered_payments_df['ip_country '] == country]

 # Calculate total volume

 total_volume = country_df['eur_amount '].sum()

 # Calculate fraudulent volume

 fraudulent_volume = country_df[country_df['has_fraudulent_dispute '] == True]['eur_amount '].sum()

 # Calculate fraud rate (handle division by zero if total_volume is 0)

 if total_volume > 0 :

 fraud_rate = fraudulent_volume / total_volume

 else :

 fraud_rate = 0.0 # Or handle as NaN, but 0.0 is fine for comparison if no transactions

 fraud_rates[country] = fraud_rate

 print(f "Country: {country}")

 print(f " Total Volume: {total_volume:.2f}")

 print(f " Fraudulent Volume: {fraudulent_volume:.2f}")

 print(f " Fraud Rate: {fraud_rate:.4f}")

 # Identify the country with the highest fraud rate

 top_country_code = None

 max_fraud_rate = - 1.0

 for country, rate in fraud_rates.items():

 if rate > max_fraud_rate:

 max_fraud_rate = rate

 top_country_code = country

 print(f "\nFraud rates: {fraud_rates}")

 print(f "Top country for fraud: {top_country_code} with rate {max_fraud_rate:.4f}")

 # Determine the option letter

 top_country_option_letter = options_map[top_country_code]

 final_answer_string = f "{top_country_option_letter}. {top_country_code}"

 print(f "\nFinal answer string: {final_answer_string}")

 ̀``

 Code Output:

 ̀``

 Country: NL

 Total Volume: 2701907.13

 Fraudulent Volume: 329134.08

 Fraud Rate: 0.1218

 Country: BE

 Total Volume: 2150473.54

 Fraudulent Volume: 263833.85

 Fraud Rate: 0.1227

 Country: ES

 11

 White Paper | Agentic AI for Multi-Step Data Analysis

 Total Volume: 644883.17

 Fraudulent Volume: 43531.87

 Fraud Rate: 0.0675

 Country: FR

 Total Volume: 1292201.83

 Fraudulent Volume: 89135.03

 Fraud Rate: 0.0690

 Fraud rates: { 'NL ': np.float64(0.12181546743244279), 'BE ': np.float64(0.1226863967831011), 'ES ':

 np.float64(0.0675034983468401), 'FR ': np.float64(0.06897918570506899)}

 Top country for fraud: BE with rate 0.1227

 Final answer string: B. BE

 ̀``

 Continuing execute the task with code output ...

 --- Iteration 3 ---

 AI Output: B. BE

 Is Final Answer ?: True

 ====== FINAL ANSWER FOUND ======

 12

