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Computer methods in medical devices are frequently imperfect and are known to produce errors in clinical
or diagnostic tasks. However, when deep learning and data-based approaches yield output that exhibit errors,
the devices are frequently said to hallucinate. Drawing from theoretical developments and empirical studies
in multiple medical device areas, we introduce a practical and universal definition that denotes hallucinations
as a type of error that is plausible and can be either impactful or benign to the task at hand. The definition
aims at facilitating the evaluation of medical devices that suffer from hallucinations across product areas.

Using examples from imaging and non-imaging applications, we explore how the proposed definition relates
to evaluation methodologies and discuss existing approaches for minimizing the prevalence of hallucinations.

1. Introduction

The phenomenon of hallucinations within Al systems can adversely
affect the efficacy of algorithmic applications by diminishing user trust
and introducing safety hazards in critical contexts. In other contexts,
hallucinations may offer advantages, such as in the creation of inno-
vative content or the production of synthetic data for model training.
Hallucinations pose substantial challenges particularly in high-stakes
applications where accuracy is imperative. Within Al applications in
medical devices, hallucinations may influence clinical decision-making
and potentially jeopardize patient outcomes through diagnostic or ther-
apeutic errors. Despite the concept of hallucination having been intro-
duced to the scholarly community about a decade ago, a definitive
and universally recognized definition pertaining to hallucinations in
medical devices is currently absent. This article delineates an approach
designed to provide a clear context for referring to hallucinations
in outputs of AI medical applications, thereby aiding in the assess-
ment and prevention of such phenomena within the methodologies for
medical device evaluation.

Recently, Xu et al. offered a more pragmatic approach to defining
hallucinations with a theoretical framework in which hallucinations
are delineated as the discrepancies between generated outputs and a
ground truth function [1]. By leveraging learning theory, they elucidate
that hallucination is inherently unavoidable and that the complete
eradication of hallucinations from real-world large language models
(LLMs) is not feasible. Expanding upon Xu’s framework, we propose
to subset errors as either hallucinations or non-hallucinations. Halluci-
nations are identified as plausible errors with two distinct subtypes:

(1) impactful hallucinations and (2) benign hallucinations. Plausible
errors refer to device outputs which are erroneous but may be visually
or linguistically perceived as truth such that readers may not recog-
nize them as errors. Impactful hallucinations negatively impact device
performance, whereas benign hallucinations have no significant effect.
As an example, consider a reconstructed image for a patient with a
cough where the model adds a structure that can be perceived as a
connection between two organs, such as a tracheoesophageal fistula.
Such an error would be an impactful hallucination as it may lead
to a change in patient diagnosis and management. However, if the
model instead added a small gas bubble within the small intestine,
the hallucination would be benign as it is unlikely to be perceived
by a clinician or change patient management. Additionally, there exist
non-hallucination errors, which are characterized by their obviousness
and traceability to device artifacts, such as Gibbs ringing or aliasing,
or pre-specified failure modes. To determine whether an error is a
hallucination or a non-hallucination error, we consider the nature of
both the assessment task and device user. This definition does not
specify the type of user, and the determination of whether an error is
plausible or subtle is contingent upon the nature and level of expertise
of the user which, according to the intent of the evaluation framework,
could be a domain expert, a naive user, or in some cases, an algorithmic
interpreter. This approach to defining hallucinations is consistent with
other work by [2] where hallucinations are defined as “false outputs
or answers that are not substantiated by evidence”, which is equivalent
to Xu’s definition linked to ground truth functions in certain cases. A
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Fig. 1. Mock diagram of errors from a conventional and Al-enabled device, plotted against axes of impact and plausibility. Unmitigated impactful errors are
indicated by filled circles. Plausibility introduces another risk vector, as such errors may lie outside the domain of conventional risk mitigation strategies and
clinician intuition. Thus, an AI model may lead to worse patient outcomes even if it produces fewer impactful errors, as the plausibility of such errors may
circumvent the traditional guardrails of medical devices. Errors above a certain plausibility threshold r are labeled as hallucinations per our definition to identify

such risks.

diagram of the considered axes for our definition is included in Fig.
1. The proposed definition requires three components: a method for
identifying an error, a metric for assessing the impact of an error,
and a measure for the plausibility of an error. Metrics for error are
specific to the considered task and can take various forms, depending
on the device and use case. A thorough discussion is outside the
scope of this work, but substantial explorations of the topic have been
performed [3].

The primary departure from our definition in other proposals is
the incorporation of plausibility. Plausibility is a continuum and the
threshold at which an error becomes sufficiently plausible to be labeled
a hallucination is likely observer and task-specific. The concept of
plausibility has been previously established in the medical domain:
a 2013 Pew survey revealed that doctors disagreed with patients’
self-diagnoses informed by online resources approximately a third of
the time [4]. Such resources provided answers that were plausible to
the patient, but were readily discernible as incorrect by a medical
professional. The danger with AI methods is that errors may be so
plausible that they may fool even experts. There are several recent
occurrences of such errors in the legal profession [5-7]; it is likely that
health professionals will also be susceptible. For instance, it has been
demonstrated in practice that Al-reconstructed medical images have
higher subjective quality scores but inferior detection performance for
metastatic liver lesions [8]. These hallucinations herald a new risk
vector that can circumvent professional intuition and bypass current
risk mitigation strategies. It may be possible to conduct studies to em-
pirically determine the plausibility threshold, represented by r in Fig.
1, for relevant use cases. It would likely require a multi-reader, multi-
case study with a group of comparably proficient readers assessing
different hallucinations on the same task. Though, the specifics of these
studies are outside the scope of this work, the role of plausibility and
the different proficiencies of observers underlay the identification of
hallucinations.

An additional departure from previous definitions is our introduc-
tion of the concepts of benign and impactful hallucinations. While
other work focuses on the taxonomy of a hallucination, what is more
important in the medical field is the impact on patient care. Human
judgment has been demonstrated to be susceptible to Al errors [9-11]
and clinicians can inherit Al model biases [12]. A complicating factor
is that what may originally be perceived as a benign hallucination may
become impactful if the information is later used to affect patient care
decisions. If the output may be referred to later, then there is always a
risk of downstream error propagation.

Due to the high-risk nature of medical applications, tolerance for
hallucinations is frequently low. Minor modifications to factual details

can impact patient management, so systems that produce hallucinations
may degrade clinician trust and decrease utility even when the hal-
lucination is benign [13]. Every poor-quality system deployed further
degrades trust in Al as a whole and leads to an increasing skepticism
towards future applications.

While there are many types of Al-enabled medical devices, in this
work we will focus on three areas: imaging devices, generative-based
synthetic medical images, and large language models. These three
areas have seen explosive growth and extensive implementation of the
types of Al models that lead to the proliferation of hallucinations. We
will begin by describing the types of hallucinations in these device
types in Section 2 and then discuss how these hallucinations may be
quantified and mitigated in Sections 3 and 4, respectively. Finally,
we will conclude with suggestions for the usage of our definition in
Section 5 and a summary of the impact of hallucinations on the future
of Al-enabled medical device development in Section 6.

2. Hallucinations in medical devices
2.1. Imaging devices

Inverse problems in imaging have been an active area of investi-
gation for Al methods [14-20]. A critical task in many applications
in medical, scientific, and industrial applications is the recovery of an
image from a set of measurements, which are frequently noisy and
incomplete. Improving the quantity or quality of these measurements
often has an associated cost. Thus, it can be desirable to explore
computational techniques to improve the utility of the image. One such
method is regularization, which encodes desired attributes for an image
into a mathematical formula that is applied during the reconstruction
process to recover a more applicable image.

Recent research works have been predominantly focused on strate-
gies that learn a prior distribution from a dataset via neural networks.
Instead of a handcrafted term employed by conventional regularization
strategies [17,21-26], these methods are data-driven. Though these
methods have achieved state-of-the-art results in several areas [16,27,
28], there are rising concerns about generalization performance and
robustness [29,30]. This is of particular concern in medical imaging,
where even a large dataset may lack rare abnormalities.

These stability issues sometimes result in the generation of false
structures in reconstructed images [31-33], which have been referred
to as hallucinations. Studies have warned of the potential for misdiag-
noses from these hallucinated structures [34,35]. These concerns have
recently been validated with clinical samples [36].
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The robustness of neural networks has been investigated in many
fields [37-41]. Some of these approaches consider worst-case small
permutations to the input of the network [30,42-44], while others
consider alternative adversarial methods [45-47]. A recently developed
tool for analyzing neural network reconstructions for these phenomena
is hallucination maps, which allow the isolation of artifacts associated
with imperfect priors [48]. Various approaches have been proposed
to incorporate information about an imaging system into neural net-
work reconstruction methods and demonstrated resilience to these
adversarial approaches [24,29,49]. Adding noise to the dataset has
also demonstrated to be effective at increasing stability, albeit at the
expense of performance [29].

Regularization techniques can improve human observer perfor-
mance, but they cannot add any additional information to a recon-
struction [50]. This is a fundamental limitation of imaging systems —
information is always lost during the imaging process, and no post-
processing can recover diagnostic details if a device does not measure
the relevant details [48,50,51]. Effectively, the relative increase in
image quality comes with the trade-off of instability and the resulting
hallucinations [29]. This is an inherent flaw of data-driven approaches.

Exploring hallucinations in imaging devices presents a unique op-
portunity due to the accessibility of ground truth that can lead to
the certain identification of errors. Nevertheless, what makes an error
“plausible” remains frustratingly elusive. Plausibility can vary depend-
ing on the downstream task and whether the image is employed by
a human or an algorithm. There can also be significant differences in
plausibility between humans, based on level of training or simply sheer
variability. Nonetheless, plausibility is one of the most complex aspects
of hallucinations in a clinical environment. Neural network reconstruc-
tions can lead to an overestimation of the diagnostic utility of an image
disconnected from the quality of the underlying measurements, which
can subvert the intuition of a reader [34,35].

The predictable behavior of conventional regularizers enables clini-
cians to recognize and adapt to the various errors that arise from their
use. For instance, a radiologist can turn off an image enhancement-
based smoothing option in a radiological image acquisition system if
the radiologist deems that a lesion in the acquired radiological image
has been over-smoothed.

Task-based evaluation through reader studies, both human and
computational, is one method for evaluating performance on down-
stream tasks [51-53]. However, images are sometimes employed for
multiple tasks and improvements in one area may come at the expense
of another. Some new datasets have begun to bridge this gap by
providing diagnostic information [54], but access to larger datasets and
deployment of multi-task evaluations will likely be necessary to assess
the utility of neural network reconstructions.

The driving force in the technological advancement of medical
imaging has been less radiation' and saving scan time in the last two
decades. Al-based methods are being proposed to supplant conven-
tional physics-based methods (like the Filtered BackProjection [56] and
inverse Fourier transform [57]) such that one can faithfully recover in-
ternal organs corresponding to the person using measurements acquired
at very low-dose [58,59] or under-sampled rate [60]. Recently, domain-
transfer-based applications have also been proposed such that images
acquired using a given modality (or a sub-modality) can be seamlessly
transformed into a different modality (or sub-modality) [61]. For in-
stance, cycleGAN has been proposed to translate an MRI image to
its CT counterpart [62]. However, due to the “curse of data process-
ing inequality” [63], an Al-based method might compensate for the

1 As Low as Reasonably Achievable (ALARA) has been the guiding principle
of radiation safety when using imaging modalities like CT. ALARA advocates
for dose optimization while maintaining the image quality required to perform
the diagnostic task at hand accurately. As such, increasing the dose level —
for large patients — would be consistent with ALARA’s principle [55].
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information lost due to hardware-based less radiation, undersampled-
acquisition, or lack of the imaging domain-specific properties with the
data priors that are not specific to the person being scanned [64,65].
Simply put, as measurement quality deteriorates, Al models become
more unstable.? This subsequently leads to imaging errors [66] that
cannot be distinguished as conventional artifacts, either in terms of
their obviousness from our past use of imaging devices or their trace-
ability to imaging system-based shortcomings. We refer to them as
hallucinations.

An essential hallmark of hallucinations in medical imaging is that
— unlike conventional artifacts such as distortions, line artifacts, beam
hardening, Gibbs ringing, aliasing, etc. [67,68] — it may not be possi-
ble to identify all the hallucinated features without the corresponding
reference image. Only in the presence of a reference image with a
thorough review of Al-based super-resolution do all the factually in-
correct features resolved by the AI become evident. An example of
such an instance is illustrated in Fig. 2 by the addition of plaques and
change in the anatomy of the bowels in the Al-enhanced image. In
contrast, the line artifacts are readily discernible to human eyes and
can be traced to the limited angular tilt of the imaging system when
acquiring the data. Per our definition, the CT image in Fig. 2(a) would
constitute a non-hallucinatory or conventional artifact while Fig. 2(b)
would constitute a hallucination. Further, both images in the would
likely qualify as impactful errors as the utility of the images in both
cases is compromised. The particular risk the hallucination poses is
that the clinician is less likely to perceive the error due to the apparent
quality — the Al-enhanced image appears to be of diagnostic quality
and is thus plausible.

From the perspective of information theory, a typical 512 x 512 im-
age encodes much more information than a single page with 500 words.
A typical medical imaging-based denoising or reconstruction problem
incorporates the raw data acquired from a patient (or is a conditional
problem; more information in Section 2.2.2). Hence, a large number of
hallucinations in the denoising and reconstruction domain may be more
subtle and impactful than nonsensical or benign compared to what we
may observe in language-based or unconditional domains. However,
the nature of benign versus impactful hallucinations also depends on
the imaging problem. For instance, consider a case whereby only half
of a patient’s internal body part is scanned and Al is used to predict the
remaining half. This might yield highly perturbed/nonsensical outputs
that experts may easily be able to categorize as errors. Overall, Al
in medical imaging may yield a range of errors that may be subtle
to obvious and may have benign to impactful harm. As such, it is
critically important to use benchmarked imaging datasets (with patient-
based diseased labels from patient follow-up data) [69-71] and perform
various downstream evaluations [72] (such as pathology-based classi-
fication, quantification, detection, discrimination, etc.) to understand
the nature of Al hallucinations for a given imaging application.

2.2. Synthetic data

Generative Al for data augmentation holds great promise for
learning-based methods in the medical domain as it may address data
scarcity issues while maintaining patient privacy. It has been employed
for generating synthetic data in various imaging modalities [74,75]
such as ultrasound imaging [76], mammography [77] and histopathol-
ogy [78]. Typically, in data augmentation applications, the generation
task is one of two kinds: (1) “unconditional generation” or generation
with no prompts (only random noise as an input), e.g., given a dataset
of chest radiographs, generate a similar synthetic dataset, and (2)
conditional generation where the prompt may be a class-label, feature
value, or another image, e.g., generate a mammogram from a given

2 A model is unstable when a small perturbation in input to the model leads
to a large fluctuation in the model output.
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Fig. 2. An illustration of artifacts that are readily discernible in (a) and non-discernible in (b) to human eyes (adapted from [73]). The CT image in (c) is
obtained by applying a physics-based analytical algorithm (i.e., filtered backprojection) on its full view projection data (i.e., 0° to 360°). The image in (b) is
obtained by applying an Al-based super-resolution model on the four times downsampled version of (c). The Al-enhanced output adds two loops of bowels and
plaque-like features, indicated by the red arrows. These hallucinations only become evident after comparison against its reference image in (c). The image in (a)
is a reconstruction of its measurements with an imposed missing wedge acquisition (i.e., using projections from 30° to 150°).

breast type (class-label), or generate a T2-weighted magnetic resonance
(MR) image given the corresponding T1-weighted MR image of the
same patient. Although conditional generation may ensure consistency
with the input condition (for a well-trained generative model), it does
not preclude hallucinations in features that are uncorrelated with the
conditioning input.

2.2.1. Unconditional generation

A distinctive aspect of unprompted/unconditional generation of
images is that each generated image is entirely synthetic and does not
correspond to any individual in the real world. These synthetic images
can still have defined ground truth functions and hallucinations, but
the “hallucination is no longer related to correctness or factualness in
the real world” [1]. Specifically, ground truth functions describe the
anatomical knowledge represented in the entire training data and can
be considered as a mapping between hidden variables and images in
the training set. In unconditional generation, an Al model generates
new content by seeking to learn the underlying patterns of the training
data without receiving explicit guidance, human labels, instructions,
or a priori constraints. Inconsistencies or errors with respect to the
ground truth function might still exist if the generative model function
fails to learn the ground truth function. These inconsistencies may
manifest as network artifacts and/or hallucinations. Recall that the
difference between the two is highly subjective and based on perceptual
plausibility and that lower plausibility does not necessarily imply lower
downstream clinical impact.

In literature, hallucinations have been reported in various attributes
such as per-image feature prevalence, feature-specific intensity distribu-
tions, and relative feature locations, both in domain-agnostic [79,80]
and domain-specific studies [81]. Furthermore, some works report net-
work artifacts and hallucinations under the same terminology and both
are commonly known to occur in generative tasks of images [82,83] in
practice. Some examples of hallucinations reported in literature accord-
ing to the proposed definition are multiple optical disks instead of one
in eye fundus images (as expected from the training data) and unex-
pected locations of medical devices in chest radiographs [82]. Examples
of network artifacts include checkerboard artifacts in histopathology
images [82] and nipple artifacts in mammography images [77,84].

2.2.2. Conditional generation

In prompted or conditional image generation, the generated im-
age may be (1) entirely synthetic (e.g., when the prompt is a class-
label) or (2) partially synthetic (e.g., when a patient image in one
imaging modality is to be transformed to another), i.e., a domain
transfer task. In the first case, the ground truth function and halluci-
nations are defined similarly to unconditional generation, only with
the assumption that the generative model function will be consis-
tent, i.e., not hallucinate with respect to the conditioning input and
correlated attributes.

In the second case (domain transfer task), a unique ground truth
function may be computable from the training data when assumptions

of data sufficiency and relevance are met. Here, the ground truth func-
tion encompasses logical consistencies and relative anatomical map-
pings between domains, which can intuitively be understood as a bi-
jective mapping between the domains. If the generative model function
fails to learn this ground truth function, the resulting inconsistencies or
errors between the two will lead to hallucinations.

However, the ground truth function may not be computable if the
training dataset does not contain relevant and sufficient information
for the generation task. In that case, hallucinations will occur (as-
sumptions for definition 4 in [1]). One scenario when the ground
truth function is not uniquely computable is when the physics of the
input and output domains differs vastly for a given anatomy. For
example, in a generation task where computed tomography (CT) is to
be generated from positron emission tomography (PET) image inputs,
hallucinations must be expected in the generated images as a unique
ground truth mapping cannot be computed from the training data for
the two imaging domains. Thus, the use of generative models in such
problems is not advisable. Similarly, when the dataset is not relevant
for a generation task, e.g., domain transfer of a diseased patient when
the disease case was absent in the training data (detailed demonstration
in [85]), a ground truth function does not exist and hallucinations must
be expected.

Examples of hallucination in conditional generation tasks in liter-
ature include the addition of tumors in T1 MRI that did not exist in
FLAIR MRI [85] and the unexpected addition of realistic histopatho-
logical features in virtual staining [86].

In both unconditional and conditional generation, errors in the
generative model function may arise from various factors such as: (i)
ineffective latent encoding [87], (ii) distribution-matching loss func-
tions [85], and (iii) insufficient receptive field in the network ar-
chitecture [86]. As generative models continue to evolve, so do the
manifestations of their hallucinations and network artifacts.

However, it is possible to make a case for correctly using this
methodology. One such example is using synthetic CT (sCT) from
MRI-only scans employing a conditional cycleGAN for radiotherapy
re-planning. Such usage of conditional generation may be permissi-
ble for the radiotherapy treatment of cancerous conditions that are
a priori known to yield minimum dose variation compared to the
original CT [88] from previously established methods like Atlas- or
segmentation-based sCT [89]. The radiotherapy team can also perform
various checks and balances by comparing the current sCT with the
previous CT scans from initial rounds of treatment planning to mitigate
hallucinations. Prior knowledge and pre-established clinical utility are
important considerations when employing conditional generation, as
opposed to directly employing the technology for arbitrary domain
transfers without any objective assessment to validate clinical efficacy.

2.3. Language and multimodal devices

Large language models have been applied to many natural language
tasks, from text summarization [90] to question answering systems [91]
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and machine translation [92]. An interesting property of these tasks
is the relative sensitivity to errors based on the application — while
errors in summarization quickly become impactful due to the concern
of fidelity [93], question answering systems may permit more errors to
achieve the secondary objective of user engagement [94]. The medical
versions of these tasks are likewise varied, which leads to a correspond-
ing spread in health risks; a model for generating radiology impressions
has a notably different risk profile than one performing physician note
summarization.

Many of the errors that LLMs make can appear to be plausible,
in part due to the ability of LLMs to correctly mimic grammar. For
instance, a patient record summarization summary with an erroneously
inserted diagnosis is likely to be plausible to all but a doctor who is
intimately familiar with that patient’s medical history. It is important
to remember, however, that LLMs are trained to produce the most
likely outputs, not the most accurate ones [95]. Indeed, it can be
argued that the outputs of such models are persuasive because they
have been specifically trained to produce plausible answers to convince
humans [96]. While the likelihood of answers can be correlated to
truth [95,97,98], the two are not the same. This issue becomes espe-
cially prevalent in long-tailed domains where low probability events are
critical for understanding the complex systems involved [99], such as
law and medicine. One could consider truthful, accurate, and modern
data itself as inherently long-tailed [100].

A complication with LLMs is that for any given task, there is
usually more than one output that satisfies the query [101,102]. Human
evaluation [103-108] continues to remain as the preferred means of
developing a reference standard for LLMs because humans can assess
the various application of LLMs, including objective and subjective
evaluation metrics. Unfortunately, generating a reference standard us-
ing humans is resource intensive, costing both time and money. Many
public datasets have been created to evaluate LLMs for pre-specified
tasks [109-111], and newer evaluation approaches of an LLM-as-a-
Judge framework leverage LLMs to replace human assessments [112].
However, such methods are limited in reasoning capability and it is
unclear if they will generalize to long-tailed domains such as medicine.

There are various approaches for increasing the utility of LLMs
for particular applications [113]. In reinforcement learning techniques,
humans analyze model responses and indicate preferential answers [96,
114]. Models may also be fine-tuned trained on specialized datasets to
impart knowledge on a particular area [105] and to implement safety
guardrails [114]. However, one challenge with fine-tuning approaches
for models is that model performance may improve in one area but
degrade in another potentially relevant areas; this is referred to as
an alignment tax [115]. In deployed models that continually learn,
this performance trade-off may occur unintentionally during retraining
leading to unintended performance drift. Additionally, fine tuning on
additional training samples may remove fine-tuned weights [116], even
when such a result is unintentional [117].

Assembling a robust dataset for medical tasks for such fine-tuning
is also frequently not trivial. Ensuring a clean dataset is also essential
for model performance [118,119]. For foundation models, this can
come both in upsampling high-quality data during pretraining [114]
or fine-tuning to a specific task [120-122]. The ground truth can be
unknown due to patient drop-out, lack of follow-up data on disease-
based outcomes at the patient level, or disagreements among doctors.
Additionally, even the data employed to train the models may be
suspect. Models may rely on documentation that is either mislead-
ing, contains wrongly imputed/extrapolated/interpolated labels when
compensating for missing data, or is out of date.

In addition to LLMs, visual language models (VLMs) are now being
explored for applications in the medical domain [123]. While these
models can generate much more detailed responses to visual inputs
than previous visual question answering systems, this comes with a
corresponding increase in hallucination risks. At the basic level, such
models have demonstrated vulnerability to object hallucination, i.e., a
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description from VLM that is inconsistent with the target image [124].
Furthermore, commonly-used representations for the language-visual
alignment training have demonstrated shortcomings in representations
for object counts, viewpoints, and orientations [125]. Finally, errors
in the alignment between the vision and language can result in an
observable gap between the visual backbone of the model and the
visual recognition capabilities of the LLM [126].

3. Quantifying hallucinations

The determination of an artifact as a hallucination is difficult to
formally define, as it relies on the artifact being “plausible”. Thus,
what may appear as an obvious error to one observer (human or
mathematical) may instead fool another. The severity of hallucinations
varies a great deal depending on context. Minor artifacts in irrelevant
portions of an output seldom have an effect on plans of care, but the
same distortion in another location can lead to a misdiagnosis.

Thus, a hallucination can be impactful for one task and benign for
another, and may be plausible for one observer (such as a patient) and
obvious to another (such as a doctor). As a result, there is a great deal
of subjectivity inherent in identifying hallucinations relevant to clinical
care, and hallucinations are highly application and user dependent.
Nevertheless, some algorithmic approaches have been proposed to
quantify and mitigate hallucinations.

One connection that has been made across multiple fields is that
hallucinations are connected to stability. While the implementation
may differ, the core concept is the same — Al devices that produce sub-
stantially different outputs from a small perturbation in the input are
more likely to produce hallucinations. This connection was first made
in imaging, where a trade-off was observed between global metrics
(e.g., mean squared error) and stability [29]. This observation has more
recently been repeated in image generation [127] and LLMs [128,129].
Many developed methods exploit this relationship to measure and
adjust the trade-offs between hallucinations and performance.

When the ground truth is known, as in many inverse problem simu-
lations, a straightforward method for measuring stability is worst-case
small permutations [30]. The input is modified by a small amount and
iteratively optimized to maximize the change in the output. However,
while this method is sufficient for demonstrating that neural network
reconstruction techniques are unstable [29], it does not provide the
necessary measure of plausibility to evaluate if the alteration is a
hallucination. Hence, as previously mentioned in Section 2.1, rather
than relying on anecdotal accounts of the efficacy of a new Al recon-
struction model, a preferred methodology is to objectively quantify the
error of the model for imaging tasks such as quantification, detection,
discrimination, or prediction to assess the impact of hallucinations.

Likewise, scanning Fourier Ring Correlation (sFRC) has been pro-
posed for detecting hallucinated regions-of-interest (ROIs) when ref-
erence images are available for image reconstruction [73,130]. sFRC
scans and performs Fourier Ring Correlation (FRC)-based analysis over
small patches between images from Al-based methods and their ref-
erence counterparts to objectively and automatically detect hallucina-
tions. The method calls for tuning the hallucination threshold, which
differentiates between hallucinated ROI and faithfully reconstructed
ROI, using prior clinical knowledge of hallucinated anatomical fea-
tures by the given Al-based method, ROIs conclusively identified as
hallucinations by experts, and imaging theory-based limitations for a
given image restoration problem. Subsequently, for the Al-based CT
super-resolution problem, the sFRC paper reported an array of halluci-
nations including underfitting of HU attenuation (e.g., transferring fatty
attenuation to air), distortion of small organelles, addition of minute
indentation-like, vessel-like, plaque-like structures (depicted in Fig.
2(b)), and unwarranted folding. Similarly, for Al-enabled brain MR
reconstruction, sFRC is able to detect hallucinations related to contrast
migration, the omission of clinically important dark targets, thickening
of gray matter, and the loss of subtle sulcus features. It should be noted
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that sFRC does not provide uncertainty estimates or direct diagnostic
inferences related to true positives, false positives, true negatives,
and false negatives on the ROIs sFRC detects as hallucinations. The
difficulty in developing a Receiver Operating Characteristic (ROC)
curve-like diagnostic measure for hallucination analysis can be partially
attributed to the scope of hallucinations not defined within the binary
signal detection paradigm. Studies to grade hallucinations (beyond a
binary level of presence versus absence) allowing for ROC-type analysis
in medical image reconstruction requires significant effort.

For generative tasks in both imaging and language, the ground truth
is less defined. To measure hallucinations in these domains, special
datasets have been constructed. For generative models, these take the
form of purposefully created stochastic models that encode attributes of
interest in medical imaging [79,80]. However, while such methods are
valuable for demonstrating relative performance of generative models
on the specific task, it remains unknown how the results generalize
to the broader medical imaging domain. When the ground truth is
accessible, such as in a generative reconstruction task, another method
of evaluating hallucinations is the hallucination index [127]. This
method computes the Hellinger distance between the distributions of
the ground truth and the reconstructed images. Still, even after such
computation, determining the cut-off that dichotomizes faithful and
hallucinated reconstruction may not be trivial.

For evaluating LLM performance, datasets have been constructed to
specifically probe for hallucinations in the medical domain [131-133].
However, LLMs have been demonstrated to be highly unstable with
performance metrics varying dramatically depending on the instruction
set [134] and permutations in the input prompt [135-137]. This re-
sults in the LLMs not performing as well in practice as the obtained
metrics would suggest. Thus, understanding the impact of this stabil-
ity is crucial to understand how an LLM may perform in a medical
environment.

4. Minimizing hallucinations

As with hallucination detection, similar concepts have been applied
across fields to reduce hallucinations. Such methods involve incorpo-
rating either a measure of truth or a concept of uncertainty into the
training or evaluation method.

Truth in imaging is governed by the acquired measurements and the
properties of the imaging system. One such approach in imaging is the
null-space shuttle method [24,26]. This modification prevents the neu-
ral network from modifying the information in the measurement data
and only permits reconstruction on unknown parameters of the image.
Thus, it can prevent hallucinations from the captured data. However,
the risk of hallucinations remains for components of the image that
are measured. Furthermore, some modifications to the measurement
data, such as mitigating measurement noise, are beneficial. The null
space shuttle procedure prevents the network from learning these tasks,
necessitating the inclusion of additional elements in the pipeline if such
features are desired.

To permit the learning of such features, other network architectures
for reconstruction consider softer constraints [138,139]. Thus, data
fidelity is incorporated but it is not as binding as null-space shuttle
procedures. While this method may reduce hallucinations by mitigating
some divergences from the ground truth, it remains unknown if the
trade-off is worthwhile in many medical imaging cases. An alternative
approach instead considers incorporating uncertainty into the measure-
ments by injecting noise during the training process [29]. This method
is able to improve the stability of neural network methods, but comes
with a corresponding reduction in performance.

For generative imaging applications, a corresponding implementa-
tion is the AmbientGAN [140]. This modification to the typical GAN
framework includes a measurement function that encodes information
about an imaging system.
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Other methods are useful for LLMs to incorporate relevant knowl-
edge for queries. Retrieval augmented generation (RAG) is one of
these techniques, which searches for relevant documents to append
to the query [141-143]. However, RAG remains vulnerable to many
hallucination vectors. In many modern implementations, an LLM is
responsible for generating the RAG call from the original query. This
process remains susceptible to some of the baseline hallucinations
observed in LLMs. Additionally, retrieving substandard or out of date
evidence may degrade model performance further [144]. Finally, such
methods are also susceptible to the alignment tax. Knowledge graphs
are also being explored for hallucination detection by providing explicit
facts and reasoning [145], but likewise suffer from many of the above
issues.

Another way of mitigating hallucinations in LLMs is post-processing
of the response to remove potentially erroneous information. Some pro-
posed method employ conformal probability to redact portions of the
LLM'’s response [128,129]. However, to obtain a high confidence of fac-
tual information, such methods frequently prune substantial amounts
from the response which potentially limits the utility of the method.

Finally, many prompt-engineering based strategies have been em-
ployed in an attempt to reduce hallucinations. Some approaches prompt
a chain of reasoning for the models [146]. Others use ensemble meth-
ods, either with a collection of models [147] or a single model with
multiple personas [148], to produce and analyze multiple responses.
In many ways, such approaches are reminiscent of averaging across
several random samples to increase confidence in the output. However,
it has been convincingly argued that such approaches are unable to
prevent hallucinations [1].

While many of the methods discussed in this section may improve
performance on physical metrics or even tasks, none of them prevent
hallucinations from occurring. Thus, there always remains a risk when
employing Al for medical tasks.

5. Usage

Measures of plausibility and impact are necessary to implement the
proposed definition. It is worth restating that plausibility and impact
can be highly domain- and task-specific, with considerable variability
even among populations of experts. As such, multi-reader multi-case
studies remain the gold standard for evaluation and much of this
information may already be present in current medical device study
designs.

Expert elicitations of qualitative image quality have been demon-
strated to not necessarily correlate with performance for data-driven al-
gorithms [8]. However, such measures may find use in identifying plau-
sibility. Further research may identify additional methods for determin-
ing plausibility metrics, such as investigating inter-rater agreements or
adversarial reader studies.

Impact is here defined as a measure of task-based performance.
Consider a simple binary detection task of an image reconstruction
evaluated by an observer. In this case, error is any deviation or artifact
in the reconstructed image from the acquired measurement data. In
this case, impact also becomes binary — deviations that do not impact
the observer’s performance are benign, while those that affect the
observer’s output are impactful. For deployed devices, sophisticated
measures exist for the tracking and reporting of device failures. In
these cases, a more granular impact evaluation that includes additional
resources employed to treat the patient would be more indicative of
the impact of the error. Assigning partial blame to multiple devices
in a chain will also facilitate the identification of failure states among
increasingly interconnected devices.

The last remaining task to apply the definition is to determine the
cutoff threshold z. This threshold is also specific to the device and task.
One approach includes developing a utility function for cost-benefit
analysis of errors, given the mitigation strategies employed. Other
approaches include estimating the trade-offs performed by clinicians in
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radiology report,

Al-report and image.
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An Al model processes the image and produces a
which is reviewed by a
radiologist who records his impressions using the

A radiologist uses an Al tool to summarize his
report into impressions. Any errors are quickly
caught on review, as the radiologist is familiar
with the case.

2| Pe

The same image artifacts are included in the
reconstruction. Individually, this remains a
benign hallucination.

The Al model generates additional text about the
introduced artifacts, which increases the length of
the report but does not result in an error.

Hallucinations remain benign.

&-

The impressions model is biased towards longer
reports, which results in a reported pathology
where there is none. This result is an impactful
hallucination

Fig. 3. Consider a radiology report workflow where an image is developed and read by a radiologist, who generates a report and returns impressions to the
primary care physician. The first three rows represent integrating an Al device into one stage of the workflow. While the Al models produce errors, they are
benign or mitigated. However, a concatenation of all three devices can generate unmitigated impactful errors due to instabilities within the AI models. While
each individual device performs fine in isolation, the full stack presents additional risks.

everyday tasks and conducting specialized reader studies to determine
what errors may “fool” experts.

Adopting the proposed definition enables a more granular analysis
that may prove beneficial as the medical device ecosystem becomes
increasingly interconnected, as illustrated by the example in Fig. 3.
Further research into the phenomena of hallucinations is anticipated
to develop more sophisticated and less burdensome evaluation mea-
sures for plausibility and impact to be incorporated earlier in device
development. Note that medical experts’ ability to efficiently discern
conventional non-hallucinatory artifacts (like aliasing, ringing, and
metal artifacts as previously explained in Section 2.1) has progres-
sively increased over the years with increasing awareness of the limits
different imaging modalities across various applications and patient
populations. It is possible a similar learning curve will emerge as
experts become more adept at distinguishing between benign and
impactful hallucinations.

6. Summary

Medical devices are employed in many applications that impact
patient care, both directly and indirectly. The incorporation of Al meth-
ods into these devices contains both benefits and risks. It is important
to emphasize that AI models in devices do not need to be perfect
to be useful, especially when such models demonstrate performance
improvements over existing standards of care. However, hallucinations
pose novel challenges to the existing medical ecosystem. By focusing
the discussion of hallucinations on downstream impacts to patient care,
meaningful progress can be made for the safe and effective integration
of Al-enabled medical devices.

Nonetheless, hallucinations cannot be fully removed as they are
intrinsic to neural network-based methods and attempts to reduce
hallucinations may come at the cost of decreased performance. This
inherent instability introduces unique risks due to injecting errors in
the chain of care that may not manifest until much later. Furthermore,
the risk belongs to the entire stack of deployed AI models. While each
model may be individually low-risk, the combined system may become
high-risk due to cascading instabilities.
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