




Metal 3D Printing

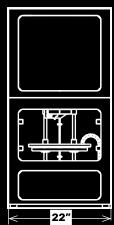


# Metal X

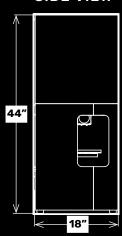
The Metal X significantly accelerates your innovation and delivers metal components overnight. Forget 20th century manufacturing and print everything such as industrial spare parts, injection moulds and working prototypes.

The Metal X is based on a new innovative technology: Atomic Diffusion Additive Manufacturing or ADAM for short.

The printing material consists of a metal powder in very high concentration bound in plastic. It is printed using the proven FFF process - completely without toxic metal dust. This is followed by a debinding and sintering process and the result is a metal part cre-ated overnight. The sintering process causes atomic diffusion: due to the heat, the atoms shift slightly and stick together. As a result, the components achieve excellent mechanical properties and enormous rigid-ity even in the z-direction.




# Metal X

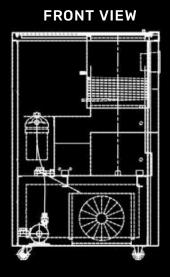

The Metal X is a revolutionary 3D printer that prints metal powder bound in a plastic matrix to eliminate safety risks associated with traditional metal 3D printing methods while enabling new features like close-cell infill for reduced part weight and cost. It's up to 10x less expensive than alternative metal additive manufacturing technologies and up to 100x less than traditional fabrication technologies like machining or casting. Affordable, reliable, and easy to use, the Metal X print system gives you everything you need to go from design to fully functional metal parts faster than ever before.

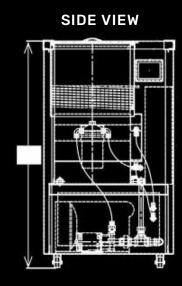
| Printer           | Process             | Atomic Diffusion Additive Manufacturing (ADAM)                              |
|-------------------|---------------------|-----------------------------------------------------------------------------|
| <b>Properties</b> | <b>Build Volume</b> | 300 x 220 x 180 mm (11.8 x 8.7 x 7.1 in)                                    |
|                   | Machine Size        | 575 x 467 x 1,120 mm (22.7 x 18.4 x 44.1 in), 75 kg (160 lbs)               |
|                   | Print Chamber       | Heated                                                                      |
|                   | Print Bed           | Heated, vacuum-sealed print sheet, auto bed leveling                        |
|                   | Print System        | Two nozzles — Metal material and release material                           |
|                   | Power Requirements  | 100–120 / 200–240 VAC (12A / 6A), IEC 60320 type C20                        |
| Materials         | Metal Material      | Stainless steel (17-4 PH, 316L*), Tool steel (H13, D2), Inconel 625, Copper |
|                   | Release Material    | Ceramic (consumed at 1:10 ratio to metal spools, on average)                |
|                   | Media (Spools)      | Filament fed, bound powder                                                  |
| Part              | Max Part Size       | 250 x 183 x 150 mm (9.8 x 7.2 x 5.9 in), 10kg                               |
| Properties        | Supports            | Metal material with ceramic release layer                                   |
|                   | Layer Height        | 50μm and 125μm post-sinter                                                  |
| Software          | Supplied Software   | Eiger Cloud (Other options available at cost)                               |
|                   | Security            | Two-factor authentication, org admin access, single sign-on                 |
|                   |                     |                                                                             |

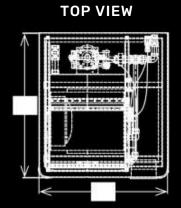
#### **FRONT VIEW**



#### SIDE VIEW





<sup>\*</sup> Materials currently under development. Note: All specifications are approximate and subject to change without notice.


# Wash-1

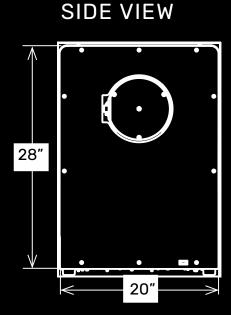
The first step in transforming a printed "green" part into fully dense metal is debinding. The Wash-1 immerses the green part in a specialized fluid which dissolves the primary binding material, leaving the part semi-porous so the remaining binder can easily burn off during sintering. This debinding step purifies the final metal part and helps keep your sintering furnace clean.

| Debinder          | Materials Supported | All metals                                                    |  |  |
|-------------------|---------------------|---------------------------------------------------------------|--|--|
| <b>Properties</b> | Fluid (Solvent)     | Opteon SF79, Opteon SF80, or Tergo Metal Cleaning Fluid       |  |  |
|                   | Controller          | Integrated control system                                     |  |  |
|                   | Workholding         | Stainless steel basket                                        |  |  |
|                   | Washing Size        | 356 x 254 x 203 mm (14 x 10 x 8 in)                           |  |  |
|                   | Washing Size        | 18,356 cm³ (1,120 in³)                                        |  |  |
| Safety &          | Environmental Req.  | External exhaust                                              |  |  |
| Installation      | Safety Control      | Low fluid shutoff control High vapor pressure shutoff control |  |  |
|                   | Regulatory          | Refer to MSDS                                                 |  |  |
|                   | Emissions           | Low emission design to conserve solvent                       |  |  |
|                   | Power               | 110-120 VAC single phase, 11A / 1,320W peak draw              |  |  |
| 0.5.1.0           | External Dimensions | 400 v 405 v 4 047 mm (04 v 07 v 40 in)                        |  |  |
| Safety &          | External Dimensions | 609 x 685 x 1,067 mm (24 x 27 x 42 in)                        |  |  |
| Installation      | Weight              | 136 kg (300 lbs)                                              |  |  |








# Sinter-1

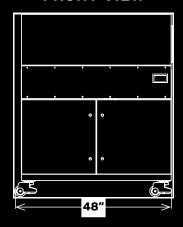
The Markforged Sinter-1 is a high-performing, high-value furnace that is ideal for small batch production. Built on 30 years of Metal Injection Molding (MIM) technology, it's affordable and reliable. Featuring 4,760 cm<sup>3</sup> of active hot zone, the Sinter-1 effortlessly converts washed parts into their high-quality dense final metallic form in as few as 26 hours.

| Furnace           | Materials Supported     | Chemically debound Metal X-printed parts                             |
|-------------------|-------------------------|----------------------------------------------------------------------|
| <b>Properties</b> | Heating Element         | Kanthal                                                              |
|                   | Controller              | Pre-programmed automatic cycling                                     |
|                   | Sinter Run Time         | 26 hours*                                                            |
|                   | Peak Internal Temp.     | 1,300° C / 2,372° F                                                  |
|                   | Sintering Capacity      | Rectangle w/radius top — 141 mm ID x 305 mm L (5.55 in ID x 12 in L) |
|                   | Sintering Workload      | 3,020 cm3 (184 in3)                                                  |
|                   | Sinter Surface Area     | 348 cm2 (53.9 in2) for single ceramic setter plate                   |
|                   | Setter Plate Dimensions | 11.4cm W x 30.4cm D, (4.5in W x 12.0in D)                            |
|                   | Gas Types               | Argon, argon / hydrogen mix                                          |
|                   | Retort                  | High purity refractory retort (carbon-free)                          |
| Safety &          | Environmental Req.      | External exhaust (100–150 CFM)                                       |
| Installation      | Power                   | 200-240 V single phase 30A, recommend wiring 50A                     |
|                   | External Dimensions     | 1,270 x 510 x 720 mm (50 x 20 x 28 in)                               |
|                   | Weight                  | 136 kg (300 lbs)                                                     |

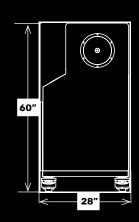
# 42"

**FRONT VIEW** 

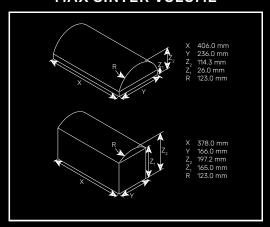



<sup>\*</sup>May vary by material. Note: All specifications are approximate and subject to change without notice.

# Sinter-2


With an expansive active hot zone (19,644 cm3 / 1,199 in3), the Sinter-2 is the perfect solution for mid-volume batch production and for larger parts. Create high-purity metal parts by using sintering technology built with a carbon-free retort. This workhorse furnace is enabled with rapid cooling technology and can process the full range of commercial-grade metals from their washed state into dense metal parts in as few as 30 hours.

| Furnace             | Materials Supported     | Chemically debound Metal X-printed parts                                                                        |  |
|---------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| <b>Properties</b>   | Heating Element         | Kanthal                                                                                                         |  |
|                     | Controller              | Pre-programmed automatic cycling                                                                                |  |
|                     | Sinter Run Time         | 30 hours*                                                                                                       |  |
|                     | Peak Internal Temp.     | 1,300° C / 2,372° F                                                                                             |  |
|                     | Sintering Capacity      | Rectangle w/radius top $-$ 141 mm ID x 305 mm L (5.55 in ID x 12 in L)                                          |  |
|                     | Sintering Workload      | 12,135 cm³ (741 in³)                                                                                            |  |
|                     | Sinter Surface Area     | 1,644 cm² (254.8 in²) for stackable ceramic setter plate                                                        |  |
|                     | Setter Plate Dimensions | Top plate: 24.0cm W x 41.0cm D, (9.4in W x 16.1in D)<br>Bottom plate: 17.0cm W x 41.0cm D, (6.7in W x 16.1in D) |  |
|                     | Gas Types               | Argon, argon / hydrogen mix                                                                                     |  |
|                     | Retort                  | High purity refractory retort (carbon-free)                                                                     |  |
| Safety &            | Environmental Req.      | External exhaust (100–150 CFM)                                                                                  |  |
| Installation        | Power                   | 200–240 V, 3 phase (3 wire), 30 A<br>346–416 V, 3 phase (4 wire), 30 A                                          |  |
| Physical Dimensions | External Dimensions     | 1,370 x 810 x 1,520 mm (54 x 32 x 60 in)                                                                        |  |
|                     | Weight                  | 350 kg (772 lbs)                                                                                                |  |


#### **FRONT VIEW**



#### SIDE VIEW



#### **MAX SINTER VOLUME**



<sup>\*</sup>May vary by material. Note: All specifications are approximate and subject to change without notice.

# **Success Plan**

Print high-quality parts easily and reliably with Markforged 3D Printers. Secure yourself against wear and accidental damage with the success plan.

| For 3 Years                                     | Metal X with Washing<br>Station and Sinter Furnace 1 | Metal X with Washing<br>Station and Sinter Furnace 2 |
|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Price                                           | AED 125,000                                          | AED 150,000                                          |
| Cover of wear and tear accidental damage        | ✓                                                    | ✓                                                    |
| On-site repair*                                 | ✓                                                    | ✓                                                    |
| Free same day priority support (phone or email) | ✓                                                    | ✓                                                    |
|                                                 |                                                      |                                                      |
| For 5 Years                                     | Metal X with Washing Station and Sinter Furnace 1    | Metal X with Washing Station and Sinter Furnace 2    |
| Price                                           | AED 200,000                                          | AED 225,000                                          |
| Cover of wear and tear accidental damage        | ✓                                                    | ✓                                                    |
| On-site repair*                                 | ✓                                                    | ✓                                                    |
| Free same day priority support (phone or email) | ✓                                                    | ✓                                                    |
|                                                 |                                                      |                                                      |
| For 1 Year Renewal                              | Metal X with Washing Station and Sinter Furnace 1    | Metal X with Washing Station and Sinter Furnace 2    |
| Price                                           | AED 55,000                                           | AED 65,000                                           |
| Cover of wear and tear accidental damage        | <b>√</b>                                             | ✓                                                    |
| On-site repair*                                 | ✓                                                    | ✓                                                    |
| Free same day priority support (phone or email) | ✓                                                    | ✓                                                    |

# Metal X printing material

## 1.4542 (17-4 PH) Stainless Steel

17-4 PH Stainless steel is ideal for post-processing in CNC milling and turning and is resistant to corrosion up to 800°C. For example, it is also used for the drive roller for the fibre system on the X series.

## 1.2379 (D2) Tool Steel

The high carbon and chromium content of D2 tool steel provides excellent hardness and abrasion resistance (but not as hard as A2). D2 is often used for cutting tools.



Tool steel H13 is air-hardened and has excellent impact strength. It is used for punches, dies and forming tools. The high carbon and chromium content of 1.2344 tool steel guarantees enor-mous hardness and abrasion resistance. H13 tool steel is often used for cutting tools.

## 1.2363 (A2) Tool Steel

Tool steel A2 is a versatile, air-hardening tool steel that is often regarded as a "universal" cold work tool steel. It offers a combination of good wear resistance and toughness. It is relatively easy to machine in the annealed condition, has high compressive strength and good dimen-sional stability during hardening. It is used for a wide range of tools, from forming and cutting equipment to wear parts.

## IN Alloy (Inconel 625) 1.7744

Inconel combines stability with enormous heat resistance. This makes it ideal for heat protec-tion and high pressure applications. This nickel alloy is commonly used in engines and medical applications. It is also chemically resistant and difficult to machine.

## Copper

99.8% pure copper from Markforged has excellent thermal and electrical conductivity.





## Material Specification - Metals

|                                                                                                                                                | Norm                                                           | 17-4                      | 17-4 (HT¹)              | H13                       | H13 (HT²)                       | Copper                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------|-------------------------|---------------------------|---------------------------------|--------------------------------------|
| Ultimate Tensile Strength (MPa)                                                                                                                | ASTM E8                                                        | 1050                      | 1250                    | 1420                      | 1500                            | 193⁵                                 |
| Tensile Modulus (GPa)                                                                                                                          | ASTM E8                                                        | 140                       | 170                     | -                         | -                               | -                                    |
| Yield Strength (MPa)                                                                                                                           | ASTM E8                                                        | 800                       | 1100                    | 800                       | 1250                            | 26⁵                                  |
| Elongation at Break (%)                                                                                                                        | ASTM E8                                                        | 5                         | 6                       | 5                         | 5                               | 45⁵                                  |
| Compressive Yield Strength (MPa)                                                                                                               | ASTM E9                                                        | -                         | -                       | -                         | -                               | -                                    |
| Elastic Modulus (GPa)                                                                                                                          | ASTM E9                                                        | -                         | -                       | -                         | -                               | -                                    |
| Hardness (HRC)*                                                                                                                                | ASTM E18                                                       | 30                        | 36                      | 40                        | 45                              | -                                    |
| Relative Density (%)                                                                                                                           | ASTM B923                                                      | >96                       | ≥96                     | ≥ 94,5                    | ≥ 94,5                          | 986                                  |
| Electrical Conductivity (% IACS)                                                                                                               | ASTM E1004                                                     | -                         | -                       | -                         | -                               | 847                                  |
| Thermal Conductivity (W/mK)                                                                                                                    | ASTM E1461                                                     | -                         | -                       | -                         | -                               | 350°                                 |
|                                                                                                                                                |                                                                |                           |                         |                           |                                 |                                      |
|                                                                                                                                                | Norm                                                           | A2                        | A2 (HT3)                | D2                        | D2 (HT4)                        | Inconel 625                          |
| Ultimate Tensile Strength (MPa)                                                                                                                | Norm ASTM E8                                                   | A2<br>-                   | A2 (HT3)                | D2<br>-                   | D2 (HT4)                        | Inconel 625<br>765                   |
| Ultimate Tensile Strength (MPa) Tensile Modulus (GPa)                                                                                          |                                                                | A2<br>-<br>-              | A2 (HT3)<br>-<br>-      | D2<br>-<br>-              | D2 (HT4)<br>-<br>-              |                                      |
|                                                                                                                                                | ASTM E8                                                        | -                         | A2 (HT3)                | -                         | D2 (HT4)                        | 765                                  |
| Tensile Modulus (GPa)                                                                                                                          | ASTM E8                                                        | -                         | -                       | -                         | D2 (HT4)                        | 765                                  |
| Tensile Modulus (GPa)  Yield Strength (MPa)                                                                                                    | ASTM E8  ASTM E8                                               | -                         | -                       | -                         | D2 (HT4)  -  -  -  1690         | 765<br>-<br>334                      |
| Tensile Modulus (GPa)  Yield Strength (MPa)  Elongation at Break (%)                                                                           | ASTM E8  ASTM E8  ASTM E8  ASTM E8                             | -<br>-<br>-               | -<br>-<br>-             | -<br>-<br>-               | -<br>-<br>-                     | 765<br>-<br>334                      |
| Tensile Modulus (GPa)  Yield Strength (MPa)  Elongation at Break (%)  Compressive Yield Strength (MPa)                                         | ASTM E8  ASTM E8  ASTM E8  ASTM E8  ASTM E9                    | -<br>-<br>-<br>-<br>850   | -<br>-<br>-             | -<br>-<br>-<br>830        | -<br>-<br>-<br>-<br>1690        | 765<br>-<br>334                      |
| Tensile Modulus (GPa)  Yield Strength (MPa)  Elongation at Break (%)  Compressive Yield Strength (MPa)  Elastic Modulus (GPa)                  | ASTM E8  ASTM E8  ASTM E8  ASTM E8  ASTM E9  ASTM E9           | -<br>-<br>-<br>-<br>850   | -<br>-<br>-<br>-<br>180 | -<br>-<br>-<br>-<br>830   | -<br>-<br>-<br>-<br>1690        | 765<br>-<br>334<br>42<br>-           |
| Tensile Modulus (GPa)  Yield Strength (MPa)  Elongation at Break (%)  Compressive Yield Strength (MPa)  Elastic Modulus (GPa)  Hardness (HRC)* | ASTM E8  ASTM E8  ASTM E8  ASTM E8  ASTM E9  ASTM E9  ASTM E18 | -<br>-<br>-<br>850<br>180 | -<br>-<br>-<br>-<br>180 | -<br>-<br>-<br>830<br>170 | -<br>-<br>-<br>-<br>1690<br>187 | 765<br>-<br>334<br>42<br>-<br>-<br>7 |

<sup>\*</sup> Markforged hardness was measured on a sample coupon that was printed at 100% infill and has a 25 mm diameter and 10 mm height.

- 6. Density is based on a theoretical value of 8.96g/cc.
- 7. Electrical conductivity, when evaluated with eddy current instruments, is usually expressed as a percentage of the conductivity of the International Annealed Copper Standard [% IACS). The conductivity of the Annealed Copper Standard is defined to be 0.58 x 108 S/m (100% IACS) at 20°C.
- 8. Thermal diffusivity measured per ASTM E1461. Diffusivity was converted to Conductivity using, Thermal Conductivity = Thermal Diffusivity Density Specific Heat.

Assuming specific heat of Copper =  $0.385\ J/g-K$  per "Handbook of Chemistry and Physics 72nd Edition."

9. Relative density for Inconel 625 assumes a reference density of 8.44 g/cm<sup>3</sup>.

These data for Markforged Materials represent typical values as-sintered. Markforged samples were printed as fully dense parts with 100% infill. Hardness and density data were tested in house, and all other data were tested and confirmed by outside sources. These representative data were tested, measured, or calculated using standard methods and are subject to change without notice. Markforged makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement; and assumes no liability in connection with the use of this information. The data listed here should not be used to establish design, quality control, or specification limits, and are not intended to substitute for your own testing to determine suitability for your particular application. Nothing in this sheet is to be construed as a license to operate under or a recommendation to infringe upon any intellectual property right.

<sup>1. 17-4</sup> PH MIM standard stainless steel heat treated to H900 specification.

<sup>2.</sup> H13 Tool Steel printed with the Metal X system, air quenched at 1010C, and double tempered at  $600^{\circ}$ C.

<sup>3.</sup> Markforged heat-treated A2 tool steel was heated to 970°C (1780°F) and single tempered at 200°C (392°F) for 30 minutes.

<sup>4.</sup> Markforged heat-treated D2 tool steel was heated to 970°C (1780°F) and single tempered at 200°C (392°F) for 30 minutes.

<sup>5.</sup> Tensile bars are sub-sized and are sliced with default copper settings except raft is turned off. Copper defaults to solid parts.

## EIGER Software\*: Powerful. Flexible. Secure.

With Markforged's high strength and com-posite fibre printers, we deliver the innovative, smart EIGER software compatible with all our printers.

#### **Powerful**

The strength of Markforged printers is the stability of the part and the precise surface finish. EIGER software makes it easy to increase sub-stability with our unique Con tinuous Fibre Reinforcement. In addition, EIGER offers the possibility of accessing and managing all printers and print jobs with just one program.

# Achieve 10-fold stability with just one click

EIGER adds selected fibre reinforcement to your component. Simply select the option "Use fibre". You retain full access to the pro-cess and can intervene at desired points and make manual adjustments.managing all printers and print jobs with just one program.

#### Continuous improvement

Cloud-based, EIGER always provides the latest version. Once a new update has been deployed, it will be displayed the next time you log in to EIGER. Large files can easily be processed in the background, while you can continue working in other programs.

## Continuous improvement

Cloud-based, EIGER always provides the latest version. Once a new update has been deployed, it will be displayed the next time you log in to EIGER. Large files can easily be processed in the background, while you can continue working in other programs.

## Control all printers from one place

With EIGER you can easily access all your organization's printers and print files. Whether you use one or a hundred print-ers, our networked system collects all data clearly arranged in one place.

Each printer from Markforged can be con-nected via Ethernet or WiFi. Distances do not matter. You will receive important sta-tus messages by e-mail and, for example, be informed in good time about low material stocks and completed print jobs.



## **User-friendly**

To print the most stable parts, you do not need any special training. Simply upload and slice your STL file into EIGER for a high strength part.

#### Data is never lost

Projects can be created in EIGER. There you can organize your print files, find them quickly and reuse or revise them. Since everything is stored in the cloud, your files will be kept in case of a computer crash. The version history can also be used to restore accidentally overwritten files.

## Intuitive user interface

Our software regulates all temperature, speed and monitoring settings to optimize print performance and reduce the user's workload.

#### Collaboration

EIGER works organizationally. Each team member can get access to the program. This allows files to be shared, discussed, edited and improved with colleagues even across distances.

<sup>\*</sup>The services described here refer to the Eiger Cloud Software.

Markforged takes the security and privacy of your data very seriously.



## ISO 27001 Safety certification

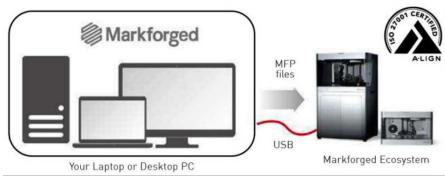
- Markforged is the only certified manufacturer in the additive field.
- The certification has been awarded by an external test centre.
- Your data is safe in the EIGER software!

# EIGER Software Cloud Online Version

Only users of your organization can access your data. We take the best precautions, including SSL/TLS encryption of any communication with our servers, external backups of user data, and Amazon Web Services (AWS), which preserves the data for us.

Any communication with Markforged is encrypted.




#### EIGER Software Desktop Online Version

For even greater security we offer an internally storable version from EIGER at no additional cost. The user stores his STL files, the internal slice data and MFP files 100% locally on his hard disk. A permanent internet connection is required for application data, software updates, license verification.



#### Optional: EIGER Soft-ware Offline Version


In special cases we provide a limited version of EIGER off-line for an additional fee.



\*In the EIGER Software Desktop online version, your STL files, generated print files or specific geometrical information about your component will not be sent to our servers. We slice to local printing on your machine. Telemetry data sent to the server includes account information for the license server, folder structures, printer settings and used quantities of material/print volumes. These data are covered by the Markforged Privacy Policy.

MFP (Markforged Print) files are the raw output of EIGER software that the Markforged printers use to print the part. Currently the printer can only be connected to the corporate network via a USB device server. To use the cloud version Google Chrome is required. The status of the printer can be viewed as soon as the printer has an Internet connection.







www.maptec.ae

