
Artiϧcial Intelligence in the Life Sciences 8 (2025) 100145 

A
2

 

Contents lists available at ScienceDirect

Artificial Intelligence in the Life Sciences

journal homepage: www.elsevier.com/locate/ailsci  

Hallucinations in medical devicesI

Jason Granstedt ∗, Prabhat Kc , Rucha Deshpande , Victor Garcia , Aldo Badano
Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food 
and Drug Administration, Silver Spring, MD 20993, United States of America

A R T I C L E  I N F O

Keywords:
Hallucinations
Deep learning
Artificial intelligence
Generative models
Medical imaging

 A B S T R A C T

Computer methods in medical devices are frequently imperfect and are known to produce errors in clinical 
or diagnostic tasks. However, when deep learning and data-based approaches yield output that exhibit errors, 
the devices are frequently said to hallucinate. Drawing from theoretical developments and empirical studies 
in multiple medical device areas, we introduce a practical and universal definition that denotes hallucinations 
as a type of error that is plausible and can be either impactful or benign to the task at hand. The definition 
aims at facilitating the evaluation of medical devices that suffer from hallucinations across product areas. 
Using examples from imaging and non-imaging applications, we explore how the proposed definition relates 
to evaluation methodologies and discuss existing approaches for minimizing the prevalence of hallucinations.
1. Introduction

The phenomenon of hallucinations within AI systems can adversely 
affect the efficacy of algorithmic applications by diminishing user trust 
and introducing safety hazards in critical contexts. In other contexts, 
hallucinations may offer advantages, such as in the creation of inno-
vative content or the production of synthetic data for model training. 
Hallucinations pose substantial challenges particularly in high-stakes 
applications where accuracy is imperative. Within AI applications in 
medical devices, hallucinations may influence clinical decision-making 
and potentially jeopardize patient outcomes through diagnostic or ther-
apeutic errors. Despite the concept of hallucination having been intro-
duced to the scholarly community about a decade ago, a definitive 
and universally recognized definition pertaining to hallucinations in 
medical devices is currently absent. This article delineates an approach 
designed to provide a clear context for referring to hallucinations 
in outputs of AI medical applications, thereby aiding in the assess-
ment and prevention of such phenomena within the methodologies for 
medical device evaluation.

Recently, Xu et al. offered a more pragmatic approach to defining 
hallucinations with a theoretical framework in which hallucinations 
are delineated as the discrepancies between generated outputs and a 
ground truth function [1]. By leveraging learning theory, they elucidate 
that hallucination is inherently unavoidable and that the complete 
eradication of hallucinations from real-world large language models 
(LLMs) is not feasible. Expanding upon Xu’s framework, we propose 
to subset errors as either hallucinations or non-hallucinations. Halluci-
nations are identified as plausible errors with two distinct subtypes: 
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(1) impactful hallucinations and (2) benign hallucinations. Plausible 
errors refer to device outputs which are erroneous but may be visually 
or linguistically perceived as truth such that readers may not recog-
nize them as errors. Impactful hallucinations negatively impact device 
performance, whereas benign hallucinations have no significant effect. 
As an example, consider a reconstructed image for a patient with a 
cough where the model adds a structure that can be perceived as a 
connection between two organs, such as a tracheoesophageal fistula. 
Such an error would be an impactful hallucination as it may lead 
to a change in patient diagnosis and management. However, if the 
model instead added a small gas bubble within the small intestine, 
the hallucination would be benign as it is unlikely to be perceived 
by a clinician or change patient management. Additionally, there exist 
non-hallucination errors, which are characterized by their obviousness 
and traceability to device artifacts, such as Gibbs ringing or aliasing, 
or pre-specified failure modes. To determine whether an error is a 
hallucination or a non-hallucination error, we consider the nature of 
both the assessment task and device user. This definition does not 
specify the type of user, and the determination of whether an error is 
plausible or subtle is contingent upon the nature and level of expertise 
of the user which, according to the intent of the evaluation framework, 
could be a domain expert, a naive user, or in some cases, an algorithmic 
interpreter. This approach to defining hallucinations is consistent with 
other work by [2] where hallucinations are defined as ‘‘false outputs 
or answers that are not substantiated by evidence’’, which is equivalent 
to Xu’s definition linked to ground truth functions in certain cases. A 
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Fig. 1. Mock diagram of errors from a conventional and AI-enabled device, plotted against axes of impact and plausibility. Unmitigated impactful errors are 
indicated by filled circles. Plausibility introduces another risk vector, as such errors may lie outside the domain of conventional risk mitigation strategies and 
clinician intuition. Thus, an AI model may lead to worse patient outcomes even if it produces fewer impactful errors, as the plausibility of such errors may 
circumvent the traditional guardrails of medical devices. Errors above a certain plausibility threshold 𝜏 are labeled as hallucinations per our definition to identify 
such risks.
diagram of the considered axes for our definition is included in Fig. 
1. The proposed definition requires three components: a method for 
identifying an error, a metric for assessing the impact of an error, 
and a measure for the plausibility of an error. Metrics for error are 
specific to the considered task and can take various forms, depending 
on the device and use case. A thorough discussion is outside the 
scope of this work, but substantial explorations of the topic have been 
performed [3].

The primary departure from our definition in other proposals is 
the incorporation of plausibility. Plausibility is a continuum and the 
threshold at which an error becomes sufficiently plausible to be labeled 
a hallucination is likely observer and task-specific. The concept of 
plausibility has been previously established in the medical domain: 
a 2013 Pew survey revealed that doctors disagreed with patients’ 
self-diagnoses informed by online resources approximately a third of 
the time [4]. Such resources provided answers that were plausible to 
the patient, but were readily discernible as incorrect by a medical 
professional. The danger with AI methods is that errors may be so 
plausible that they may fool even experts. There are several recent 
occurrences of such errors in the legal profession [5–7]; it is likely that 
health professionals will also be susceptible. For instance, it has been 
demonstrated in practice that AI-reconstructed medical images have 
higher subjective quality scores but inferior detection performance for 
metastatic liver lesions [8]. These hallucinations herald a new risk 
vector that can circumvent professional intuition and bypass current 
risk mitigation strategies. It may be possible to conduct studies to em-
pirically determine the plausibility threshold, represented by 𝜏 in Fig. 
1, for relevant use cases. It would likely require a multi-reader, multi-
case study with a group of comparably proficient readers assessing 
different hallucinations on the same task. Though, the specifics of these 
studies are outside the scope of this work, the role of plausibility and 
the different proficiencies of observers underlay the identification of 
hallucinations.

An additional departure from previous definitions is our introduc-
tion of the concepts of benign and impactful hallucinations. While 
other work focuses on the taxonomy of a hallucination, what is more 
important in the medical field is the impact on patient care. Human 
judgment has been demonstrated to be susceptible to AI errors [9–11] 
and clinicians can inherit AI model biases [12]. A complicating factor 
is that what may originally be perceived as a benign hallucination may 
become impactful if the information is later used to affect patient care 
decisions. If the output may be referred to later, then there is always a 
risk of downstream error propagation.

Due to the high-risk nature of medical applications, tolerance for 
hallucinations is frequently low. Minor modifications to factual details 
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can impact patient management, so systems that produce hallucinations 
may degrade clinician trust and decrease utility even when the hal-
lucination is benign [13]. Every poor-quality system deployed further 
degrades trust in AI as a whole and leads to an increasing skepticism 
towards future applications.

While there are many types of AI-enabled medical devices, in this 
work we will focus on three areas: imaging devices, generative-based 
synthetic medical images, and large language models. These three 
areas have seen explosive growth and extensive implementation of the 
types of AI models that lead to the proliferation of hallucinations. We 
will begin by describing the types of hallucinations in these device 
types in Section 2 and then discuss how these hallucinations may be 
quantified and mitigated in Sections 3 and 4, respectively. Finally, 
we will conclude with suggestions for the usage of our definition in 
Section 5 and a summary of the impact of hallucinations on the future 
of AI-enabled medical device development in Section 6.

2. Hallucinations in medical devices

2.1. Imaging devices

Inverse problems in imaging have been an active area of investi-
gation for AI methods [14–20]. A critical task in many applications 
in medical, scientific, and industrial applications is the recovery of an 
image from a set of measurements, which are frequently noisy and 
incomplete. Improving the quantity or quality of these measurements 
often has an associated cost. Thus, it can be desirable to explore 
computational techniques to improve the utility of the image. One such 
method is regularization, which encodes desired attributes for an image 
into a mathematical formula that is applied during the reconstruction 
process to recover a more applicable image.

Recent research works have been predominantly focused on strate-
gies that learn a prior distribution from a dataset via neural networks. 
Instead of a handcrafted term employed by conventional regularization 
strategies [17,21–26], these methods are data-driven. Though these 
methods have achieved state-of-the-art results in several areas [16,27,
28], there are rising concerns about generalization performance and 
robustness [29,30]. This is of particular concern in medical imaging, 
where even a large dataset may lack rare abnormalities.

These stability issues sometimes result in the generation of false 
structures in reconstructed images [31–33], which have been referred 
to as hallucinations. Studies have warned of the potential for misdiag-
noses from these hallucinated structures [34,35]. These concerns have 
recently been validated with clinical samples [36].
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The robustness of neural networks has been investigated in many 
fields [37–41]. Some of these approaches consider worst-case small 
permutations to the input of the network [30,42–44], while others 
consider alternative adversarial methods [45–47]. A recently developed 
tool for analyzing neural network reconstructions for these phenomena 
is hallucination maps, which allow the isolation of artifacts associated 
with imperfect priors [48]. Various approaches have been proposed 
to incorporate information about an imaging system into neural net-
work reconstruction methods and demonstrated resilience to these 
adversarial approaches [24,29,49]. Adding noise to the dataset has 
also demonstrated to be effective at increasing stability, albeit at the 
expense of performance [29].

Regularization techniques can improve human observer perfor-
mance, but they cannot add any additional information to a recon-
struction [50]. This is a fundamental limitation of imaging systems — 
information is always lost during the imaging process, and no post-
processing can recover diagnostic details if a device does not measure 
the relevant details [48,50,51]. Effectively, the relative increase in 
image quality comes with the trade-off of instability and the resulting 
hallucinations [29]. This is an inherent flaw of data-driven approaches.

Exploring hallucinations in imaging devices presents a unique op-
portunity due to the accessibility of ground truth that can lead to 
the certain identification of errors. Nevertheless, what makes an error 
‘‘plausible’’ remains frustratingly elusive. Plausibility can vary depend-
ing on the downstream task and whether the image is employed by 
a human or an algorithm. There can also be significant differences in 
plausibility between humans, based on level of training or simply sheer 
variability. Nonetheless, plausibility is one of the most complex aspects 
of hallucinations in a clinical environment. Neural network reconstruc-
tions can lead to an overestimation of the diagnostic utility of an image 
disconnected from the quality of the underlying measurements, which 
can subvert the intuition of a reader [34,35].

The predictable behavior of conventional regularizers enables clini-
cians to recognize and adapt to the various errors that arise from their 
use. For instance, a radiologist can turn off an image enhancement-
based smoothing option in a radiological image acquisition system if 
the radiologist deems that a lesion in the acquired radiological image 
has been over-smoothed.

Task-based evaluation through reader studies, both human and 
computational, is one method for evaluating performance on down-
stream tasks [51–53]. However, images are sometimes employed for 
multiple tasks and improvements in one area may come at the expense 
of another. Some new datasets have begun to bridge this gap by 
providing diagnostic information [54], but access to larger datasets and 
deployment of multi-task evaluations will likely be necessary to assess 
the utility of neural network reconstructions.

The driving force in the technological advancement of medical 
imaging has been less radiation1 and saving scan time in the last two 
decades. AI-based methods are being proposed to supplant conven-
tional physics-based methods (like the Filtered BackProjection [56] and 
inverse Fourier transform [57]) such that one can faithfully recover in-
ternal organs corresponding to the person using measurements acquired 
at very low-dose [58,59] or under-sampled rate [60]. Recently, domain-
transfer-based applications have also been proposed such that images 
acquired using a given modality (or a sub-modality) can be seamlessly 
transformed into a different modality (or sub-modality) [61]. For in-
stance, cycleGAN has been proposed to translate an MRI image to 
its CT counterpart [62]. However, due to the ‘‘curse of data process-
ing inequality’’ [63], an AI-based method might compensate for the 

1 As Low as Reasonably Achievable (ALARA) has been the guiding principle 
of radiation safety when using imaging modalities like CT. ALARA advocates 
for dose optimization while maintaining the image quality required to perform 
the diagnostic task at hand accurately. As such, increasing the dose level — 
for large patients — would be consistent with ALARA’s principle [55].
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information lost due to hardware-based less radiation, undersampled-
acquisition, or lack of the imaging domain-specific properties with the 
data priors that are not specific to the person being scanned [64,65]. 
Simply put, as measurement quality deteriorates, AI models become 
more unstable.2 This subsequently leads to imaging errors [66] that 
cannot be distinguished as conventional artifacts, either in terms of 
their obviousness from our past use of imaging devices or their trace-
ability to imaging system-based shortcomings. We refer to them as 
hallucinations.

An essential hallmark of hallucinations in medical imaging is that 
— unlike conventional artifacts such as distortions, line artifacts, beam 
hardening, Gibbs ringing, aliasing, etc. [67,68] — it may not be possi-
ble to identify all the hallucinated features without the corresponding 
reference image. Only in the presence of a reference image with a 
thorough review of AI-based super-resolution do all the factually in-
correct features resolved by the AI become evident. An example of 
such an instance is illustrated in Fig.  2 by the addition of plaques and 
change in the anatomy of the bowels in the AI-enhanced image. In 
contrast, the line artifacts are readily discernible to human eyes and 
can be traced to the limited angular tilt of the imaging system when 
acquiring the data. Per our definition, the CT image in Fig.  2(a) would 
constitute a non-hallucinatory or conventional artifact while Fig.  2(b) 
would constitute a hallucination. Further, both images in the would 
likely qualify as impactful errors as the utility of the images in both 
cases is compromised. The particular risk the hallucination poses is 
that the clinician is less likely to perceive the error due to the apparent 
quality — the AI-enhanced image appears to be of diagnostic quality 
and is thus plausible.

From the perspective of information theory, a typical 512 × 512 im-
age encodes much more information than a single page with 500 words. 
A typical medical imaging-based denoising or reconstruction problem 
incorporates the raw data acquired from a patient (or is a conditional 
problem; more information in Section 2.2.2). Hence, a large number of 
hallucinations in the denoising and reconstruction domain may be more 
subtle and impactful than nonsensical or benign compared to what we 
may observe in language-based or unconditional domains. However, 
the nature of benign versus impactful hallucinations also depends on 
the imaging problem. For instance, consider a case whereby only half 
of a patient’s internal body part is scanned and AI is used to predict the 
remaining half. This might yield highly perturbed/nonsensical outputs 
that experts may easily be able to categorize as errors. Overall, AI 
in medical imaging may yield a range of errors that may be subtle 
to obvious and may have benign to impactful harm. As such, it is 
critically important to use benchmarked imaging datasets (with patient-
based diseased labels from patient follow-up data) [69–71] and perform 
various downstream evaluations [72] (such as pathology-based classi-
fication, quantification, detection, discrimination, etc.) to understand 
the nature of AI hallucinations for a given imaging application.

2.2. Synthetic data

Generative AI for data augmentation holds great promise for
learning-based methods in the medical domain as it may address data 
scarcity issues while maintaining patient privacy. It has been employed 
for generating synthetic data in various imaging modalities [74,75] 
such as ultrasound imaging [76], mammography [77] and histopathol-
ogy [78]. Typically, in data augmentation applications, the generation 
task is one of two kinds: (1) ‘‘unconditional generation’’ or generation 
with no prompts (only random noise as an input), e.g., given a dataset 
of chest radiographs, generate a similar synthetic dataset, and (2) 
conditional generation where the prompt may be a class-label, feature 
value, or another image, e.g., generate a mammogram from a given 

2 A model is unstable when a small perturbation in input to the model leads 
to a large fluctuation in the model output.
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Fig. 2. An illustration of artifacts that are readily discernible in (a) and non-discernible in (b) to human eyes (adapted from [73]). The CT image in (c) is 
obtained by applying a physics-based analytical algorithm (i.e., filtered backprojection) on its full view projection data (i.e., 0◦ to 360◦). The image in (b) is 
obtained by applying an AI-based super-resolution model on the four times downsampled version of (c). The AI-enhanced output adds two loops of bowels and 
plaque-like features, indicated by the red arrows. These hallucinations only become evident after comparison against its reference image in (c). The image in (a) 
is a reconstruction of its measurements with an imposed missing wedge acquisition (i.e., using projections from 30◦ to 150◦).
breast type (class-label), or generate a T2-weighted magnetic resonance 
(MR) image given the corresponding T1-weighted MR image of the 
same patient. Although conditional generation may ensure consistency 
with the input condition (for a well-trained generative model), it does 
not preclude hallucinations in features that are uncorrelated with the 
conditioning input.

2.2.1. Unconditional generation
A distinctive aspect of unprompted/unconditional generation of 

images is that each generated image is entirely synthetic and does not 
correspond to any individual in the real world. These synthetic images 
can still have defined ground truth functions and hallucinations, but 
the ‘‘hallucination is no longer related to correctness or factualness in 
the real world’’ [1]. Specifically, ground truth functions describe the 
anatomical knowledge represented in the entire training data and can 
be considered as a mapping between hidden variables and images in 
the training set. In unconditional generation, an AI model generates 
new content by seeking to learn the underlying patterns of the training 
data without receiving explicit guidance, human labels, instructions, 
or a priori constraints. Inconsistencies or errors with respect to the 
ground truth function might still exist if the generative model function 
fails to learn the ground truth function. These inconsistencies may 
manifest as network artifacts and/or hallucinations. Recall that the 
difference between the two is highly subjective and based on perceptual 
plausibility and that lower plausibility does not necessarily imply lower 
downstream clinical impact.

In literature, hallucinations have been reported in various attributes 
such as per-image feature prevalence, feature-specific intensity distribu-
tions, and relative feature locations, both in domain-agnostic [79,80] 
and domain-specific studies [81]. Furthermore, some works report net-
work artifacts and hallucinations under the same terminology and both 
are commonly known to occur in generative tasks of images [82,83] in 
practice. Some examples of hallucinations reported in literature accord-
ing to the proposed definition are multiple optical disks instead of one 
in eye fundus images (as expected from the training data) and unex-
pected locations of medical devices in chest radiographs [82]. Examples 
of network artifacts include checkerboard artifacts in histopathology 
images [82] and nipple artifacts in mammography images [77,84].

2.2.2. Conditional generation
In prompted or conditional image generation, the generated im-

age may be (1) entirely synthetic (e.g., when the prompt is a class-
label) or (2) partially synthetic (e.g., when a patient image in one 
imaging modality is to be transformed to another), i.e., a domain 
transfer task. In the first case, the ground truth function and halluci-
nations are defined similarly to unconditional generation, only with 
the assumption that the generative model function will be consis-
tent, i.e., not hallucinate with respect to the conditioning input and 
correlated attributes.

In the second case (domain transfer task), a unique ground truth 
function may be computable from the training data when assumptions 
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of data sufficiency and relevance are met. Here, the ground truth func-
tion encompasses logical consistencies and relative anatomical map-
pings between domains, which can intuitively be understood as a bi-
jective mapping between the domains. If the generative model function 
fails to learn this ground truth function, the resulting inconsistencies or 
errors between the two will lead to hallucinations.

However, the ground truth function may not be computable if the 
training dataset does not contain relevant and sufficient information 
for the generation task. In that case, hallucinations will occur (as-
sumptions for definition 4 in [1]). One scenario when the ground 
truth function is not uniquely computable is when the physics of the 
input and output domains differs vastly for a given anatomy. For 
example, in a generation task where computed tomography (CT) is to 
be generated from positron emission tomography (PET) image inputs, 
hallucinations must be expected in the generated images as a unique 
ground truth mapping cannot be computed from the training data for 
the two imaging domains. Thus, the use of generative models in such 
problems is not advisable. Similarly, when the dataset is not relevant 
for a generation task, e.g., domain transfer of a diseased patient when 
the disease case was absent in the training data (detailed demonstration 
in [85]), a ground truth function does not exist and hallucinations must 
be expected.

Examples of hallucination in conditional generation tasks in liter-
ature include the addition of tumors in T1 MRI that did not exist in 
FLAIR MRI [85] and the unexpected addition of realistic histopatho-
logical features in virtual staining [86].

In both unconditional and conditional generation, errors in the 
generative model function may arise from various factors such as: (i) 
ineffective latent encoding [87], (ii) distribution-matching loss func-
tions [85], and (iii) insufficient receptive field in the network ar-
chitecture [86]. As generative models continue to evolve, so do the 
manifestations of their hallucinations and network artifacts.

However, it is possible to make a case for correctly using this 
methodology. One such example is using synthetic CT (sCT) from 
MRI-only scans employing a conditional cycleGAN for radiotherapy 
re-planning. Such usage of conditional generation may be permissi-
ble for the radiotherapy treatment of cancerous conditions that are 
a priori known to yield minimum dose variation compared to the 
original CT [88] from previously established methods like Atlas- or 
segmentation-based sCT [89]. The radiotherapy team can also perform 
various checks and balances by comparing the current sCT with the 
previous CT scans from initial rounds of treatment planning to mitigate 
hallucinations. Prior knowledge and pre-established clinical utility are 
important considerations when employing conditional generation, as 
opposed to directly employing the technology for arbitrary domain 
transfers without any objective assessment to validate clinical efficacy.

2.3. Language and multimodal devices

Large language models have been applied to many natural language 
tasks, from text summarization [90] to question answering systems [91] 
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and machine translation [92]. An interesting property of these tasks 
is the relative sensitivity to errors based on the application — while 
errors in summarization quickly become impactful due to the concern 
of fidelity [93], question answering systems may permit more errors to 
achieve the secondary objective of user engagement [94]. The medical 
versions of these tasks are likewise varied, which leads to a correspond-
ing spread in health risks; a model for generating radiology impressions 
has a notably different risk profile than one performing physician note 
summarization.

Many of the errors that LLMs make can appear to be plausible, 
in part due to the ability of LLMs to correctly mimic grammar. For 
instance, a patient record summarization summary with an erroneously 
inserted diagnosis is likely to be plausible to all but a doctor who is 
intimately familiar with that patient’s medical history. It is important 
to remember, however, that LLMs are trained to produce the most 
likely outputs, not the most accurate ones [95]. Indeed, it can be 
argued that the outputs of such models are persuasive because they 
have been specifically trained to produce plausible answers to convince 
humans [96]. While the likelihood of answers can be correlated to 
truth [95,97,98], the two are not the same. This issue becomes espe-
cially prevalent in long-tailed domains where low probability events are 
critical for understanding the complex systems involved [99], such as 
law and medicine. One could consider truthful, accurate, and modern 
data itself as inherently long-tailed [100].

A complication with LLMs is that for any given task, there is 
usually more than one output that satisfies the query [101,102]. Human 
evaluation [103–108] continues to remain as the preferred means of 
developing a reference standard for LLMs because humans can assess 
the various application of LLMs, including objective and subjective 
evaluation metrics. Unfortunately, generating a reference standard us-
ing humans is resource intensive, costing both time and money. Many 
public datasets have been created to evaluate LLMs for pre-specified 
tasks [109–111], and newer evaluation approaches of an LLM-as-a-
Judge framework leverage LLMs to replace human assessments [112]. 
However, such methods are limited in reasoning capability and it is 
unclear if they will generalize to long-tailed domains such as medicine.

There are various approaches for increasing the utility of LLMs 
for particular applications [113]. In reinforcement learning techniques, 
humans analyze model responses and indicate preferential answers [96,
114]. Models may also be fine-tuned trained on specialized datasets to 
impart knowledge on a particular area [105] and to implement safety 
guardrails [114]. However, one challenge with fine-tuning approaches 
for models is that model performance may improve in one area but 
degrade in another potentially relevant areas; this is referred to as 
an alignment tax [115]. In deployed models that continually learn, 
this performance trade-off may occur unintentionally during retraining 
leading to unintended performance drift. Additionally, fine tuning on 
additional training samples may remove fine-tuned weights [116], even 
when such a result is unintentional [117].

Assembling a robust dataset for medical tasks for such fine-tuning 
is also frequently not trivial. Ensuring a clean dataset is also essential 
for model performance [118,119]. For foundation models, this can 
come both in upsampling high-quality data during pretraining [114] 
or fine-tuning to a specific task [120–122]. The ground truth can be 
unknown due to patient drop-out, lack of follow-up data on disease-
based outcomes at the patient level, or disagreements among doctors. 
Additionally, even the data employed to train the models may be 
suspect. Models may rely on documentation that is either mislead-
ing, contains wrongly imputed/extrapolated/interpolated labels when 
compensating for missing data, or is out of date.

In addition to LLMs, visual language models (VLMs) are now being 
explored for applications in the medical domain [123]. While these 
models can generate much more detailed responses to visual inputs 
than previous visual question answering systems, this comes with a 
corresponding increase in hallucination risks. At the basic level, such 
models have demonstrated vulnerability to object hallucination, i.e., a 
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description from VLM that is inconsistent with the target image [124]. 
Furthermore, commonly-used representations for the language-visual 
alignment training have demonstrated shortcomings in representations 
for object counts, viewpoints, and orientations [125]. Finally, errors 
in the alignment between the vision and language can result in an 
observable gap between the visual backbone of the model and the 
visual recognition capabilities of the LLM [126].

3. Quantifying hallucinations

The determination of an artifact as a hallucination is difficult to 
formally define, as it relies on the artifact being ‘‘plausible’’. Thus, 
what may appear as an obvious error to one observer (human or 
mathematical) may instead fool another. The severity of hallucinations 
varies a great deal depending on context. Minor artifacts in irrelevant 
portions of an output seldom have an effect on plans of care, but the 
same distortion in another location can lead to a misdiagnosis.

Thus, a hallucination can be impactful for one task and benign for 
another, and may be plausible for one observer (such as a patient) and 
obvious to another (such as a doctor). As a result, there is a great deal 
of subjectivity inherent in identifying hallucinations relevant to clinical 
care, and hallucinations are highly application and user dependent. 
Nevertheless, some algorithmic approaches have been proposed to 
quantify and mitigate hallucinations.

One connection that has been made across multiple fields is that 
hallucinations are connected to stability. While the implementation 
may differ, the core concept is the same — AI devices that produce sub-
stantially different outputs from a small perturbation in the input are 
more likely to produce hallucinations. This connection was first made 
in imaging, where a trade-off was observed between global metrics 
(e.g., mean squared error) and stability [29]. This observation has more 
recently been repeated in image generation [127] and LLMs [128,129]. 
Many developed methods exploit this relationship to measure and 
adjust the trade-offs between hallucinations and performance.

When the ground truth is known, as in many inverse problem simu-
lations, a straightforward method for measuring stability is worst-case 
small permutations [30]. The input is modified by a small amount and 
iteratively optimized to maximize the change in the output. However, 
while this method is sufficient for demonstrating that neural network 
reconstruction techniques are unstable [29], it does not provide the 
necessary measure of plausibility to evaluate if the alteration is a 
hallucination. Hence, as previously mentioned in Section 2.1, rather 
than relying on anecdotal accounts of the efficacy of a new AI recon-
struction model, a preferred methodology is to objectively quantify the 
error of the model for imaging tasks such as quantification, detection, 
discrimination, or prediction to assess the impact of hallucinations.

Likewise, scanning Fourier Ring Correlation (sFRC) has been pro-
posed for detecting hallucinated regions-of-interest (ROIs) when ref-
erence images are available for image reconstruction [73,130]. sFRC 
scans and performs Fourier Ring Correlation (FRC)-based analysis over 
small patches between images from AI-based methods and their ref-
erence counterparts to objectively and automatically detect hallucina-
tions. The method calls for tuning the hallucination threshold, which 
differentiates between hallucinated ROI and faithfully reconstructed 
ROI, using prior clinical knowledge of hallucinated anatomical fea-
tures by the given AI-based method, ROIs conclusively identified as 
hallucinations by experts, and imaging theory-based limitations for a 
given image restoration problem. Subsequently, for the AI-based CT 
super-resolution problem, the sFRC paper reported an array of halluci-
nations including underfitting of HU attenuation (e.g., transferring fatty 
attenuation to air), distortion of small organelles, addition of minute 
indentation-like, vessel-like, plaque-like structures (depicted in Fig. 
2(b)), and unwarranted folding. Similarly, for AI-enabled brain MR 
reconstruction, sFRC is able to detect hallucinations related to contrast 
migration, the omission of clinically important dark targets, thickening 
of gray matter, and the loss of subtle sulcus features. It should be noted 
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that sFRC does not provide uncertainty estimates or direct diagnostic 
inferences related to true positives, false positives, true negatives, 
and false negatives on the ROIs sFRC detects as hallucinations. The 
difficulty in developing a Receiver Operating Characteristic (ROC) 
curve-like diagnostic measure for hallucination analysis can be partially 
attributed to the scope of hallucinations not defined within the binary 
signal detection paradigm. Studies to grade hallucinations (beyond a 
binary level of presence versus absence) allowing for ROC-type analysis 
in medical image reconstruction requires significant effort.

For generative tasks in both imaging and language, the ground truth 
is less defined. To measure hallucinations in these domains, special 
datasets have been constructed. For generative models, these take the 
form of purposefully created stochastic models that encode attributes of 
interest in medical imaging [79,80]. However, while such methods are 
valuable for demonstrating relative performance of generative models 
on the specific task, it remains unknown how the results generalize 
to the broader medical imaging domain. When the ground truth is 
accessible, such as in a generative reconstruction task, another method 
of evaluating hallucinations is the hallucination index [127]. This 
method computes the Hellinger distance between the distributions of 
the ground truth and the reconstructed images. Still, even after such 
computation, determining the cut-off that dichotomizes faithful and 
hallucinated reconstruction may not be trivial.

For evaluating LLM performance, datasets have been constructed to 
specifically probe for hallucinations in the medical domain [131–133]. 
However, LLMs have been demonstrated to be highly unstable with 
performance metrics varying dramatically depending on the instruction 
set [134] and permutations in the input prompt [135–137]. This re-
sults in the LLMs not performing as well in practice as the obtained 
metrics would suggest. Thus, understanding the impact of this stabil-
ity is crucial to understand how an LLM may perform in a medical 
environment.

4. Minimizing hallucinations

As with hallucination detection, similar concepts have been applied 
across fields to reduce hallucinations. Such methods involve incorpo-
rating either a measure of truth or a concept of uncertainty into the 
training or evaluation method.

Truth in imaging is governed by the acquired measurements and the 
properties of the imaging system. One such approach in imaging is the 
null-space shuttle method [24,26]. This modification prevents the neu-
ral network from modifying the information in the measurement data 
and only permits reconstruction on unknown parameters of the image. 
Thus, it can prevent hallucinations from the captured data. However, 
the risk of hallucinations remains for components of the image that 
are measured. Furthermore, some modifications to the measurement 
data, such as mitigating measurement noise, are beneficial. The null 
space shuttle procedure prevents the network from learning these tasks, 
necessitating the inclusion of additional elements in the pipeline if such 
features are desired.

To permit the learning of such features, other network architectures 
for reconstruction consider softer constraints [138,139]. Thus, data 
fidelity is incorporated but it is not as binding as null-space shuttle 
procedures. While this method may reduce hallucinations by mitigating 
some divergences from the ground truth, it remains unknown if the 
trade-off is worthwhile in many medical imaging cases. An alternative 
approach instead considers incorporating uncertainty into the measure-
ments by injecting noise during the training process [29]. This method 
is able to improve the stability of neural network methods, but comes 
with a corresponding reduction in performance.

For generative imaging applications, a corresponding implementa-
tion is the AmbientGAN [140]. This modification to the typical GAN 
framework includes a measurement function that encodes information 
about an imaging system.
6 
Other methods are useful for LLMs to incorporate relevant knowl-
edge for queries. Retrieval augmented generation (RAG) is one of 
these techniques, which searches for relevant documents to append 
to the query [141–143]. However, RAG remains vulnerable to many 
hallucination vectors. In many modern implementations, an LLM is 
responsible for generating the RAG call from the original query. This 
process remains susceptible to some of the baseline hallucinations 
observed in LLMs. Additionally, retrieving substandard or out of date 
evidence may degrade model performance further [144]. Finally, such 
methods are also susceptible to the alignment tax. Knowledge graphs 
are also being explored for hallucination detection by providing explicit 
facts and reasoning [145], but likewise suffer from many of the above 
issues.

Another way of mitigating hallucinations in LLMs is post-processing 
of the response to remove potentially erroneous information. Some pro-
posed method employ conformal probability to redact portions of the 
LLM’s response [128,129]. However, to obtain a high confidence of fac-
tual information, such methods frequently prune substantial amounts 
from the response which potentially limits the utility of the method.

Finally, many prompt-engineering based strategies have been em-
ployed in an attempt to reduce hallucinations. Some approaches prompt 
a chain of reasoning for the models [146]. Others use ensemble meth-
ods, either with a collection of models [147] or a single model with 
multiple personas [148], to produce and analyze multiple responses. 
In many ways, such approaches are reminiscent of averaging across 
several random samples to increase confidence in the output. However, 
it has been convincingly argued that such approaches are unable to 
prevent hallucinations [1].

While many of the methods discussed in this section may improve 
performance on physical metrics or even tasks, none of them prevent 
hallucinations from occurring. Thus, there always remains a risk when 
employing AI for medical tasks.

5. Usage

Measures of plausibility and impact are necessary to implement the 
proposed definition. It is worth restating that plausibility and impact 
can be highly domain- and task-specific, with considerable variability 
even among populations of experts. As such, multi-reader multi-case 
studies remain the gold standard for evaluation and much of this 
information may already be present in current medical device study 
designs.

Expert elicitations of qualitative image quality have been demon-
strated to not necessarily correlate with performance for data-driven al-
gorithms [8]. However, such measures may find use in identifying plau-
sibility. Further research may identify additional methods for determin-
ing plausibility metrics, such as investigating inter-rater agreements or 
adversarial reader studies.

Impact is here defined as a measure of task-based performance. 
Consider a simple binary detection task of an image reconstruction 
evaluated by an observer. In this case, error is any deviation or artifact 
in the reconstructed image from the acquired measurement data. In 
this case, impact also becomes binary — deviations that do not impact 
the observer’s performance are benign, while those that affect the 
observer’s output are impactful. For deployed devices, sophisticated 
measures exist for the tracking and reporting of device failures. In 
these cases, a more granular impact evaluation that includes additional 
resources employed to treat the patient would be more indicative of 
the impact of the error. Assigning partial blame to multiple devices 
in a chain will also facilitate the identification of failure states among 
increasingly interconnected devices.

The last remaining task to apply the definition is to determine the 
cutoff threshold 𝜏. This threshold is also specific to the device and task. 
One approach includes developing a utility function for cost–benefit 
analysis of errors, given the mitigation strategies employed. Other 
approaches include estimating the trade-offs performed by clinicians in 
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Fig. 3. Consider a radiology report workflow where an image is developed and read by a radiologist, who generates a report and returns impressions to the 
primary care physician. The first three rows represent integrating an AI device into one stage of the workflow. While the AI models produce errors, they are 
benign or mitigated. However, a concatenation of all three devices can generate unmitigated impactful errors due to instabilities within the AI models. While 
each individual device performs fine in isolation, the full stack presents additional risks.
everyday tasks and conducting specialized reader studies to determine 
what errors may ‘‘fool’’ experts.

Adopting the proposed definition enables a more granular analysis 
that may prove beneficial as the medical device ecosystem becomes 
increasingly interconnected, as illustrated by the example in Fig.  3. 
Further research into the phenomena of hallucinations is anticipated 
to develop more sophisticated and less burdensome evaluation mea-
sures for plausibility and impact to be incorporated earlier in device 
development. Note that medical experts’ ability to efficiently discern 
conventional non-hallucinatory artifacts (like aliasing, ringing, and 
metal artifacts as previously explained in Section 2.1) has progres-
sively increased over the years with increasing awareness of the limits 
different imaging modalities across various applications and patient 
populations. It is possible a similar learning curve will emerge as 
experts become more adept at distinguishing between benign and 
impactful hallucinations.

6. Summary

Medical devices are employed in many applications that impact 
patient care, both directly and indirectly. The incorporation of AI meth-
ods into these devices contains both benefits and risks. It is important 
to emphasize that AI models in devices do not need to be perfect 
to be useful, especially when such models demonstrate performance 
improvements over existing standards of care. However, hallucinations 
pose novel challenges to the existing medical ecosystem. By focusing 
the discussion of hallucinations on downstream impacts to patient care, 
meaningful progress can be made for the safe and effective integration 
of AI-enabled medical devices.

Nonetheless, hallucinations cannot be fully removed as they are 
intrinsic to neural network-based methods and attempts to reduce 
hallucinations may come at the cost of decreased performance. This 
inherent instability introduces unique risks due to injecting errors in 
the chain of care that may not manifest until much later. Furthermore, 
the risk belongs to the entire stack of deployed AI models. While each 
model may be individually low-risk, the combined system may become 
high-risk due to cascading instabilities.
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