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Abstract

While max-share identification has become increasingly popular in a wide range
of applications, we show that its validity requires necessary and sufficient condi-
tions that are rarely satisfied in practice—the target variable’s response to the
target shock must be (i) orthogonal to its responses to untargeted shocks and
(ii) larger than combinations of those responses. Imposing additional restric-
tions on the target shock weakens but does not fully eliminate these conditions.
We show that in practice, the weight max-share places on an identified untar-
geted shock can be obtained by projecting the response to that shock on the
max-share response. We also theoretically characterize consequences of local
and global violations to the identification conditions. Empirically, the TFP
news and main business cycle shocks identified by Kurmann and Sims (2021)
and Angeletos et al. (2020) are, respectively, at least a third and a quarter

contaminated.
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1 Introduction

Max-share identification has become a popular approach for identifying structural
shocks in vector autoregressions (VARs), most prominently a total factor productivity
(TFP) news shock (Beaudry and Portier, 2006; Barsky and Sims, 2011; Kurmann and
Sims, 2021) and a main business cycle shock (Angeletos, Collard, and Dellas, 2020).
Max-share identifies a structural shock as the one that maximizes its contribution to
a particular economic variable’s forecast error variance (FEV) over some horizon (in
the time domain) or variation at some frequency (in the frequency domain). This
approach is attractive because it yields point identification while appearing to rest
only on the innocuous assumption that the target shock has a larger effect than other
shocks on the target variable at the chosen horizon or frequency.

We show that max-share identification relies on stringent conditions to be valid.
We derive necessary and sufficient conditions and demonstrate that they are consid-
erably harder to satisfy than previously recognized in the literature. These conditions
rely on the fact that max-share identification is equivalent to obtaining the principal
eigenvector of a matrix, which we denote by =. This matrix can be interpreted heuris-
tically as capturing the covariance across impulse responses of the target variable to
the true structural shocks. Instead of being of random variables over observations,
the covariance is of impulse responses over horizons.

The matrix, =, is a function of the reduced-form parameters, which we assume
to be known, and the frequency or horizon of interest. Its form depends on whether
we implement max-share identification in the time or frequency domain. In the time
domain, = captures the FEV decomposition for the true shocks; in the frequency
domain, = captures the contribution of each shock to the variation of the target
variable over the chosen frequency band. The diagonal terms capture the magnitude
of the impulse responses over the target set of horizons or frequency band; the off-
diagonal terms capture the similarity in the shape or lead-lag structure over those
horizons or frequencies. Since our identification conditions are restrictions on =,
which, in turn, is directly connected with the size and shape of the impulse responses,
the identified shock will be contaminated unless strict conditions on the impulse
responses to the full set of true shocks are also satisfied. This contrasts with the
typical justification given in the literature about the relative magnitude of a response

at a particular horizon or frequency. In what follows, we assume without loss of



generality that the true target shock is ordered first for ease of exposition.

The first identification condition is orthogonality of the impulse responses. This
corresponds to = being a block diagonal matrix with the off-diagonal terms in the
first row and column being zero. It is a restriction on the shape of the target impulse
response relative to the response to each of the other shocks over the target horizons
or frequencies. In the time domain, the stringency of the orthogonality condition is
apparent. Suppose we use max-share for some horizon H. Then, noting that the FEV
sums the contributions of shocks from horizons 0 to H, we can represent the impulse
response to the jth true shock as a (H + 1) x 1 vector, v;, where the hth element of
1; corresponds to the response of the target variable to shock j at horizon A = h —1.
Orthogonality requires that 1 -1; = 0 for all j # 1. This rules out, for instance, cases
in which the target shock and some untargeted shock both produce strictly positive
impulse responses. In the frequency domain, orthogonality is similarly violated in
many standard models. Since orthogonality has to be satisfied for the full set of
shocks, it requires a priori knowledge of how the target variable responds to all the
shocks over a given set of horizons, which is arguably more demanding than what is
required for zero or sign restrictions.

The second condition is on the relative size of the target impulse response. For-
mally, the (1, 1) element of = must be larger in magnitude than the largest eigenvalue
of the lower (N — 1) x (N — 1) block of Z, where N is the total number of shocks
in the VAR. Intuitively, this means that the target impulse response must be large
relative to not only the response to each of the other individual shocks, but also com-
binations of these other impulse responses. For instance, suppose the responses to
each of the untargeted shocks are small. If these responses have similar shapes, then
the eigenvalue of the lower (N — 1) x (N — 1) block of = can still be large and cause
the max-share identified shock to be a combination of the untargeted shocks. We also
note that the magnitude of each of the elements of = will depend on the size of the
impulse response over a set of horizons. In the time domain, the FEV at horizon H
depends on the cumulative contribution of a shock over horizons 0 to H. Hence, the
magnitude of the corresponding impulse response and diagonal element in = depends
on the entire response over periods 0, ..., H and not just the size of the response at
horizon H. In the frequency domain, the magnitude depends on the impulse response
over all horizons h > 0.

As a tool for empirical research, we propose a straightforward diagnostic that



yields a lower bound on how much the max-share identified shock is contaminated
in practice. Suppose a researcher has information on the impulse response of the
target variable to an untargeted shock, for instance, through prior knowledge or by
separately identifying that shock. The weight that max-share places on the untargeted
shock is the projection of the impulse response of the target variable to the untargeted
shock on the corresponding response to the max-share shock. Consequently, we can
place an upper bound on the max-share weight on the true targeted shock. In the
presence of multiple untargeted shocks this upper bound is generally conservative so
that the actual contamination of the max-share identified shock is even worse.

The identification conditions can also be adapted to versions of max-share with
additional linear constraints. This nests approaches such as zero restrictions in the
news shock literature (e.g., Barsky and Sims, 2011) or controlling for other shocks
(e.g., Basu et al., 2025). Instead of the space spanned by the impulse responses of the
target variable to untargeted shocks, the orthogonality and relative size conditions
now pertain to the subspace that is orthogonal to the constraints. The resulting
identification restrictions are weaker but can still be difficult to satisfy.

Finally, we present two theoretical results on the behavior of max-share identifica-
tion when the identification conditions are violated. First, we consider a perturbation
from the identified case that generates small violations of orthogonality. The resulting
weight on the untargeted shocks can be expressed, to first order, as the eigenvectors
scaled by the projection of the perturbation on the eigenvector divided by the differ-
ence between the corresponding eigenvalue and the principal eigenvalue. Second, we
show that for an arbitrary deviation in the orthogonality condition, we can bound
the weights on untargeted shocks by a function that depends inversely on the dif-
ference between the two largest eigenvalues. These results emphasize that when the
identification conditions are not strictly satisfied, the performance of max-share de-
pends critically on the true response of the target variable to the target shock being
substantially larger than the corresponding responses to all the untargeted shocks.

In light of our results, we revisit the shocks identified by Kurmann and Sims (2021)
and Angeletos et al. (2020). Based on the VAR from Kurmann and Sims (2021), we
identify a TFP news shock and a main business cycle shock using max-share in the
time and frequency domains, respectively. In addition, we identify a TFP surprise
shock using recursive identification. These three shocks are typically interpreted as

being distinct, with the TFP shocks differing in their initial impact and the main



business cycle shock taken as a demand shock independent of TFP. However, using
our diagnostic described above, we find that over a third of the identified TFP news
shock comes from the TFP surprise shock and over a quarter of the business cycle
shock comes from the TFP news shock. We further show numerical examples of how
these identification issues are present in ARMA, demand and supply, and medium-

scale New Keynesian (Smets and Wouters, 2007) models.

Related Literature. The max-share problem was initially introduced in the time
domain by Faust (1998) to obtain bounds on VAR impulse response functions. The
idea was refined and implemented for identification purposes by Uhlig (2004a) and
Uhlig (2004b). Subsequently, DiCecio and Owyang (2010) adapted max-share iden-
tification to the frequency domain.

Since these contributions, the max-share approach has been used to identify a
vast array of shocks.! Our results also nest related work by Barsky and Sims (2011),
Kurmann and Otrok (2013), and Ben Zeev and Khan (2015) that maximizes the
contribution to the sum of FEVs over various horizons possibly subject to additional
constraints. For many of these shocks, it is a challenge to impose appropriate zero and
sign restrictions (Sims, 1980; Uhlig, 2005; Arias, Rubio-Ramirez, and Waggoner, 2018)
or to find suitable instruments for identification (Mertens and Ravn, 2013; Stock and
Watson, 2018). In the literature, the stated underlying assumption is typically that
identification only requires that the target shock is important for a particular variable
at some horizon or frequency. However, we show that the identification scheme is less
innocuous than it initially appears.

A spate of recent research has pointed out potential issues with max-share iden-
tification. However, these contributions tend to focus on specific applications rather
than presenting a more general case for the deficiency of max-share. For instance,
Dieppe, Francis, and Kindberg-Hanlon (2021) raise concerns about the possibility

of confounding several shocks when using max-share to identify technology shocks,

!These include permanent supply shocks (Francis, Owyang, Roush, and DiCecio, 2014), uncer-
tainty shocks (Caldara, Fuentes-Albero, Gilchrist, and Zakrajsek, 2016), credit shocks (Mumtaz, Pin-
ter, and Theodoridis, 2018), business cycle shocks (Giannone, Lenza, and Reichlin, 2019; Angeletos,
Collard, and Dellas, 2020), sentiment shocks (Féve and Guay, 2019; Levchenko and Pandalai-Nayar,
2020), TFP news shocks (Kurmann and Sims, 2021; Gortz, Tsoukalas, and Zanetti, 2022; Gortz,
Gunn, and Lubik, 2022), treasury yield news shocks (Moench and Soofi-Siavash, 2022), risk premium
shocks (Basu, Candian, Chahrour, and Valchev, 2025), exchange rate shocks (Miyamoto, Nguyen,
and Oh, 2023; Chahrour, Cormun, De Leo, Guerrén-Quintana, and Valchev, 2024), and government
spending shocks (Chen and Liu, 2019).



which Francis and Kindberg-Hanlon (2022) use sign restrictions to address. Simi-
larly, Kilian, Plante, and Richter (2023) point out that using max-share and related
approaches targeting medium horizons to identify news shocks (Barsky and Sims,
2011; Kurmann and Sims, 2021; Dieppe et al., 2021) may produce misleading results
and propose using max-share to target direct measures of technological news at short
horizons instead. Cascaldi-Garcia and Galvao (2021) show that when used to iden-
tify news and uncertainty shocks separately, max-share yields shocks that are highly
correlated instead of independent, an issue Carriero and Volpicella (2024) resolve by
jointly identifying multiple shocks by max-share. Our general conditions for max-
share identification serve as a single lens through which to understand the threats to
identification in each application.

A more theoretical critique is presented by Guay, Pelgrin, and Surprenant (2024),
who extend arguments from Phillips (1998) to show that the inconsistency of the
reduced form impulse responses in the presence of unit or near-unit roots threatens the
validity of max-share. Our analysis instead assumes that the reduced form parameters
are known. In other words, even without the issues emphasized by Guay et al. (2024),

max-share still requires stringent conditions to accurately identify the target shock.

Outline. The rest of the paper is organized as follows. Section 2 illustrates the
identification conditions using four stylized examples. Section 3 sets up a common
framework for max-share identification in the time and frequency domains. Section
4 presents the necessary and sufficient conditions for valid identification. Section 5
presents tools to diagnose or reduce identification issues and theoretical results on
contamination when the identification conditions are violated. Sections 6 and 7 illus-
trate our insights using numerical examples and an empirical application, respectively.

Section 8 concludes. All proofs are in the Online Appendix.

2 Building Intuition from Illustrative Examples

We first present four stylized examples in Figure 1 that demonstrate how max-share
identification can fail. In each case, the econometrician seeks to identify Shock 1 and
knows that it produces the largest response at horizon 1. A common practice in the
literature is to take this knowledge as justification for using max-share with target

horizon 1 to identify the shock. Panel A presents the ideal case—max-share perfectly
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Figure 1: Impulse responses to max-share identified and true shocks in four stylized
examples. Solid blue line corresponds to max-share shock; remaining lines correspond
to true shocks.

identifies Shock 1. Orthogonality holds because over the horizons 0 and 1, the one
other shock, Shock 2, is zero whenever Shock 1 is non-zero and vice versa. Moreover,
since the response to Shock 1 peaks at 1 while that to Shock 2 only peaks at 0.9, the
relative size condition is also satisfied.

The subsequent panels show how slight deviations threaten identification. In
Panel B, orthogonality is violated as we now increase the horizon 1 response to Shock
2 from 0 to 0.2. Even though the response to Shock 1 is still larger (1 > 0.92 4 0.22),
the max-share shock is now a combination of Shocks 1 and 2, with less than 60% of
the weight on Shock 1. Panel C shows relative size being violated. Returning the
horizon 1 response to Shock 2 to 0 so that orthogonality is satisfied, we increase the
response on impact to 1.1, making it explain a larger share of the FEV. As a result,
the max-share identified shock is incorrectly identical to Shock 2. This emphasizes
that earlier horizons have a potentially important role for the relative size condition.
Finally, Panel D shows that with more than one untargeted shock, we can violate
the relative size condition even if the individual response to each of the untargeted
shocks is relatively small. In particular, we reduce the impact response to Shock 2

to 0.8 but introduce an additional shock, Shock 3, that produces a response that is



identical up to a scaling of 4/5. The corresponding eigenvalue accounts for the fact
that multiple impulse responses are identical up to scale and consequently dominate
the one corresponding to Shock 1. Max-share identification thus picks up Shocks 2

and 3 only. We will show that these issues are pervasive.

3 The Max-Share Identification Problem

Consider a general structural VAR:

L
Y, => B, +Ce, (1)
/=1

where Y; is an N X 1 vector and ¢, is iid over time, with E[e;] = 0 and Elee}] = 1.

Under suitable stationarity conditions, we have the moving average representation:

Yi=> Wnein, (2)
h=0

where the N x N matrix V), summarizes the impulse responses at horizon h. Each
column of ¥, corresponds to a shock and each row corresponds to an endogenous
variable. The estimates of the reduced form VAR provides ¥ = CC’, but not C. Ac-
cordingly, we will assume that ¥, ¥} is known, but additional restrictions are required
to identify ¥,. Max-share identification is one way of obtaining the restrictions for

one column of ¥y, i.e., identifying one of the structural shocks.

3.1 Time Domain

Max-share identification is most commonly performed in the time domain. To identify

W}, it considers the problem:

5! [Zhey \iheeui;l} 5
T P ]

subject to 6’0 =1, (3)

where 0 is the rotation or vector of weights we are solving for, 9; is a vector with 1 in the
1th entry and 0 everywhere else, H is a set of horizons chosen by the econometrician,

and W, is an arbitrary rotation of the structural shocks satisfying Elh\ff% = U,V .
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The typical application of (3) sets H = {0,1,..., H}. This maximizes the contri-
bution of the target shock to the FEV of variable i. The N x N matrix ¥,00'V/ in
the numerator captures the contribution of the target shock to the overall variance
of the full vector of endogenous variables, Y;, and multiplication by §; extracts the
contribution to variable 7. This is standard practice in the identification of technol-
ogy shocks (Francis et al., 2014) and news shocks (Barsky and Sims, 2011). Taking
H — oo corresponds to long-run identification (Blanchard and Quah, 1989). Setting
H = {0} and i = 1 corresponds to taking C' as the lower triangular matrix from the
Cholesky decomposition of Y. If the first variable is an instrument for the shock of
interest, then this is internal instrument identification (Noh, 2018; Plagborg-Mgaller
and Wolf, 2021).

We can recast the time domain max-share problem as an eigenproblem, as first
discussed in Faust (1998), which helps unify our exposition of the frequency domain

problem (the formal proof can be found in the Online Appendix).

Lemma 1. Solving (3) is equivalent to solving:

Z U 6000, | 6 subject to 60 = 1. (4)

heH

arg max 4

The solution is the principal eigenvector of:

PR TATS (5)

heH

subject to 0’60 = 1.

3.2 Frequency Domain

An alternative approach proposed by DiCecio and Owyang (2010) solves the max-
share problem in the frequency domain. The motivation for such an approach is that
one may only be interested in fluctuations of particular frequencies. For instance,
Stock and Watson (1999) argue that analysis of economic fluctuations should focus
on business cycle frequencies to avoid contamination by overly high or low frequency

fluctuations in the data.


https://cdn.prod.website-files.com/5f2d6ee9c98d11e28fc9b177/682f6cc8f3cb0c8be59859a7_bf3455e28fa7574713ce18f450e8b3e4_max_share_online_appendix.pdf

The frequency domain max-share approach solves the following:
arg max 0'Re [/ T (w) dw] 6 subject to 0’6 = 1, (6)
weN

where, denoting the conjugate transpose of a matrix X by X,

T (w)d,6T (w), (7)
Dw) =Y Wpe . (8)

Q) C [—m,m] is the set of frequencies of interest (typically some band [wp,wy]), d; is
the vector with 1 in its sth position and 0 everywhere else as before, and I' is the
lag polynomial in (2) with the lag operator replaced by e=™, often referred to as the
transfer function.? Similar to the time domain, the solution to (6) is the eigenvector

associated with the largest eigenvalue of Re [ [ _, T (w) dw] as shown in Lemma 1.%

€N

3.3 Unifying the Time and Frequency Domain Problems

We analyze max-share in a single framework by using the fact that the time and
frequency domain problems share a common structure. For exposition, we henceforth
take U), = U}, so that the jth entry of the solution, 6, to (3) or (6) is the weight that
the max-share shock places on the jth true shock.? 6; is also the correlation between
the max-share shock and the jth true shock in population.’

In both time and frequency domains, we can write the max-share problem as:

arg max 0'=6 subject to 0’0 = 1, 9)

2See Priestley (1981) for a classic reference.

3For the problem (6) to be well-defined, we require regularity conditions on the impulse responses,
¥),. In what follows, we maintain the high-level assumption that Y_,°  [[¥|| < co, where ||-|| denotes
the Frobenius norm. Under this assumption, Y; in (2) is weakly stationary and has finite variance.
Moreover, I';; (w) is continuous and bounded on by standard arguments. This is a direct application
of the Weierstrass M-test and the uniform limit theorem.

4This choice of U, affects the solution for @ in (3) but does not change the implied impulse
responses to the max-share shock. In particular, if we replace \Ilh with a \I/hR where R is an
arbitrary rotation matrix, the solution @ will be replaced by R~16, leaving the max-share shock
unchanged. In practice, since the true responses are unknown, a convenient choice is to take ¥y to
be the lower triangular matrix from the Cholesky decomposition of X.

5This follows since (301"1r(§:fj:1 Orert,€jt) = Zivzl Orcorr(e s, €54) = Ojcorr(ejs,€54) = 0.
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where = is a Gram matriz, i.e.,

Ejgr = (5, 05) (10)

for an appropriately defined inner product (-,-). The Gram matrix of a set of vectors
in an inner product space is the Hermitian matrix of inner products, whose entries are
given by the inner product, (1;, ;). In our context, 1; is a vector whose hth element
is the impulse response of the target variable to shock j at the hth horizon in some
set of horizons $). The matrix = will thus depend on the reduced form parameters,
{{B,}l, 2}, as well as H in the time domain and © in the frequency domain, as
we explain in Section 4. The solution for 6 is the principal eigenvector (i.e., the
eigenvector associated with the largest eigenvalue) of =. We explain in the Online
Appendix that it is rare for = to have repeated non-zero eigenvalues and therefore
(9) will generally have a unique solution.

Suppressing the dependence on {{B,}L_,, ¥} for convenience, we have:

E(H) =) L800, (11)
heH
(1, Vi)™ =ty - by, (12)

from (4) in the time domain and:

=/74(Q) = Re { /w . T (w) dw} : (13)
W)= [

we

T @ (@) + T )5 (w)dw, (14)

from (6) in the frequency domain, where I'}' (w) and I'}%(w) are the real and imaginary
parts of the (7, j) element of the transfer function, I'(w).® For the time domain, = H
and the dot product is clearly an inner product. In the frequency domain, ) = Zx,
the set of non-negative integers; we verify that (-,-)/"® defines an inner product in
the Online Appendix.

As a Gram (and thus Hermitian) matrix, = is analogous to a covariance matrix,

6Barsky and Sims (2011) and Ben Zeev and Khan (2015) replace (11) with >0 STH* W 6,610,
thus accumulating the FEV over a set of horizons {H, k}ff:l. Our general theorem will still apply,
but the interpretation will have to account for the sum over {Hj < .

11
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but of impulse responses and not variables.” Hence, even if the structural shocks are
orthogonal, the off-diagonal elements of = will be large (relative to the diagonals) if

the shocks have similar dynamic effects on the target variable 7.

4 Necessary and Sufficient Conditions for Validity

We now derive conditions that a generic Gram matrix = must satisfy for max-share
identification to be valid. We then discuss their interpretation in the time and fre-
quency domain max-share problems. For convenience, we will henceforth assume
without loss of generality that the true target structural shock is ordered first. Valid
identification corresponds to the principal eigenvector of = (and solution to (9)) being

0 = 01, so that all the weight is placed on the true target structural shock.

4.1 General Result

Denote the direct sum of two square matrices X; and Xy by X; & Xo, i.e.,

X; 0
X1 ® Xy = .
L0%s [0 le

In addition, let A\yax(Xz2) denote the largest eigenvalue of Xy and let ||-|| denote the

Euclidean norm for vectors or the Frobenius norm for matrices.

Theorem 1. The unique solution to the general maz-share problem:
arg max 0’20 subject to 00 = 1

is 01, i.e., maz-share identification is valid, if and only if
o (Orthogonality) E = Z1 1 ® Zo.n2.n; and
o (Relative size) Z11 > Apax(Z2.n2:N)-

Theorem 1 is a key result that provides necessary and sufficient conditions for

max-share identification to obtain the true target shock. It clarifies the economic

It would be an actual covariance matrix if ¢); and 1/;, were replaced with vectors each containing
realizations of a random variable and the matrix was normalized by the number of observations.
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reasoning required to justify the use of max-share, similar to how one would approach
other identification schemes such as zero restrictions, sign restrictions, or instrumental
variables. Concretely, for max-share to place all its weight on the first shock, two
conditions must be satisfied.

—_

First, the orthogonality condition states that = must have the block diagonal

NETE
0 Z2:N,2:N

Interpreting = as a covariance matrix, this corresponds to orthogonality between

structure:

(1]

the first component and each of the other components. It restricts the shape of the
impulse response of the target variable to the target shock relative to each of the other
shocks. In the stylized example in Figure 1, Panel B showed that a seemingly small
modification in the Shock 2 response (increasing the horizon 1 response from 0 to 0.2)
in violation of orthogonality resulted in max-share placing over 40% of the weight on
Shock 2, illustrating that the condition is not only stringent but also consequential.
More generally, we will show that it is violated for a large class of impulse responses,
challenging the understanding of many empirical applications of max-share.

As an empirically relevant example, consider the identification of TFP shocks
by targeting output at a medium horizon (Uhlig, 2004a; Francis et al., 2014). The
identification conditions are likely to be violated since the response of output to TFP
shocks shares some similarity to its response to other shocks such as demand or
borrowing cost shocks. An exception for which the shape becomes irrelevant is the
case with Zo.y 2.8 = 0, i.e., all other shocks are fully dominated by the target shock
over the target horizons or frequencies. This is unlikely in most settings besides two
cases—long-run identification (H — oo0) and internal instruments (H = 0).

Next, the relative size condition states that =;; must be larger than the largest
eigenvalue of the lower block Zo. v 2.x. Importantly, it is insufficient for =; ; to be the
largest diagonal element of =. In particular, if the off-diagonal elements of Zo.y 2.n
are large, then the principal eigenvalue of Zo.n2.n can be larger than any of the
individual diagonal elements. In the extreme case, when Zs.y0.n is rank one, its
principal eigenvalue will be its trace, i.e., Apax(ZE2n2N) = Z;VZQ Z;;. The Panel
D of Figure 1 presented a stylized example in which Z;; was the largest diagonal
element (since the response to Shock 1 was larger than that to Shocks 2 and 3) but

the principal eigenvector had zero loading on the target Shock 1.

13



Both conditions emphasize the neglected role of impulse response shapes in the
existing max-share literature. These shape restrictions apply to the responses of the
target variable to the full set of shocks jointly. In the context of the VAR in (1) with
iid shocks, this will depend on the internal propagation of the system through { B},
placing a potentially heavy burden of a priori knowledge on the econometrician. In
contrast, the literature has tended to make broader claims without the caveats of
Theorem 1, calling into question the validity of these identification strategies and

their economic interpretation.®

4.2 Time Domain

—time

Interpreting =""¢(H). To apply Theorem 1 to the time domain, denote the re-
sponse of the target variable to shock j over horizons H by vector 1y ;, so that the
hth element of v ; corresponds to response at the hth horizon in ‘H. We can then

—time

write the (j,7") entry of Z"™¢(H) as follows:

time [V1* =D hern V2, if j =4
=0 (H) = Y- Yng = v ’ e -
H,j

(15)
%2040\l cos ajjr (H) i j # j

—

Ztime(H) has the form of a covariance matrix, where |1y ;||” corresponds to the jth
variance and cos o (H) plays the role of the correlation between impulse responses j
and j'. The diagonal elements (j = j') capture the squared magnitude of the response
to the jth shock, Hw’H’jH2. The off-diagonal (j # j') terms depend not only on the
magnitude of the responses to j and j’, but also to cos o (#H), where ;s is the angle

between the vectors ¢4 ; and 3 ;. The ratio, Z7(H) /Z7*(H), of an off-diagonal
element with the diagonal element from that row is also the regression coefficient of
—time
=550

impulse responses, 1y j and 1y ;, but is not invariant to translating either of these

Wy on Py ; without an intercept. Consequently, scales with the underlying

responses (e.g., replacing ¢y j with ¢y ; + c).

Identification Conditions. The orthogonality condition in the time domain is:

Va1 - Y,y = 0 forall j # 1, (16)

8For example, a typical argument for using max-share is that the shock of interest is the primary
driver of the target variable (e.g., Féve and Guay, 2019; Kurmann and Sims, 2021).
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which, with |43 ;|| > 0, implies cosay;(#) = 0 for all j # 1. Importantly, orthog-
onality here is defined in the space R/™I where || is the cardinality of the set .
It depends on how the responses move between negative and positive values over
different horizons and not on the correlation across innovations.

The condition is easily violated. For instance, if the target shock and some other
shock j # 1 produce impulse responses that are strictly positive over a finite set
of horizons H, then we have 131 - ¥y ; > 0. This occurs, for instance, when both
responses have the same shape as the impulse response of a stationary AR(1) to an iid
shock. Alternatively, consider the common application of distinguishing TFP news
and surprise shocks. The TFP news shock literature typically assumes that the shock
has a zero or small effect on TFP on impact, but that its response grows over the
target horizons and is persistent. In contrast, the TFP surprise shock produces a
relatively large initial response in TFP, but its effect decays over time. Even though
the two responses look markedly different, they are both strictly positive and thus
violate (16) for any finite set of horizons, H.

As we increase the number of shocks, IV, condition (16) potentially becomes even
more problematic because it has to be satisfied for all other shocks in the system.
This requires the econometrician to be willing to make statements about the shape
of each of the corresponding impulse responses, which potentially requires labeling
even the untargeted shocks. For example, suppose we knew that the responses to
shocks 2 to N have stationary AR(1) shapes. For the response to the target shock
to be orthogonal to all of these simultaneously, the responses ¢, ; for j # 1 must
be identical up to scale. However, this threatens the relative size condition, which
becomes =} > Z;VZQ =i, since Zjvzz =4e grows with N.

The relative size condition in the time domain can be written as:

3] > Amax (E50Gn(H)) - (17)

—time

As discussed before, Apnax(E54%.x) depends on both magnitude and correlations of
target variable responses to untargeted shocks 2,...,N. The typical justification
of ||sal|l > ||tow, || for any j # 1 is a necessary but not sufficient condition since
)\maX(EZ%E; ) could be large with small but similarly shaped responses. Equation
(15) makes clear that the measure of similarity is cos o

An important property of =€ reflected in (15) is that [|1)3 ;|| is defined as a
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sum over horizons H. In the usual max-share implementation targeting the FEV at
horizon H, we have H = {0,...,H}, and |[1)y ;|| depends not just the relative size
of individual responses at horizon H but instead on the entire response from impact
through horizon H.° With a finite target horizon H, the responses at short horizons
continue to impact the FEV. Consequently, the untargeted innovations need to not
only have transitory effects, but the corresponding impulse responses also need to be
negligible at short horizons unless they satisfy the orthogonality condition.

To prevent the dependence on untargeted horizons, Dieppe et al. (2021) propose
a so-called non-accumulated maz-share in which they set H = {H}. The drawback of
such an approach is that it implies 1y ; - Yo o = ||V ;| |1w,j7]] or cosayj =1 for all
(4,7') pairs. In other words, Z%™¢ becomes rank one. Appendix B.1 shows that this
represents an extreme violation of the orthogonality condition and the weight on each
true shock is proportional to the size of impulse responses to it. This is consistent with

the mixed success Dieppe et al. (2021) find in Monte Carlo simulations comparing

non-accumulated max-share to the traditional max-share approach.

4.3 Frequency Domain

Interpreting Z/7¢¢(€2). In the frequency domain, the interpretation of orthogonal-
ity and relative size differs from the time domain. To derive the analogous objects,

denote the real and imaginary parts of the transfer function, I'(w), in (8) by:

te(w) = Z W), cos (wh) and T™(w) = — Z Uy, sin (wh).

h=0

For variable ¢ and shock j and frequency w, characterize I';;(w) by the so-called gain:

kig(@) = 1/ ([R(@)) + (I (w))? (18)

and phase:

F%;“(w)] (19)

QOZJ(W) = tan_l [_ p
()

9See, for example, the main assumption in Francis et al. (2014) that all untargeted shocks have
transitory effects on labor productivity.
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so that T'y;(w) = ki ;j(w)e®i®. The gain captures how much shock j is amplified
in the target variable’s frequency w component. It increases proportionally with the
standard deviation of shock 7. The phase captures how much shock 7 is shifted back
in time relative to target variable’s frequency w component. For example, the phase
corresponding to Shock 1 in Figure 1 will be w, as the impulse response shifts the
shock back by ¢; j(w)/w = 1 period.'

We can write the (j,j') entry of Z/74(Q) as:

waQ /{?ﬁj(w)dw if j =74

EQ) = ,
[ oeq Fig (W) g (W) cos (@5 (w) — @iy (w)) dw if j # j'

Y

(20)

—time

which parallels the expression for =77 in (15). For intuition, focus on the objects
inside the integral, which are the elements of Eﬁfq(Q) when we consider a singleton
frequency band, 2 = {w}. The squared gain, /i?’j now takes the place of the squared
norm, |1y, HQ, playing the analogous role of capturing the size of the impulse response
at frequency w. On the off-diagonal, the angle, «; ;/, between impulse responses is

now replaced by the phase difference, ¢; ;(w) — ¢; ;(w).

Identification Conditions. In the frequency domain, the orthogonality condition
is:

/ k11 (w)k1j(w) cos (pr1(w) — 1 5(w))dw =0 forall j#1, (21)
weR

and the relative size condition can be written:
/ l{il (w)dw > /\max (Efreq(Q)QZN’QZN) . (22)
weN

Even for a single frequency, w, the elements of Z/7¢ depend on the impulse response
over all horizons h > 0, subject to the weights e ™" Since these weights are periodic,
they do not discriminate between short and long horizons. While the frequency w is
often connected with 7 = 27 /w periods (Stock and Watson, 1999), this association
refers to the periodicity of e=™" and does not imply some special relevance of the
impulse response at horizon 7, as emphasized by Angeletos et al. (2020). More gener-
ally, (20) requires integrating nonlinear functions of the time-domain representation

of the impulse responses over the frequency band, 2. Consequently, it is arguably a

10See Watson (2001) for a more detailed overview and additional examples.
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challenging task to justify the use of max-share identification with reference to specific
assumptions on =/,

The phase difference presents a particularly stark contrast with the time domain.
Consider the two responses: ¢¥; = (0,1,0,0,...) and 1y = (1,0,0,...)". While these
are orthogonal by our time domain criteria for a given time horizon H = {0,..., H},
their phase difference in the frequency domain is w. Therefore, in the frequency
domain, they are only orthogonal at frequency 7/2, which is typically associated with
fluctuations at the 2-period frequency, despite the impulse response peaks differing

only by 1 period.!!

4.4 Comparison to Other Identification Schemes

We now contrast the max-share identification conditions with some common struc-

tural VAR identification approaches in order to provide additional intuition.

Internal Instruments. In the time domain, max-share with target horizon H = 0
is equivalent to using the target variable as an “internal instrument” (Noh, 2018;
Plagborg-Mgller and Wolf, 2021), i.e., ordering it first and computing a Cholesky
decomposition of ¥ so that C' is lower triangular. This places zero restrictions on the
(1, j) elements on the top row of C for j > 1. From the lens of the max-share problem,
setting H = 0 makes = rank one. Consequently, the zero restrictions are necessary
for orthogonality: with only one horizon in H = {0} and a non-zero response to the
target shock, the orthogonality condition can only be satisfied if the responses to all
untargeted shocks are zero on impact. Otherwise, the weight on each true shock is
proportional to the size of the impulse response to it, as shown in Appendix B.1.
Targeting the FEV for horizon H > 0 instead, the restrictions no longer apply to
the response on impact but to the entire response over horizons 0, ..., H. The zero
restrictions are replaced by the assumption that the remaining impulse responses
lie in the null space of 1.1, which is arguably harder to satisfy in most settings.
Specifically, unless the untargeted responses happen to be orthogonal to the targeted
one, we would require that the target variable does not respond to untargeted shocks

both at horizon 0 and at all other horizons up to H.

HSee Angeletos et al. (2020) for an empirical example comparing max-share in the time and
frequency domains.
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Sign Restrictions. While max-share does not directly impose sign restrictions, it
can still indirectly imply joint conditions on the signs of the responses to the targeted
and untargeted shocks. For instance, in the time domain orthogonality is violated if
the responses of the target variable to the target shock and at least one untargeted
shock have the same signs over the horizons H. In contrast to identification via sign
restrictions where the assumptions are on the response of only the target shock, the
max-share identification conditions apply to both the targeted and untargeted shocks
jointly. In other words, one needs to label the untargeted shocks and have a theory

for them to justify max-share identification.

Instrumental Variables. The orthogonality condition in Theorem 1 brings to
mind analogous exogeneity conditions for external instrument VARs or even single
equation linear regressions. However, whereas exogeneity conditions in other settings
pertain to the covariance between residuals and regressors (e.g., Sargan, 1958; Engle
et al., 1983; Stock and Watson, 2018), in our context orthogonality is required between
impulse responses. The former requires theoretical underpinnings for the sources of
disturbances. The latter is dictated by the propagation of these disturbances. The
two do not nest each other. For example, in an AR(1) process with two innovations
that are iid over time, the two innovations will produce identical responses (s =

i1(w) — @ia(w) = 0) regardless of their correlation with each other.

5 Beyond Exact Identification

In practice, it is infeasible to fully verify the conditions of Theorem 1 since we do
not observe all the true structural shocks. However, it is possible to obtain a lower
bound on the degree of contamination or weaken the identification conditions if the

econometrician has additional knowledge.

5.1 Practical Diagnostics and Refinements

We first present a theorem that provides a practical check of the validity of max-
share identification in empirical applications. Unlike the conceptual approach in the
previous section, this implementation uses output that is directly available from the

estimation.
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Using Untargeted Responses to Bound Contamination. With knowledge
about the response of the target variable to an untargeted shock, we can obtain a
measure of how much the max-share identified shock is contaminated by this untar-
geted shock. The untargeted shock can be externally identified using any identifica-
tion scheme as long as it is plausibly purged of the true target shock. For example,
one could consider a shock identified via instrumental variables if the instrument is
exogenous with respect to the targeted shock, even if it captures a combination of
true untargeted shocks.

The following theorem gives practitioners a straightforward way to either con-
firm that the max-share shock is contaminated or rule out the likelihood of it being
contaminated by the externally identified shock. Crucially, its implementation uses

output directly available from the estimation.

Theorem 2. Suppose the maz-share problem (9) has a wunique solution 6 =
(01,...,0N)" with the associated largest eigenvalue Amax(Z) and maz-share impulse
response * = Zgil Ok,  Then for an impulse response 1& = Z;VZQ a1 with

N2 .
> j—o @ =1, we have:

N N
W) = (7,07 Y a0 = Anax(E) Y 6. (23)
j=2 j=2

Furthermore, we have the following upper bound for the weight on the targeted shock:

N AU
der () .

Theorem 2 shows that even though the max-share problem itself does not allow
us to directly observe the weights, €, on the true structural shocks, we can indirectly
learn about the contamination as long as we can identify the untargeted shocks that
we are concerned about.'? Suppose we observe Shock 2 (or its impulse response), i.e.,
ay = 1 and a; = 0 for j > 2. Then (23) states that we can obtain #y by projecting the

impulse response to the observed Shock 2, 1), on the impulse response of the target

12The impulse response to the max-share identified shock will be orthogonal to the implied set
of untargeted shocks by construction. However, these implied shocks are not the true structural
shocks. This is analogous to the fitted residuals in an ordinary least squares regression satisfying
the orthogonality conditions by construction even in the presence of endogeneity.
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variable to the max-share shock, ¢*. The bound (24) then follows, giving an upper
bound on the weight that max-share identification is placing on the target shock.

We provide numerical and empirical examples below to show that the the magni-

tude of éf:ﬁ% can be substantial, bounding 6, considerably away from 1. Moreover,
with N > 2, the upper bound (24) will not be attained unless the remaining un-
targeted shocks produce impulse responses that are orthogonal to the targeted one.
As we have argued, this is unlikely in practice. Therefore, arguing that the target
variable is driven by a single shock or modeling a single shock to match the impulse
responses of various variables to the max-share shock (e.g., Angeletos et al., 2020;
Basu et al., 2025) based on a large FEV contribution can be misleading. Max-share
only provides an upper bound for the contribution of the true targeted shock (by con-
struction from the problem (9) and pointed out by Féeve and Guay (2019)); Theorem
2 emphasizes that this could appreciably overstate the targeted shock’s importance.

For concreteness, suppose we identified a TFP news shock using max-share with
TFP as the target variable. The shock should be orthogonal to monetary policy
shocks. Therefore, one can separately identify a monetary policy shock using an
external instrument based on high frequency identification (Gertler and Karadi, 2015;
Bauer and Swanson, 2023a) and obtain the corresponding impulse response of TFP,
which plays the role of @@ in this example. As long as the identified monetary policy
shock is itself not contaminated by TFP news shocks, the assumption that z/} places
zero weight on 1, is satisfied. Theorem 2 suggests projecting the impulse response
of TFP to the monetary policy shock on the response to the max-share shock. A
large projection coefficient is evidence that the max-share shock is placing substantial
weight on the monetary policy shock. A small coefficient shows that the max-share
shock is not materially contaminated by the identified monetary shock, but does not
rule out potential contamination by other untargeted shocks.'*

Even without directly observing or identifying the untargeted shock, we can utilize
(23) and (24) in Theorem 2 to quantify the implied contamination of the max-share

shock as long as we have information about the untargeted impulse response @/AJ Such

13Since 0; is also the correlation between the max-share shock and Shock j in population, Theorem
2 provides an alternative to obtaining the correlation between the max-share shock and other shocks,
but without sampling error (under the maintained assumption that we know the reduced form
parameters).

“Miranda-Agrippino and Ricco (2021) and Bauer and Swanson (2023b) further discuss the infor-
mation contained in high frequency monetary policy instruments. Meier and Reinelt (2024) show
how TFP can respond to monetary policy shocks.

21



information can be obtained using the approach proposed by Plaghorg-Mgller (2019)
to form priors on impulse responses. If the information is obtained from a structural
model (Ingram and Whiteman, 1994; Del Negro and Schorfheide, 2004), we can also

determine how the structural parameters determine the degree of contamination.

Max-Share with Constraints. To overcome concerns over identification, the lit-
erature has proposed extensions, most prominently incorporating zero restrictions
(Barsky and Sims, 2011) or controlling for the observed shock before implementing
max-share (Cascaldi-Garcia and Galvao, 2021; Basu et al., 2025).

Both examples above can be expressed as linear constraints in the following con-

strained max-share problem:
arg max 0’260 subject to K'0 =0 and 0’0 = 1, (25)

for a full rank K € RV*™ with 1 < m < N — 1. The assumption that the target
variable does not respond to the target shock on impact corresponds to K = W}d;.'°
Controlling for some observed shock j corresponds to K = ¢;.

The theorem below shows that the constrained max-share problem (25) has identi-
fication conditions analogous to Theorem 1. Online Appendix B.2 presents a theorem

that similarly parallels Theorem 2, but for the constrained problem.

Theorem 3. The unique solution to the general constrained maz-share problem (25) is
01, i.e., maz-share identification is valid under the m linear constraints characterized
by K, if and only if

» (Orthogonality) == 31,1 D EZ:N,Q:N;
 (Relative size) 31,1 > )\maX(EQZN’Q;N),' and
o (Feasibility) K'6, =0,
where = = MZEMy and My =1 — K(K'K) 'K is the annihilator matriz of K.

The identification conditions for the constrained problem (25) in Theorem 3 are

similar to those for the unconstrained problem (9) in Theorem 1 except for two

15To see this, note that the on-impact response of the max-share shock is ¥of. The zero restriction
requires its first element be zero, §; ¥y = 0.
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differences. First, there is an additional feasibility constraint to ensure that d; is not
ruled out as a solution by the constraint. Second, the matrix = is replaced with =,

which is also a Gram matrix but with:
N N
Sjjr = <Z M kjr, Z Mg kjribr).-
k=1 k=1

In other words, the vectors v; underlying = are replaced by chvzl M 51, which
capture the impulse responses of the target variable to linear combinations of shocks.
The annihilator matrix, My, ensures that these linear combinations satisfy the con-
straint by projecting the impulse responses onto the subspace that is orthogonal to
K, similar to its role in generating residuals in a linear regression context. Feasibility
ensures that 21]::1 M 19 = 1, so that the first row and column of = correspond
to the first shock as they do for =.

As long as feasibility is satisfied, the additional constraints K’6 = 0 help to weaken
the identification conditions. In the unconstrained problem (9) we require that
be orthogonal to the space spanned by v, ...,%x. In the constrained problem (25)
each additional constraint (i.e., column of K) reduces the dimension of that space by
1. The reduced dimension also implies that )\max(EQ; N2N) < Amax(Z2:v2.8). This is

formalized in the following corollary.

Corollary 1. Consider the constrained maz-share problem (25). If the feasibility
condition, K'6; = 0, holds, then the orthogonality and relative size conditions in

Theorem 1 are sufficient but not necessary for those in Theorem 3:
e E=E11DPEaNaN = Z=E11DEananN; and
® E1,1 > AInaX(EQ:N,Q:N) — El,l > )\maX(EQ:N,Q:N)-

Nevertheless, the difficulties in exactly satisfying the identification conditions re-
main unless the constraint fully controls for the contaminating shocks. This is only
possible if the number of constraints matches the number of untargeted shocks im-
pacting the target variable. Moreover, the number of variables, N, limits the number
of constraints. For example, we can control for at most N — 1 observed shocks. Con-
sequently, one is not at liberty to add an arbitrarily large number of “controls” before

utilizing max-share (in contrast to a linear regression where we can continually add
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regressors, sample size permitting) even though it is not uncommon to have numer-
ous versions of a single class of shocks, as exemplified, for instance, in the contrasting
approaches to identifying monetary policy shocks (McKay and Wolf, 2023; Brennan,
Jacobson, Matthes, and Walker, 2024).1® The constraints generally increase the share
of the weight placed on the target shock, 6,/ Zjvzl |6;|, but it is possible to construct

counterexamples in which this is not true.

5.2 Perturbations and Global Bounds

Besides two special cases—with = rank one and with N = 2—that we discuss in On-
line Appendix B.1, closed form solutions are not generally available for the max-share
problem (9) when the identification conditions in Theorem 1 are not satisfied. Nev-
ertheless, we can obtain local approximations for small deviations from orthogonality

and bounds for the solution with larger deviations.

Local Deviations from Orthogonality. The following proposition characterizes

the solution when deviations from the orthogonality condition are small.

Proposition 1. Suppose = := =11 @ Zo.non + dE, where =11 > Apax(Z2:82.7), and

_ 10 v .
=- [ ] with 1] = o (/24 + IZavan)
v O(N

—1)x(N—1)

and Apax(Z) =EZ11 + O (HV”Q) is simple, then the maz-share problem has solution

/

+O(lv), (26)

7

N U}
0] /
Z = 4w0j
7j=2

where {woj}j»v:Q is a complete set of orthonormal eigenvectors of Zo.n o.n corresponding

to (possibly repeated) eigenvalues {Xo;} i s.

Proposition 1 describes how the principal eigenvector changes with a particular
perturbation in =. The perturbation, d=, is zero on the diagonal blocks and char-

acterized by the vector v off the diagonal blocks. Intuitively, we can think of this

16See also the discussion of invertibility in VARs in Section 4.1.2 of Stock and Watson (2016) and
references therein.
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as leaving the responses to the untargeted shocks unchanged while perturbing the
response to the targeted shock in such a way that its magnitude is unchanged but its
shape is closer to the other responses.

The resulting expression, (26), has a straightforward interpretation. The first el-

ement of the principal eigenvector is unchanged up to first order. But the rest of

N

the vector now reflects a shift in the direction of each of the eigenvectors, {w;};l,,

of Zo.n2.n. The weight on each of these eigenvectors depends on the coefficients,
w(’)jy
Z1,1—Aoj

vector, wp;. Thus, the principal eigenvector will shift more in the direction of wy; if

. The numerator is a projection, wp;v, of the perturbation, v, on the eigen-

the perturbation of the targeted response brings it closer to that eigenvector. The
denominator implies that the change in the principal eigenvector depends on the size
of the eigenvalues )\, relative to =; ;. In other words, if the target impulse response
is much larger than the other responses so that = ; is large relative to Ag;, then small

deviations from orthogonality will have a relatively minor effect on identification.

Global Bounds. With larger deviations, we can derive bounds that apply globally.

Proposition 2. Suppose = := =11 ® Ea.no.n + A=, where Z11 > Apax(Z2.v2:8), and

—_
— —
—_—

0 v
v Onv—1)x(N-1)
and Amax(Z) is simple, then the unique solution 0 to the maz-share problem satisfies:

272 |lv|

2 ||
- 1,1 — )\max(EQ:NQ:N)’

sina(dy,0) < = p—
( ’ ) —1,1 — )\max(:Q:N,Z:N)

and |0 — 61| < = (27)
where the a(d1,0) is the principal angle between 61 and 0, and the sign of 0y is

normalized to be positive.

Proposition 2 applies the same perturbation, d=, as Proposition 1, but no longer
requires that |v| is small. The two expressions in (27) give alternative ways to
measure the difference between §; and 6, either through the principal angle, (-, "),
or the norm, [-||, of the difference. In both cases, the denominator of the bound is
the difference, Z; 1 — Apax(Z2:v,2:7), between the two largest eigenvalues of =. If the

difference is sufficiently large, then even nontrivial deviations from orthogonality will
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result in small degrees of contamination (an extreme case being exact identification

when Zy.y 2.5y = 0, as mentioned in Section 4.1).'7

6 Numerical Examples

We now consider a series of numerical examples that all follow the general form for
a log-linearized dynamic stochastic general equilibrium (DSGE) model (Ferndndez-
Villaverde, Rubio-Ramirez, Sargent, and Watson, 2007):

Ty = F.l'tfl + QEt (28)
Yt = G.’L’tfl + R€t, (29)

where ¢, ~ N(0, ). The impulse response of a variable y; ; to shock j at horizon h is:

R, h=0
W in=

. (30)
Gi,:Fh_lQ:,j h 2 1

In what follows, we abstract from whether the VAR can produce these responses and
focus more abstractly on what they imply for Z and the identification conditions.'®
Differences in the dynamic responses to different shocks beyond horizon 0 depend
on differences in exposures, @.;, of the states x; to the shocks and dynamics of
those states, as captured by F'. If the states have similar autoregressive properties or
exposures to the structural shocks, then a given variable will have a similar dynamic
response to different shocks and max-share will result in a convolution of these shocks.
For intuition, consider the case where x; and thus F' are scalars. An example is
the real business cycle model from King, Plosser, and Rebelo (1988) with iid shocks,
where the only state, zy, is (percentage deviations of) capital, k;. The response of y; ¢
to any shock then resembles an ARMA(1,1) with the same AR coefficient F'. Suppose

17Consider a Blanchard and Quah (1989) economy where only one shock has a permanent effect
on the target variable. With a sufficiently long horizon, one can get a large weight on the shock of
interest even if orthogonality is not closely approximated. For instance, consider responses 11, =
1—0.9" and ¢, = 0.9". For H = {0,...,100}, we then have ||ty 5|° / [tb2.* = 16 and max-
share places 95 percent of the weight on Shock 1 despite orthogonality being violated with )y 4 -
Yo/ V1,2 |12, 2|l = 0.25. Nonetheless, there are other drawbacks to long-run identification
arising from low frequency fluctuations (Francis and Ramey, 2009; Gospodinov et al., 2013).

18See Ferndndez-Villaverde et al. (2007) for conditions under which a VAR can reproduce the
model impulse responses.
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as before that the target shock is ordered first. Then, for a given horizon or frequency

band and R; ;, orthogonality requires a specific R;;/Q;; for all j # 1.

6.1 ARMA(1,1) Impulse Responses

When impulse responses resemble those of an ARMA model, orthogonality is possible
but highly dependent on parameters. As an example, we study the orthogonality
condition and deviations from it in (28)-(29) with F' = diag{p,}, Q = diag{p; — ¢;}
with |p;] < 1 for j € {1,2}, and G = R = (1,1)’. The impulse responses then
correspond to those of an ARMA(1,1) with the MA representation (1 — ¢,;L)(1 —
p;iL)"te;,, where L is the lag operator and ¢; and p; are the MA and AR coefficients,

respectively. The impulse responses are:
1
Yin = . (31)

Time Domain. Taking H = {0,..., H} as is common in the time domain, we have:

1— (pIPZ)H

Vg Yo =1+ (o1 — p1)(p2 — ¢2) 7 (32)
— P1p2
and orthogonality is achieved when:
L —pips )
H =log (1 + log . 33
(/)1 — ¢1)(02 _ ¢2) / (ppo) ( )

The solution to H and deviations from orthogonality depend on the parameter values.
For instance, with ¢ = 0, we only have a positive solution for H if ¢1po > 1.
Moreover, the solution to H may not even be an integer.

As an illustration, we set p; = 0.75, po = 0.95, ¢ = 0, and vary ¢1p2 € {0,1,1.5}.
Figure 2 shows that with ¢; = 0, both responses have AR(1) shapes. The persistence
of each impulse response is sufficiently distinct to make the responses easily distin-
guishable visually. Nevertheless, we have severe violations of orthogonality, with
cos apo decreasing with H from 1 at H = 0 to 0.72 as H — oo. In contrast, with
¢1p2 = 1, orthogonality is approximated for all but the shortest horizons and attained
when we take H — co. When we increase ¢; further such that ¢,p, = 1.5, we again

have relatively strong violations of orthogonality except around the solution to (33) of
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A. Orthogonality Violation ) B. Impulse Response
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Figure 2: Orthogonality violations in the time domain for ARMA(1,1) impulse re-
sponses. Panel A: Orthogonality violations, cosais(#H); Panel B: Impulse re-
sponses. Black lines correspond to Shock 1; gray line corresponds to Shock 2.

2.8. The contrast is striking—a theory justifying the ¢,p, = 1 case is unlikely to rule
out ¢1po = 1.5 given how similar the responses are, but the two parameterizations
have very different implications for the orthogonality condition. Therefore, while one
can construct examples in which max-share approximately or exactly identifies the

true shock of interest, the performance is very sensitive to the details of the responses.

Frequency Domain. As we did in the time domain, we now study the orthogo-
nality conditions in the class of impulse responses defined in (31). To simplify our

analysis, we focus on the single frequency case with = {w}.

Defining:
« 1| xjsinw
¢;(w) = — tan L_]X]m} for x € {p, ¢}, (34)
we can write the phase difference as:
P1(w) — pa(w) = (W) = PT(W)) = (Ph(w) — K5 (W)). (35)

With ¢; = ¢ = 0, i.e., AR(1) impulse responses, we can show that cos(yp; — ) > 0
and orthogonality is not satisfied for any frequency w as in the time domain. Equation
(35) shows that the MA component in response j induces a phase shift by go?(w) that
can, for the right parameterization and frequency, yield orthogonality.

Similar to the time domain, we set p; = 0.75, po = 0.95, and ¢, = 0 as an
illustration. We now vary ¢; € {—1.5,0,1.5,2}. With ¢ = 0, we have large deviations
from orthogonality, with cos(¢1(w) — wa(w)) > 0.72. More broadly, there is no w €
(0, 7) satisfying orthogonality for ¢; € (—1,0.86). With other values of ¢, we do
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Figure 3: Orthogonality violations in the frequency domain for ARMA(1,1) impulse
responses. Panel A: Orthogonality violations, cos(¢1(w)—p2(w)); Panel B: Impulse
responses. Black lines correspond to Shock 1; gray line corresponds to Shock 2.

find frequencies for which orthogonality is satisfied—w = 2.4, w = 0.6, and w =
1.2 for ¢y = —1.5, ¢ = 1, and ¢; = 2, respectively. However, the solutions are
sensitive to and non-monotonic in ¢;. In addition, the curves for cos(p; (w)—p2(w)) on
Panel A of Figure 3 are highly nonlinear and even discontinuous. Finally, around the
values of w satisfying orthogonality, cos(;(w) — @2 (w)) has a relatively steep gradient.
These observations raise doubt about the plausibility of max-share identification in the
frequency domain as it requires precise beliefs on the shape of the impulse responses

in order to satisfy the orthogonality condition for the frequency of interest.

6.2 Supply and Demand

Another instructive case takes F' and () to be diagonal and R = G(Q), so that x;

consists of independent AR(1) processes and the model can be written as:
y; = Gr, = GFG ™ ly,_1 + Rey. (36)

Here, we consider the particular case of a supply and demand system:

a =’ + g, (37)
g = —"pe + ., (38)
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where ¢¢, ¢¢, and p; denote, respectively, the quantity supplied, quantity demanded,

and price in logs. We assume the shocks follow AR(1) processes:
M= P+ o, (39)

where &F “ N (0,1) with x € {s,d}. Using the fact that ¢; = ¢ = ¢ in equilibrium,
we can express y; = (q;, p¢)’ in the form (36). The impulse responses will propagate
as AR(1) processes with persistence p* and p?, inheriting the dynamics of the shocks
since the rest of the model (37)—(38) is static.!? Details are in the Online Appendix.

We identify the supply shock using max-share identification on output in the time
domain for a large but finite H. The approach follows Uhlig (2004a) and Francis et al.
(2014), who use max-share as an alternative for long-run identification (targeting

labor productivity instead of output). We consider the parameter values:

7* = 1.00, p° = 1.00, o® = 1.00
74 =050, p?=095  o?=150

The supply shock is a random walk and the only shock with a permanent effect on
¢:. The demand shock has persistence, p? = 0.95, less than the value of 0.98 used by
Francis et al. (2014). Following Francis et al. (2014), we set H = {0, ..., 40}.

Figure 4 shows the impulse responses to the true shocks as well as those obtained
using max-share identification. While the impulse response of output to the true
demand shock is about three times the size of the supply shock on impact, this is
reversed by horizon h = 40, with the impulse response to the supply shock now three
times that of the demand shock. Despite the relatively small impulse response to
the demand shock at horizon 40, Panel C in Figure 4 shows that the true supply
shock only accounts for less than a third of the FEV, suggesting that max-share
identification is unlikely to perform well.

The max-share shock differs substantially from the true supply shock. First,
Panels A and B show that the max-share shock produces a positive response in
both output and price, resembling a demand shock. Next, Panel C shows that the
max-share shock has a contribution of close to one, roughly three times the FEV

contribution of the true supply shock. These results arise because the max-share

The three-equation New Keynesian model (An and Schorfheide, 2007; Galf, 2015) has a similar
structure in which persistence arises solely through the dynamics of the exogenous shocks.
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Figure 4: Permanent technology shock in supply and demand example identified
via max-share in the time domain. Panels A and B: True and identified impulse
responses; Panel C: Contribution to output FEV; Panel D: Weight that max-share
identified technology shock places on true supply shock. Dashed lines indicate true
responses; blue and orange solid lines correspond to identified max-share and residual
shocks, respectively.

shock only places a weight of 0.39 on the supply shock, as seen in Panel D. While the
weight is increasing in H and eventually converges to 1 as H — 0o, the improvement
is relatively slow, with the weight only increasing by 0.14 between H = 0 and H = 40.
These results reflect the continued effect of the responses at short horizons.

We also plot impulse responses to what we label as the “residual” shock, which
is the untargeted shock implied by max-share identification. Even though each of
the true shocks produces a strictly positive response from output, the correspond-
ing response to the residual shock is negative for short horizons and then becomes
positive after horizon 12. This ensures orthogonality to the max-share shock, which
is by construction. Even in models with more than two shocks, the orthogonality
condition imposes restrictions on the untargeted responses that can potentially imply

counterintuitive results.?"

20In the Online Appendix, we identify a main business cycle shock using max-share at business
cycle frequencies, following Angeletos et al. (2020), and highlight similar implications for the residual
shock.
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6.3 Medium-Scale New Keynesian Model

We also consider data generated from the medium-scale New Keynesian model of
Smets and Wouters (2007), with parameters set to the posterior mode reported in
the paper. We estimate a VAR with four lags using the variables used by Smets and
Wouters (2007) for estimation—GDP growth, inflation, the interest rate, consump-
tion growth, investment growth, the wage rate, and hours. To minimize estimation
uncertainty, we use a long sample of 10° periods. We identify a main business cycle
shock using max-share in the frequency domain, targeting GDP growth at frequency
band ) = [?,’—’27, %’r], as in Angeletos et al. (2020).

In Figure 5, we plot the results together with the impulse responses and FEV
decomposition from the data-generating process (DGP). The main business cycle
shock has a small effect on inflation, consistent with empirical findings in Angeletos
et al. (2020) and Section 7 below. However, none of the shocks in the DGP behave like
the main business cycle shock. Panel B shows that almost all the true shocks produce
larger (cumulative) inflation responses than the business cycle shock beyond the one
year horizon; the small price response to the business cycle shock arises from the true
responses to different shocks offsetting each other. Moreover, Panel C shows that the
business cycle shock explains substantially more of GDP growth variation than any
of the individual DGP shocks. Nevertheless, the small contribution to the FEV of
inflation in Panel D does coincide with the price and wage markup shocks being the
main drivers of inflation but contributing little to GDP growth in the model.

Even though we cannot recover the true shocks from the DGP since it is not
invertible, we can obtain approximate weights on them using Theorem 2 and pro-
jecting the GDP growth impulse responses from the DGP on the max-share impulse
response. The max-share shock does not pick out any single shock. Instead, the
TFP, exogenous spending, investment-specific, and monetary shocks each account
for about 1/5 or more of the weight. The even weights are consistent with Theorem
1. Panel A shows that the GDP impulse responses have similar shapes, thus violating
orthogonality. In addition, Panel C shows that no single shock dominates the varia-
tion at business cycle frequencies, suggesting that we do not have the case of a large
gap between eigenvalues described in the discussion of Propositions 1 and 2, making
the deviation from orthogonality an important determinant of the max-share shock.
The weights are also broadly in line with the relative contributions to the FEV at the

2r 2m

target frequency band of [ﬁ, F]'
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Figure 5: Results from Smets and Wouters (2007) simulation. Panels A and B:
VAR and DGP impulse responses; Panels C and D: Contributions to FEV in VAR
and DGP; Panel E: Weight that max-share identified main business cycle shock
places on each true shock, as implied by projections. Dark green line corresponds to
max-share shock; light colored lines correspond to shocks from DGP.

Our findings highlight the limitations of max-share identification. As emphasized
by Giannone et al. (2019), the impulse responses to the max-share shock can summa-
rize how various variables tend to respond to shocks that affect the target variable
on average, but they do not generally capture a single structural shock. Instead of
modeling a single shock to match the VAR’s max-share shock, one can validate a
structural model by identifying an analogous max-share shock in that model and
checking if the max-share shocks in the VAR and structural model produce impulse

responses with similar features. For example, Angeletos et al. (2020) argue that even
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if the max-share shock consists of multiple true structural shocks, the empirical find-
ing of “interchangeability,” i.e., similar responses with different variables targeted by

max-share, is something researchers should seek to replicate in DSGE models.

7 Empirical Applications

We now consider two well-known empirical applications of max-share identification:
TFP news shocks following Kurmann and Sims (2021) and a main business cycle
shock as in Angeletos et al. (2020). In addition, we identify a TFP surprise shock by
using recursive identification with observed TFP ordered first in the VAR. We apply
Theorem 2 to quantify how much the identified TFP max-share shock is contaminated
by the TFP surprise shock and how much the identified main business cycle shock is

contaminated by the TFP news max-share shock.

7.1 Data, Estimation, and Identification

We follow Kurmann and Sims (2021) and estimate an 8-variable VAR with utilization-
adjusted TFP from Fernald (2014), real consumption per capita, real investment per
capita, real GDP per capita, hours per capita, GDP deflator inflation, the federal
funds rate, and the S&P 500 index. Angeletos et al. (2020) use a similar VAR but
also include measures of labor productivity, the labor share, and unemployment while
omitting the S&P 500 index. All variables except inflation and the federal funds rate
are in log-levels. Our sample period is 1960Q1 through 2019Q4. We use a Minnesota
prior with tightness parameter chosen to maximize the marginal likelihood.?!
Building on a large literature (e.g., Beaudry and Portier, 2006; Barsky and Sims,
2011; Schmitt-Grohé and Uribe, 2012) that seeks to identify shocks that affect future
productivity without being related to current or past fundamentals, we separately
identify TFP news and surprise shocks. The standard assumption in the literature is
that the TFP news shock affects TFP with a lag as it takes time for the information
to diffuse. In contrast, TFP can respond to the surprise shock on impact. Since the

arrival of news will have an impact on future TFP through, for instance, technology

2IThere are three main differences relative to Kurmann and Sims (2021). First, we use the
2023 vintage of the TFP series. Second, we have a longer sample period. Third, we use different
hyperparameters for the Minnesota prior. None of these materially affect our main conclusions.
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diffusion, Barsky and Sims (2011) and Kurmann and Sims (2021) propose using max-
share that targets TFP at a relatively long horizon to identify the news shock. We
follow Kurmann and Sims (2021) and use max-share in the time domain, targeting
TFP with H = {0,...,40}. To identify a TFP surprise shock, we use recursive iden-
tification with TFP ordered first. This is consistent with an approach of interpreting
our measure of TFP as an instrumental variable and identifies the surprise shock as
being the one that explains all residual variation in TFP after controlling for lagged
variables.

As in Section 6.3, identification of the business cycle shock is based on work by
Angeletos et al. (2020). We follow their approach and use max-share in the frequency
domain, targeting GDP at frequency band 2 = [%—g, %’r} 22 Angeletos et al. (2020) ar-
gue that this “main business cycle shock” resembles a demand shock that has minimal
effect on inflation. Since TFP has a relatively small response to their business cycle
shock, they rule out the role of supply shocks. They then argue that these responses
should inform business cycle models with single shocks. While recent papers have
questioned these conclusions (Bianchi et al., 2023; Forni et al., 2024; Granese, 2024),
they do so through alternative statistical models. In contrast, we maintain the VAR
structure used by Angeletos et al. (2020) and focus on the use of max-share.

Since the three shocks are identified independently, it is possible that the true
structural shock(s) picked up by one identification scheme are also embedded in an-
other of the identified shocks. However, economic theory suggests that they should
be distinct. TFP news and surprise shocks are typically assumed to be independent
and distinguishable by the response of TF'P on impact. The business cycle shock, if
interpreted as a pure demand shock, should not be related to TFP shocks. Theorem

2 gives us a way to test these hypotheses.

7.2 Results

Figure 6 shows the impulse responses to the three identified shocks. Despite the
differences in the details of the reduced form VAR, the TFP news and business cycle
shocks closely resemble those in Kurmann and Sims (2021) and Angeletos et al.
(2020), respectively. However, with the identification conditions of Theorem 1 in

mind, visual inspection of these responses already suggests that the two max-share

22 Angeletos et al. (2020) use the same frequency band but target unemployment as their bench-
mark. However, they show that both target variables give similar results.
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Figure 6: Posterior estimates for impulse responses to identified shocks. Solid lines:
Median response; Shaded regions: 68% error bands.

shocks are likely contaminated.?

As we argued previously, the fact that the TFP news and surprise shocks are
both strictly positive over the horizons of interest implies that orthogonality is not
satisfied. The violations are made more severe by the persistence of the TFP surprise
shock—the ratio of the TFP response at horizon 40 to horizon 0 is similar to that of

an AR(1) with persistence 0.95. Moreover, the response to the TFP news shock has

23The Online Appendix provides further evidence from the FEV decomposition of the variables.
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a hockey stick shape, with a substantial response at short horizons.?*

While the analysis for the business cycle shock is less accessible because it is identi-
fied in the frequency domain, we observe that it produces a highly persistent response
in GDP that is mirrored by the TFP news shock. While the shape of the responses
over the short and medium run differ, the persistence likely plays an important role
for the phase difference between the responses. In particular, the transfer function,
[, in (8) is a sum over all horizons Zsq. Since |e~*“"| = 1, longer horizons will be a
key determinant of I', thus playing an important role in the orthogonality violations
through the phase difference between the responses.

We use Theorem 2 to quantify the contamination more formally, defining B =

(* )
(" %)

and taking

N

p
\/1— 32

as a measure of contamination. If @/3 arises from a single structural shock 7, then this

C

(40)

ratio corresponds to 0; /)1 — 952,, where the denominator constitutes the upper bound

on |0;] (taking Shock 1 to be the target of max-share as before). Defining
B
B+4/1— 32

to be the fraction of the weight max-share places on the (combination of) shock(s)

generating 1/3, we have that C = & In particular, if max-share does isolate the true
structural shock of interest (¢ = 0), then C = 0. If half the max-share weight is on
the (combination of) shock(s) generating ¢ (¢ = 0.5), then C = 1.

Figure 7 plots the posterior for (40). With both the TFP news and business cycle

shocks, max-share indeed places non-trivial weight on shocks that should be distinct.

N
[l

For the TFP news shock, the posterior for C peaks around 0.6; for the business cycle
shock, the posterior peaks around 0.4. As measured by the (, over a third and a
quarter, respectively, of the TFP news and business cycle max-share shocks therefore
consist of shocks that a valid identification scheme would have excluded.

The discussion above centered only on the responses of the target variables, TFP

24Kurmann and Sims (2021) find a similarly shaped impulse response, but with a smaller initial
effect. One could avoid this feature by imposing a zero response on impact as done, for instance, by
Barsky and Sims (2011) and Gortz et al. (2022).
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Figure 7: Posterior distribution for contamination of TFP news (left) and business
cycle (right) max-share shocks by identified TFP surprise and TFP news shocks,
respectively. Shaded regions indicate deciles.

and GDP. This is motivated by our theoretical results and the primitive problems,
(4) and (6), neither of which reference the untargeted variables. In Figure 6, there are
untargeted variables for which the responses to TFP news and business cycle shocks
differ substantially. For example, while the TFP news shock leads to a decline in
inflation (consistent with supply shocks in theory), the business cycle shock leads to
a small but statistically insignificant increase in inflation. Similarly, the two shocks
produce opposite responses in the federal funds rate. Nevertheless, we find formal
evidence that the business cycle shock contains the shock(s) picked up by the TFP
news shock identification. Therefore, the small contributions to TFP and inflation
by the main business cycle shock do not imply that we should rule out a role for
shocks that affect TFP or inflation in driving the business cycle. More generally, the
interpretation of the untargeted impulse responses to the max-share shock depends
on whether the conditions in Theorem 1 are satisfied.

While our results urge caution in interpreting the max-share identified TFP news
and main business cycle shocks, they do not rule out their usefulness. For example,
if one is willing to assume that the measurement error emphasized by Kurmann and
Sims (2021) has a relatively small and transitory effect on measured TFP, then the
max-share TFP news shock plausibly captures the overall combination of TFP news
and surprise shocks (and any other shocks) that are most important for driving TFP
at a medium horizon. This interpretation can inform how we use the max-share
impulse responses to model TFP. Specifically, the model’s responses to the TFP news
shock should not directly match the max-share impulse responses. Instead, the max-

share impulse responses and contamination measure can inform how persistent and
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large the TFP surprise shock is relative to the news shock. This echoes our discussion

of the main business cycle shock in Section 6.3.

8 Conclusion

For max-share to correctly identify a target shock, we show that the following nec-
essary and sufficient conditions are needed: (i) the impulse response of the target
variable to the shock of interest is orthogonal to the corresponding responses to all
other shocks and (ii) the response to the target shock is large relative to combina-
tions of responses to the untargeted shocks, as summarized by the corresponding
eigenvalues. These conditions are hard to satisfy in practice, and violations can lead
max-share to severely misidentify the shock of interest. With knowledge of the re-
sponses of the target variable to untargeted shocks, we have a straightforward way
to measure the degree of contamination.

The stringency of the conditions does not preclude the usefulness of max-share
for disciplining DSGE models. However, researchers should ensure that their DSGE
model is congruent with the identification assumptions of the structural VAR. This
requirement is common practice in the impulse response matching literature (e.g.,
Christiano et al., 2005; Fisher, 2006; Altig et al., 2011), where assumptions are made
so that the DSGE models satisfy the VAR shock identification restrictions. In other
words, a VAR estimated on data simulated from the DSGE and identified using the
same restrictions should recover the shocks of interest. To compare the max-share
identified shock to a single shock in a DSGE model, we need to argue that the
orthogonality and relative size conditions survive the introduction of other shocks. If
we are unable to make such a claim, we can still use the max-share impulse responses
to validate or quantify the model through indirect inference, by showing that data
generated from the DSGE generates a max-share shock with similar properties to the
max-share shock in the VAR.
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