

Year 9 Physics 7

Topics: Waves

Name	:	 	
Year		 	
Year		 	

Waves

Waves are a way to transfer energy from one place to another place without transporting matter.

There are two types of waves:

- Transverse waves
- Longitudinal waves

Transmission

Where waves travel through a medium rather than be absorbed or reflected.

• Transverse wave

Where the direction of vibration is **perpendicular** to that of the wave.

• Longitudinal waves

A wave that moves in the same direction as the direction in which the particles are vibrating.

Examples of Transverse waves

1. The diagram shows a longitudinal wave being produced in a stretched spring.

(i)	Use the bold words from the diagram to complete the following sentence. Put only one word in each space.
	A longitudinal wave is one in which the causing
	the wave is parallel to the of energy transfer.
	[2 marks]
(ii)	Name the type of energy that is transferred by longitudinal waves in the diagram above.
	[1 mark]

• Speed of a wave

Wave speed tells us how fast the wave is moving. Therefore, it also tells us how fast energy is being transferred through a substance.

It is expressed as $V = f \lambda$, where v is the wave speed, λ is the wavelength, and f is the frequency.

1.	A wave of frequency 8 Hz has a wave speed of 24 m/s. What is its wavelength?	
		[2 marks]
2.	Find the velocity of a wave in a ripple tank if its frequency is 12 Hz wavelength 3 cm.	and its
		[2 marks]
3.	The speed of a wave is 1.5 m/s, and its wavelength is 0.25m. Wha frequency?	t is its

Frequency - f

The number of waves that pass a point in a given amount of time. Frequency is measured in hertz (Hz).

• Wavelength - λ

The distance between two corresponding points on adjacent waves. Wavelength is measured in meters. The symbol for wavelength is the Greek letter lambda, λ .

Amplitude

The amplitude of a wave is the distance from the wave's centre line to the top of a crest or the bottom of a trough.

2. (a) The diagram shows four oscilloscope wave traces. The controls of the oscilloscope were the same for each wave trace.

Which one of the waves traces, A, B, C or D, has:

- (i) the largest amplitude, [1 mark]
- (ii) the lowest amplitude? [1 mark]

Our students have full access to all our bespoke resources on request. Gain access to our full science workbooks and so much more!

Book your free initial assessment!