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If b2 – 4ac < 0 there are 

no roots. The graph does 

not touch the x- axis. 

x = 2.66 and x = - 

0.66 (2.d.p.) 

If b2 – 4ac = 0 then 

there is a repeated 

root. The graph touches 

the x-axis in one spot. 

- (- 8) ± √(- 8)
2 
- 4 × 

4 × (- 7) 

2 × 4 

x 

= 

Be careful 

putting 

negatives into 

your 

calculator. 

Brackets 

e.g. Solve 4x2 – 8x 

– 7 = 0 

a = 4 b = - 8 c = - 

The b2 – 4ac is known as 

the discriminant. 

If b2 – 4ac > 0 then 

there are 2 unique 

roots. The graph 

crosses the x-axis in 2 
2a 

- 

4ac 

2 

then x = 
- 

b ± √b 

The quadratic formula 

For a general quadratic equation written 

ax2 + bx + c = 0 
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What must I be able to do? Key vocabulary 

 
Solve a quadratic equation by factorising 

 
Solve a quadratic equation by using the 

quadratic formula 

Root The values of x in a 

quadratic equation 

which give a value 

of y = 0. On a 

graph, this is where 

it 

crosses the x-axis. 

Solve a quadratic equation by completing the 

square 

 
Identify the significant points of a quadratic 

function 

 
Solve a pair of simultaneous equations where one 

is non linear using an algebraic method 

Turning 

point 

On a quadratic 

graph, the turning 

point is the 

maximum or minimum 

point 

on the curve. 

Discrimina

nt 

The part of the 

formula under the 

square root (b2 – 

4ac). It determines 

how many solutions 

a quadratic 

equation will have. 

Solve quadratic inequalities   

Solving by factorising 

Step 1: Rearrange the equation so that one 

side is equal to 0 Step 2: Factorise the 

equation 

Step 3: Solve each factor equal to 0. 

e.g. Solve x2 – 6x + 10 = 2 e.g. Solve 2x2 - 5x – 3 = 0 

x2 – 6x + 8 = 0 (2x + 1)(x – 3) = 0 

(x – 4)(x – 2) = 0 Either 2x + 1 = 0 or x – 3 = 0 

Either x – 4 = 0  or x – 2 = 0 2x = - 1 

x = 4 and x = 2 x = 

- 
 1 

2 

 

and x = 3 



Solving quadratic inequalities 

Solving a quadratic inequality is very similar to 

solving a quadratic equation. 

Step 1: Solve the equation to find the 

critical values. Step 2: Sketch the 

curve 

e.g. Solve x2 + 10x 

– 24 < 0 

Start by 

x2 + 2x – 24 

= 0 (x + 6)(x 

– 4) = 0 

The curve is a positive quadratic so is a ‘u’ shaped 

parabola. 

The roots of the equation are at x = -6 and x = 4, so 

this is where it crosses the x axis. 

The curve is < 0 (below the x-axis) when it is between 

x = -6 and x = 4. Therefore the solution to x2 + 10x – 

24 < 0 is: 

Note: if the question instead was solve x2 + 10x – 24 > 0 

we now need the sections above the x-axis which are not 

connected and so the solution would have been 

x < -6 and x > 4 

 
 

Comple ting the square 

Writing a quadratic equation in the form (x + p)2 + r = 0 is known as 

completing the square. 

e.g. Solve x2 + 6x – 8 = 0 

(Half the b value, so 6 

÷ 2 = 3) (x + 3)2 – 9 – 8 = 0 

(subtract this value squared as (x + 3)2 multiplied out is 

(x + 3)2 – 17 = 

0 

(x + 3)2 = 

17 x + 3 

= ±√17 

(this is the completed the 

square form) 

When written in the form (x + p)2 + r = 0, you can determine key 

features of the graph. 

The equation of the line of symmetry of the curve is x = - p 

The co-ordinate of the turning point of the curve 



Simultaneous equations where one is non-linear 
 

 
As a non-linear graph will curve, the solution to simultaneous 

equations with a non-linear equation can have more than 1 

answer. 

If we are solving a quadratic and a linear graph there are either: 

0 solutions – the graphs do not intersect 

1 solution – the linear graph is a tangent to the curve and 
touches only once 

2 solutions – the graph crosses twice (as shown on the left) 

Solving the equations algebraically allows us to find the exact 

values of these intersections. 

 

 

 

 

e.g. Solve y = x2 + 3x 

– 8 y = 2x 

+ 3 

 

e.g. Solve x2 + y2 = 

10 y = 

2x – 5 

This is the equation of a 

circle 

 

As both equations are y =, we can 

equate them 

x2 + 3x – 8 = 2x + 3 

Rearrange so that one side = 0 

x2 + x – 11 = 0 

This does not factorise so using 

the formula 

 

- 1 ± √1
2 
- 4 × 1 × (- 

11) 

This time we need to substitute y 

= 2x – 5 into the top equation. 

x2 + (2x – 5)2 = 10 

Multiply out the bracket 

x2 + 4x2 – 20x + 25 = 10 

Simplify and set one side = 0 

5x2 – 20x + 15 = 0 

x = 
2 × 1 

x = 2.8541.. and x = 

-3.854… 

Substitute these back into 

y = 2x + 3 y = 

8.7082… and y = -

4.708… 

So the solutions are: 

x = 2.86 and y = 

8.71 x = -3.85 

and y = -4.71 

Factorise and solve 

5(x2 – 4x + 3) = 0 

5(x – 3)(x – 1) = 0 

x = 3 and 

x = 1 Substitute back 

into y = 2x – 5 

When x = 3, y = 

1 when x = 1, y 

= -3 

 

Solutions need to be given in pairs with the correct x and y values matched 

up. 
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Topic/Skill Definition/Tips Example 

1. Quadratic A quadratic expression is of the form 

 

𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 

where 𝑎, 𝑏 and 𝑐 are numbers, 𝒂 ≠ 𝟎 

Examples of quadratic expressions: 

𝑥2 

8𝑥2 − 3𝑥 + 7 

Examples of non-quadratic expressions: 

2𝑥3 − 5𝑥2 
9𝑥 − 1 

2. Factorising 

Quadratics 

When a quadratic expression is in the form 

𝑥2 + 𝑏𝑥 + 𝑐 find the two numbers that add 

to give b and multiply to give c. 

𝑥2 + 7𝑥 + 10 = (𝑥 + 5)(𝑥 + 2) 
(because 5 and 2 add to give 7 and 

multiply to give 10) 

 

𝑥2 + 2𝑥 − 8 = (𝑥 + 4)(𝑥 − 2) 
(because +4 and -2 add to give +2 and 

multiply to give -8) 

3. Difference 

of Two 

Squares 

An expression of the form 𝒂𝟐 − 𝒃𝟐 can be 

factorised to give (𝒂 + 𝒃)(𝒂 − 𝒃) 
𝑥2 − 25 = (𝑥 + 5)(𝑥 − 5) 

16𝑥2 − 81 = (4𝑥 + 9)(4𝑥 − 9) 

4. Solving 

Quadratics 

(𝑎𝑥2 = 𝑏) 

Isolate the 𝑥2 term and square root both 

sides. 

Remember there will be a positive and a 

negative solution. 

2𝑥2 = 98 
𝑥2 = 49 
𝑥 = ±7 

5. Solving 

Quadratics 

(𝑎𝑥2 + 𝑏𝑥 = 0) 

Factorise and then solve = 0. 𝑥2 − 3𝑥 = 0 
𝑥(𝑥 − 3) = 0 

𝑥 = 0 𝑜𝑟 𝑥 = 3 

6. Solving 

Quadratics by 

Factorising (𝑎 
= 1) 

Factorise the quadratic in the usual way. 

Solve = 0 

Make sure the equation = 0 before 

factorising. 

Solve 𝑥2 + 3𝑥 − 10 = 0 

Factorise: (𝑥 + 5)(𝑥 − 2) = 0 
𝑥 = −5 𝑜𝑟 𝑥 = 2 

7. Factorising 

Quadratics 

when 𝑎 ≠ 1 

When a quadratic is in the form 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 
1. Multiply a by c = ac 
2. Find two numbers that add to give b and 

multiply to give ac. 

3. Re-write the quadratic, replacing 𝑏𝑥 with 

the two numbers you found. 

4. Factorise in pairs – you should get the 

same bracket twice 

5. Write your two brackets – one will be the 

repeated bracket, the other will be made of 

the factors outside each of the two brackets. 

Factorise 6𝑥2 + 5𝑥 − 4 

1. 6 × −4 = −24 
2. Two numbers that add to give +5 and 

multiply to give -24 are +8 and -3 

3. 6𝑥2 + 8𝑥 − 3𝑥 − 4 
4. Factorise in pairs: 

2𝑥(3𝑥 + 4) − 1(3𝑥 + 4) 
5. Answer = (3𝑥 + 4)(2𝑥 − 1) 

8. Solving 

Quadratics by 

Factorising (𝑎 
≠ 1) 

Factorise the quadratic in the usual way. 

Solve = 0 

Make sure the equation = 0 before 

factorising. 

Solve 2𝑥2 + 7𝑥 − 4 = 0 
 

Factorise: (2𝑥 − 1)(𝑥 + 4) = 0 
1 

𝑥 = 𝑜𝑟 𝑥 = −4 
2 



SOLVING QUADRATIC SIMULTANEOUS EQUATIONS 
 
 
 
 

 
One of the equations contains a quadratic term 

Solve each pair of equations simultaneously: 
 
 

 

1) 𝑦 = 𝑥 + 3 

2 

𝑦 = 𝑥  + 5𝑥 − 2 

2) 𝑦 = 𝑥 + 3 

2 

𝑦 = 𝑥  − 3𝑥 − 2 

3) 𝑦 = 𝑥 + 18 

2 

𝑦 = 𝑥  − 2𝑥 − 10 

 
 
 
 
 
 
 
 
 
 
 
 

 

2 

𝑦 = 𝑥  − 3𝑥 − 2 

𝑦 = 2𝑥 − 8 

2 

𝑦 = 𝑥  − 3 

𝑦 = 𝑥 − 3 

6) 𝑦 = 𝑥 + 3 
2 

𝑦 = 𝑥  − 3 
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PROBLEM SOLVING 
 
 
 

 

1) Line A and Line B intersect at coordinates C and D. 
Find C and D if the equations of the lines are as follows: 

 

𝐿𝑖𝑛𝑒 𝐴: 𝑥 + 𝑦 + 1 = 4 
2 

𝐿𝑖𝑛𝑒 𝐵: 𝑥  + 3𝑦 − 27 = 0 
 
 
 
 
 
 
 
 
 
 
 

 
2) Solve the simultaneous equations: 

𝑦 = 5𝑥 − 1 
2 

𝑦 = (𝑥 + 1) 
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