

Chapter 5

Traditional Uses, Phytochemistry, and Pharmacological Properties of *Zingiber officinale* Essential Oil and Extracts

Kaliyaperumal Ashokkumar

Cardamom Research Station, Kerala Agricultural University, India

Thiravidamani Sathyan

Cardamom Research Station, Kerala Agricultural University, India

Muthusamy Murugan

Cardamom Research Station, Kerala Agricultural University, India

Surya Raj

Cardamom Research Station, Kerala Agricultural University, India

M. K. Dhanya

Cardamom Research Station, Kerala Agricultural University, India

Nimisha Mathews

Cardamom Research Station, Kerala Agricultural University, India

ABSTRACT

Ginger (Zingiber officinale) has been traditionally employed in south East Asia as well as India and China for treatment of nausea, asthma, fever, vomiting, cough, constipation, pain, arthritis, inflammation, etc. This chapter discusses the phytochemical composition and pharmacological studies of ginger extracts, ginger essential oil (GEO), and active bioactive constituents. The essential oil of fresh and dry ginger was ranged between 0.2% - 2.62% and 0.72% - 4.17% respectively. The bioactive constituent zingiberene, β -sesquiphellandrene, curcumene, β -bisabolene, β -farnesene, camphene, and gingerol and shogal are the major constituents in ginger extracts. These compounds are chief bioactive substances responsible for pharmacological activities such antioxidant, antidiabetic, anticancer, anticoagulant, antiradiation, anti-inflammatory, gastrointestinal, antimicrobial, cardiovascular, anti-obesity, and weight loss effects. Future research needs to investigate the suitable duration, maximum dosage of ginger, concerns of over-dosage, and its side effects in animal models and humans.

DOI: 10.4018/978-1-7998-2524-1.ch005

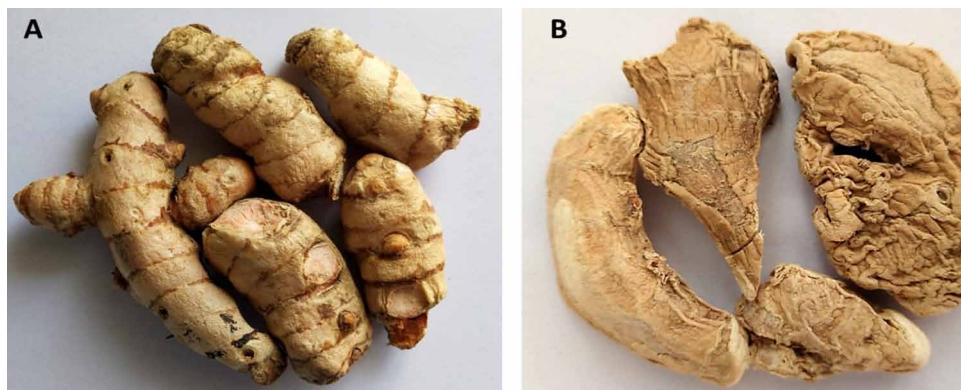
INTRODUCTION

Ginger (*Zingiber officinale* Roscoe) belongs to the family Zingiberaceae and it was used in traditional medicine to treat illness almost 5000 years ago (Bode and Dong, 2004). The word ginger originated from the English word *gingivere*, while in Tamil it is known as *Ingii*, in Hindi, *adarakah*, in Chinese, *jiang* and in Arabic, *zanjabli*. Ginger is widely grown in the tropics with foremost exporting countries such as India, Nigeria, Australia, China and Jamaica. In India, ginger is cultivated in the states of Kerala, Karnataka, Orissa, Arunachal Pradesh, West Bengal, Sikkim and Madhya Pradesh. Kerala is the largest ginger producing state, which accounts for 30-40% of total production in India. Indian ginger has two popular varieties in the global market, namely Cochin Ginger and Calicut Ginger (Kubra and Rao, 2012). Dry ginger is mostly used for export purposes and fresh ginger as a vegetable.

The ginger rhizomes have a potent aroma and are extensively used as a spice and as medicine. Ginger and its extract are extensively used in beverage, food, and confectionery industries for manufacturing products such as ginger beer, ginger wine, pickles, Jam and biscuits (Wohlmuth et al., 2005). Ginger essential oil(GEO) and oleoresins are also used in several food products, especially in soft beverages and likewise various sorts of pharmaceutical formulations. It has various potential pharmacological effects in modern medicine such as anti-inflammatory, antifungal, and anticancer activities (Khan et al., 2010). In traditional medicine, ginger has been used for curing several diseases which includes cough, cold, asthma, nausea, travel sickness, morning sickness arthritis and gastrointestinal complaints (Grontved et al., 1988; Bone et al., 1990; But and Sultan, 2011; Khaki and Fathiazad, 2012).

The world health organization (WHO) has projected that nearly 80% of the global population depended on plant-based preparations as medicines to cure their health problems (WHO, 1991).

Plant-based food products are storehouses of various bioactive components like phenolics, flavonoids, carotenoids (Ashokkumar et al., 2013; Muthukrishnan et al., 2014; Ashokkumar et al., 2014; Ashokkumar et al., 2015; Ashokkumar & Shunmugam, 2016; Ashokkumar et al., 2018a; Ashokkumar et al., 2008b), folates (Jha et al., 2015; Ashokkumar et al., 2018c), terpenes (Ashokkumar et al., 2019b). These constituents have been evaluated for their potential biological effects. However, the dried ginger rhizomes contain 5 - 8% of oleoresin, and 1.5 - 3% essential oil depends upon the variety, country of origin, and quality (Zarate and Yeoman, 1996; Kayaardi et al., 2005). Also, the ginger rhizome possess significant concentration of essential nutrients, minerals and bioactive compounds such as flavonoids, terpenoids, carotenoids, essential oils, gingerols, zingiberene,zingerone, shogaols and paradols(But and Sultan, 2011; Baliga et al., 2011; Ashokkumar et al., 2019). The pungency of ginger rhizome is mainly due to the presences of gingerols and shogaol, are key bioactive constituents of fresh ginger and it has various pharmacological effects including anticancer activity (Wohlmuth et al., 2005).However, zingiberene (10.5-16.6%), e-citrol (7.4 - 12.0%), ar-curcumene (2.9-9.8%), β -farnesene (5.1 - 8.4%), camphene (4.9 - 7.6%), β -sesquiphellandrene(5.8 - 7.2%) and citrol (5.3 - 7%) are the major essential oil compounds in dry ginger (Raina et al.,2005). The concentration of these compounds differs significantly depending upon the storage, country of origin, maturity stage of rhizome and preparation of ginger extract/product. The aim of this chapter is to highlight the key phytochemicals and pharmacological applications of ginger extracts and ginger essential oil (GEO) on human health.


BOTANICAL DESCRIPTION OF GINGER

Ginger (*Zingiber officinale* Roscoe), belongs to the Zingiberaceae family. The basic chromosome number $x=11$ and somatic chromosome number is $2n=22$, it is sterile diploid in nature. The botanical classification of ginger has been shown in Table 1. Ginger is a perennial, herbaceous, rhizomatous plant and has an erect stem, grown up to 1 meter in height. It has a fibrous root and aerial shoots. Leaves are simple, alternate, linear-lanceolate, and sheathing at the base. Shoots are originated from multiple bases and wrap around one another. Moreover, the leaf type of ginger is narrowed lanceolate to linear-lanceolate, and leaves die each year (Toader, 2014). The inflorescence is spiked; irregular and bisexual flowers are densely arranged and subtended by a persistent bract. Flowers have three yellowish-orange petals with a lip-like structure (Ravindran et al., 2005). Calyx is tubular 3 lobed, bilabiate corolla; 3 stamens in one whorl; tricarpel ovary, syncarpous; inferior; axile placentation; filiform style, subglobose type stigma. The rhizome is brown, thick lobed, branched with scaly structures. The morphological differences between the fresh and dried rhizome of ginger were shown in Figure 1.

Table 1. Botanical classification of ginger

Kingdom		Plantae
Sub-kingdom	:	Tracheobionta – Vascular plants
Division	:	Angiosperms (Seeded plants)
Class	:	Monocotyledons
Sub class	:	Zingiberidae
Order	:	Zingiberales
Family	:	Zingiberaceae (Ginger family)
Genus	:	<i>Zingiber</i>
Species	:	<i>officinale</i>

*Figure 1. The fresh and dried rhizomes of ginger (*Zingiber officinale* Roscoe)*

Traditional Uses of Ginger

In India, the ginger rhizome has been used for folk medicine from the Vedic period (Vasala, 2004). Ginger is an essential part of the preparation of various medicinal formulations in Ayurveda medicine. The rhizome of ginger and its extracts plays a key role in Ayurvedic, Chinese, African and Arabic folk medicines to cure headaches, cough, colds, flu, nausea, rheumatism, arthritis, muscular discomfort and inflammation (Baliga et al., 2011; Dehghani et al., 2011; Khaki and Fathiazad, 2012; Semwal et al., 2015). Several traditional medicines reported that ginger is a potential agent for antiinflammatory, carminative, antispasmodic, diaphoretic, appetite and peripheral circulatory stimulant (Vasala, 2004; Ali et al., 2008).

In Burma, peoples used to cure the flu by consumption of a mixture of ginger and palm tree juice. Ginger beer has been used to settle stomach upsets. However, in Colombia, ginger mixed with hot panela was used for the treatment of colds and flu (Semwal et al., 2015). In China, powdered ginger with scrambled eggs is taken as a home remedy to relieve a cough. Mango juice added with ginger is considered a panacea (medicine to cure all) in Congo. External application of ginger paste to cure headaches and oral administration to reduce colds in India and Nepal (Khaki and Fathiazad, 2012). Ginger is believed to reduce fatigue and increase digestion in Indonesia. Philippians had taken ginger to sooth asore throat, while the Japanese used ginger to improve blood circulation. In India, the southern states of Tamil Nadu and Kerala crushed ginger rhizomes and boiled it with tea and water to impart a pleasant aroma to tea, which is locally called “*Ingi tea*(ginger tea)” and which has been used to relieve tiredness and depression. The powdered ginger rhizome mixed with pulverized cloves, cardamom and caraway has been used for digestive ailments (Ashokkumar et al., 2020).

CHEMICAL COMPOSITION

Proximate and Mineral Composition

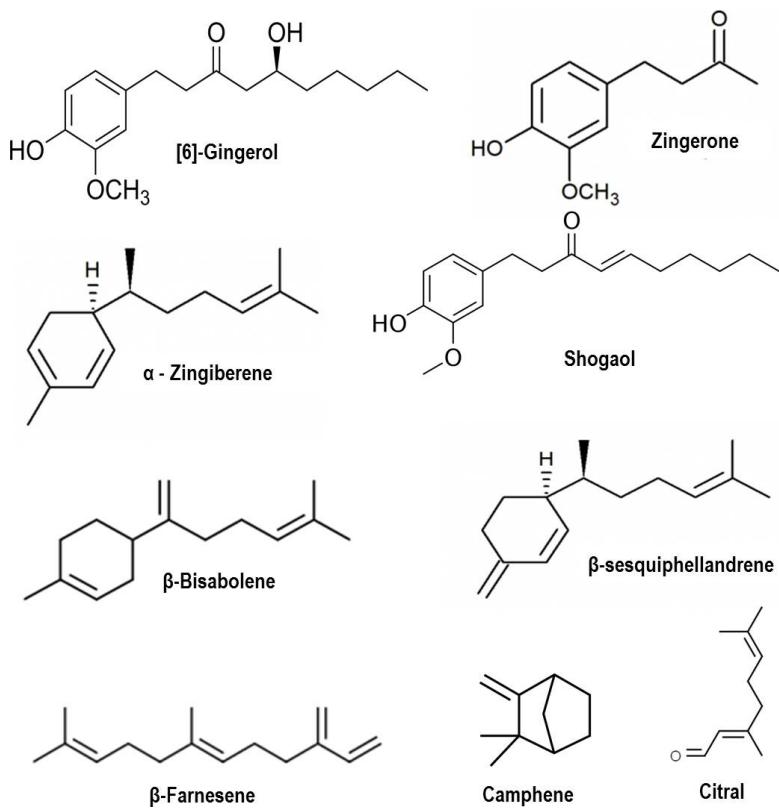
The proximate composition of fresh and dry ginger rhizome was summarized in Table 2. It includes moisture, ash, crude protein, crude fat, crude fiber, vitamin C, ascorbic acid and carbohydrates. The crude protein content of fresh and dried ginger rhizome was ranged between 3.1 - 12.3% and 7.9 - 34.1%, respectively (Agu et al., 2016; Sultan et al., 2005; Shahid and Hussain, 2012; Latona et al., 2012). Fresh ginger has significant level of crude fat and fibre with 2.1-11.7% and 1.4 -15% correspondingly (Ajayi et al., 2013; Sultan et al., 2005; Onimawo et al., 2019). Dry ginger has 1.04 -3.75%, in vitamin-C and 68.2 - 72.8% (Latona et al., 2012; Shahid and Hussain, 2012).

The serving of 100g dried ginger rhizome contains substantial levels of calcium (34.5- 280 mg), phosphorus (26.7 mg), Sodium (39 mg), manganese (18.9 mg) and other micronutrients with traces amount (Latona et al., 2012; Ogbuewu et al., 2014; Adel and Prakash, 2010; Onimawo et al., 2019), (Table 2). These are essential mineral elements for normal day-to-day physiological activities of humans. Ashokkumar et al. (2019) reported nutritionally important metabolites including flavonoids (catechin and myricetin,) and carotenoids (lutein and β -carotene) in rhizomes of fresh ginger (Table 2).

Table 2. Proximate, mineral and metabolite content of fresh and dry rhizome of ginger

	Fresh	Dry	Reference
Proximate composition (%)			
Moisture	70.1 - 89	6.4 - 13.7	Aguet al. (2016); Sultan et al. (2005); Otunola et al. (2010); Latona et al. (2012)
Ash	0.81 - 2.54	1.74 - 7.64	Onimawo et al. (2019); Odebunmi et al. (2010); Shahid and Hussain (2012); Latona et al. (2012)
Crude protein	3.1 – 12.3	8.6 – 34.1	Aguet al. (2016); Sultan et al. (2005); Shammari (2018);Latona et al. (2012)
Crude fat	2.1 – 11.7	4 – 6.4	Ajaiy et al. (2013); Onimawo et al. (2019); Latona et al. (2012); Shammari (2018)
Crude fibre	1.4 - 15	0.9 - 3.2	Onimawo et al. (2019); Sultan et al. (2005);Otunola et al. (2010)
Vitamin- C	-	1 – 3.8	Latona et al. (2012); Shahid and Hussain (2012)
Carbohydrates	2 – 16.7	68.2 – 72.8	Onimawo et al. (2019); Ajaiy et al. (2013); Otunola et al. (2010); Shammari (2018)
Minerals (mg/100g)			
Calcium	88.4 -182.7	34.5 - 280	Latona et al. (2012); Ogbuewu et al. (2014); Adel and Prakash (2010); Onimawo et al. (2019)
Phosphorus	174	26.7	Adel and Prakash (2010);Ogbuewu et al. (2014)
Sodium	7.3	39	Onimawo et al. (2019); Ogbuewu et al. (2014)
Iron	8 – 9.7	1.59	Adel and Prakash (2010); Onimawo et al. (2019); Ogbuewu et al. (2014)
Copper	0.55	0.86	Ogbuewu et al. (2014); Adel and Prakash (2010)
Manganese	9.1	18.9	Ogbuewu et al. (2014); Adel and Prakash (2010)
Zinc	5	4.2	Ogbuewu et al. (2014); Adel and Prakash (2010)
Metabolites (µg/g)			
<i>Flavonoids</i>			
Catechin	757.9	-	Ashokkumar et al. (2019)
Myricetin	35.5	-	Ashokkumar et al. (2019)
Total flavonoids	793.4	-	Ashokkumar et al. (2019)
<i>Carotenoids</i>			
Lutein	0.2	-	Ashokkumar et al. (2019)
β-carotene	0.5	-	Ashokkumar et al. (2019)
Total carotenoids	0.7	-	Ashokkumar et al. (2019)

Ginger Essential Oil (GEO) and its Composition


The yield of GEO varied from 0.2% - 2.62% and 0.72% - 4.17% on a wet and dry basis, respectively, depending on the variety and extraction methods summarized in Table 3. Recent studies claim that the yield of dry ginger essential oil (GEO) was greater when using a hydro-distillation method (1.10% - 4.17%) compared to steam distillation (2.1%) and Ionic liquid based microwave assisted extraction (0.72%) methods (Pinoet al. 2004; Kiran et al., 2013; Stoyanova et al., 2006; Stoyanova, et al., 2006;

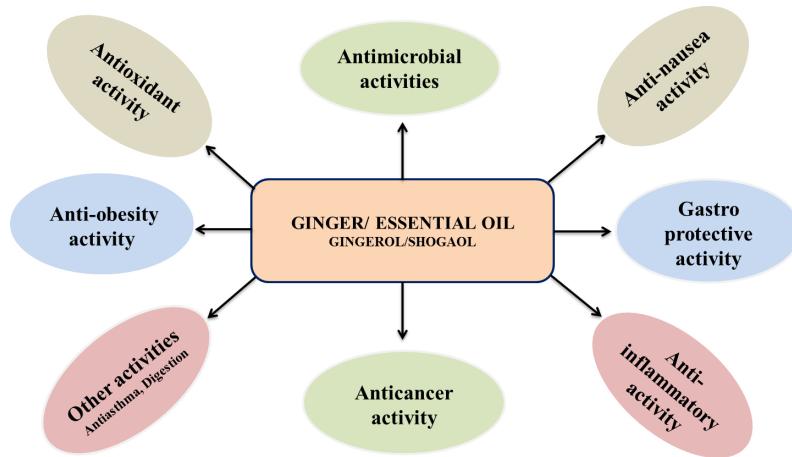
Guo et al., 2017). Among the hydro-distillation extraction, dry ginger yielded higher oil content than fresh ginger (Table 3).

Table 3. Yield of essential oil from ginger rhizomes by various extraction methods

Technique or method	Rhizome	Oil yield (%)	References
Ionic liquid-based microwave assisted extraction	Dry	0.72	Guo et al. (2017)
Steam distillation	Dry	2.1	Stoyanova et al. (2006)
Super critical fluid extraction	Fresh	0.24 - 2.62	Mesomo et al (2013)
Hydro-distillation	Dry	1.10- 4.17	Raina et al. (2005); Pino et al (2004); Kiran et al. (2013); Stoyanova et al. (2006)
Hydro-distillation	Fresh	0.20- 1.79	Gurib-Fakim et al. (2002); Mesomo et al. (2013); Héritier et al. (2018)

Figure 2. Molecular structures of major bioactive molecules isolated from ginger essential oil and extracts

Table 4. Major essential oil constituents of ginger from various origins


Origin	Rhizome	Constituents	Yield (%)	Authors
Nigeria	Dry	Zingiberene	29.54	Onyenekwe & Hashimoto (1999)
		β -Sesquiphellandrene	18.42	
		Farnesene	6.46	
China	Fresh	Zingiberene	22.76	An et al. (2016)
		β -phellandrene	12.40	
		Geranial	14.50	
		β -Sesquiphellandrene	7.01	
Mauritius	Fresh	β -Bisabolene	3.25	Gurib-Fakim et al. (2002)
		Geranial	16.3	
		Neral	10.3	
		Zingiberene	9.5	
		p-sesquiphellandrene	6.3	
India, North East	Dry	ar-Curcumene	5.1	Kiran et al. (2013)
		Zingiberene	20.98	
		Geranial	12.36	
		Camphene	8.49	
		β -sesquiphellandrene	7.96	
India	Fresh	Neral	4.95	Sharma et al. (2016)
		Zingiberene	46.71	
		Citronellyl n-butyrate	19.34	
		Valencene	7.61	
		β -phellandrene	3.70	
Cuba	Dry	ar-Curcumene	22.1	Pino et al. (2004)
		Cadina-1,4-diene	12.5	
		Zingiberene	11.7	
		β -bisabolene	11.2	
India, North	Semi dry	Zingiberene	10.5-16.6	Raina et al. (2005)
		e-Citral	7.4- 12.0	
		ar-Curcumene	2.9-9.8	
		β -Farnesene	5.1 - 8.4	
		Camphene	4.9- 7.6	
		β -Sesquiphellandrene	5.8 - 7.2	
		z-Citral	5.3- 7.0	
Vietnam	Dry	ar-Curcumene	12.6	Stoyanova et al. (2006)
		α -Zingiberene	10.3	
		β -Bisabolene	8.1	
		β -Sesquiphellandrene	7.4	

The chemical composition of major ginger essential oils across the countries and regions is presented in Table 4. The EO of fresh ginger from India predominantly exhibited zingiberene (46.71%), citronellyl n-butyrate (19.34%), valencene (7.61%) and β -phellandrene (3.70%), (Sharma et al., 2016). Kiran et al. (2013) indicated that rhizomes of dry ginger collected from across the ginger growing region of north east India chiefly contain zingiberene, geranal, camphene, β -sesquiphellandrene and neral with percentages of 20.98, 12.36, 8.49, 7.96, and 4.95, respectively (Table 4). Profiling of EO of fresh ginger rhizomes from China showed zingiberene (22.76%), β -phellandrene (12.40%), geranal (14.50%) and sesquiphellandrene (7%) as principal compounds (An et al., 2016). The molecular structure of major bioactive constituents isolated from gingeressential oil and extracts is shown in Figure 2. The yield of minor constituents of GEO from fresh ginger includes, 1,8-cineole (5.08%), camphor (0.16%), δ -3-carene (0.03%), citronellyl acetate (0.58%), copanene (0.21%), α -elemene (0.12%), β -elemene (0.30%), 2-farnesene (0.13%), myrcene (1.75%), sabinene (0.17%), terpinolene (0.29%)and 2-undecanone (0.40%),(Qin and Xu, 2008).

Biological Activities

The GEO and ginger extracts have various biological effects including antioxidant, antibacterial, anti-cancer insecticidal and other miscellaneous activities that are summarized in Table 5. The schematic representation of biological activities of ginger rhizome extract, GEO and active constitutes were presented in Figure 3.

Figure 3. Schema depiction of biological activities of ginger rhizome extract, essential oil, gingerol and Shogaol

Antioxidant Activity

Oxidative stress is one of the major health problems in humans, for which several therapies are utilized and where medicinal plants offer a favorable alternative. The rhizome of ginger possesses a rich source of antioxidants that are used to scavenge free radicals and associated health problems. Gingerols is the major bioactive metabolite, which has potent antioxidant activity determined by various antioxidant

Traditional Uses, Phytochemistry, and Pharmacological Properties of *Zingiber officinale* Essential Oil

Table 5. Biological activities of ginger rhizome extract, essential oil and bioactive compounds

Pharmacological activities	Study/extract/ GEO	In vitro/ In vivo	Target/ Model	IC 50/ Dosage	Control	Reference
Antimicrobial activity	GEO	<i>In vitro</i>	<i>Bacillus subtilis</i>	MIC:10.0 μ l/ml	Positive: Tetracycline Negative: DMSO	Sharma et al. (2016); Sasidharan, & Menon (2010)
Antimicrobial activity	GEO	<i>In vitro</i>	<i>Staphylococcus aureus</i>	MIC: 8.7 mg/ml	-	Bellik, (2014)
Antimicrobial activity	Aqueous extract	<i>In vitro</i>	<i>Helicobacter pylori</i>	MIC: 300 μ g/ml	Positive: Lansoprazole	Nanjundaiah et al. (2011)
Antimicrobial activity	Ethanol extract	<i>In vitro</i>	<i>E. coli</i>	MIC: 75.6 μ g/ml	Positive: Ciprofloxacin	Karuppiah, and Rajaram (2012)
	Ethanol extract	<i>In vitro</i>	<i>Klebsiella</i> sp. <i>Enterobacter</i> sp.	MIC: 185.6 μ g/ml	Positive: Ciprofloxacin	
	Ethanol extract	<i>In vitro</i>	<i>S. aureus</i> <i>Bacillus</i> sp. <i>Proteus</i> sp.	MIC: 68.4 μ g/ml MIC: 74.5 μ g/ml MIC: 70.2 μ g/ml	Positive: Ciprofloxacin	
Antimicrobial activity	Oleoresin	<i>In vitro</i>	<i>S. aureus</i>	MIC: 50 mg/ml	-	Bellik, (2014)
Antimicrobial activity	GEO	<i>In vitro</i>	<i>Vibrio vulnificus</i> <i>V. parahaemolyticus</i> <i>Pseudomonas aeruginosa</i> & <i>Yersinia enterocolitica</i>	MIC: 31.2 μ l/ml MBC:31.3 μ l/ml MIC: 31.3 μ l/ml MBC:125 μ l/ml MIC: 31.3 μ l/ml MBC: 62.5 μ l/ml	Positive: Ampicillin Negative: DMSO	Debbarma et al. (2013)
	GEO	<i>In vitro</i>	<i>Salmonella typhimurium</i> <i>S. paratyphi</i> <i>E. coli</i>	MIC: 62.5 μ l/ml	Positive: Ampicillin Negative: DMSO	
Antimicrobial activity	GEO	<i>In vitro</i>	<i>Candida albicans</i>	MIC:10.0 μ l/ml	Positive: Fluconazole Negative: DMSO	Sharma et al. (2016)
Antimicrobial activity	Ethanol	<i>In vitro</i>	<i>C. albicans</i>	MIC: 6.3 mg/ml MBC: 25 mg/ml	Negative: Sterile water	Lucky et al. (2017)
	Aqueous extract	<i>In vitro</i>	<i>C. albicans</i>	MIC: 6.3 mg/ml MBC: 25 mg/ml	Negative: Sterile water	Lucky et al. (2017)
Antimicrobial activity	Oleoresin	<i>In vitro</i>	<i>Penicillium</i> spp.	MIC: 2mg/ml	-	Bellik (2014)
Antimicrobial activity	GEO	<i>In vitro</i>	<i>Fusarium verticillioides</i>	MIC: 2500 μ l/ml	-	Yamamoto-Ribeiro et al. (2013)
Antimicrobial activity	GEO	<i>In vitro</i>	<i>Botrytis cinerea</i> <i>Alternaria panax</i> <i>F. oxysporum</i>	MIC: 0.3%	-	Hussein, & Joo (2018)
Antimicrobial activity	Methanol extract	<i>In vitro</i>	<i>E. coli</i> <i>S. aureus</i> <i>E. faecalis</i> <i>C. albicans</i> <i>M. smegmatis</i> <i>S. mutans</i>	MIC:125 mg/ml MIC:62.5mg/ml MIC: 250 mg/ml	-	Agrawal et al. (2018)
	Chloroform extract	<i>In vitro</i>	<i>E. faecalis</i> <i>S. mutans</i> <i>C. albicans</i> <i>M. smegmatis</i> <i>E. coli</i> <i>S. aureus</i>	MIC:125 mg/ml MIC: 62.5mg/ml MIC: 250 mg/ml	-	
	Ethyl acetate extract	<i>In vitro</i>	<i>S. aureus</i> <i>S. mutans</i> <i>E. faecalis</i> <i>C. albicans</i> <i>E. coli</i> <i>M. smegmatis</i>	MIC:125 mg/ml MIC: 250 mg/ml MIC: 62.5 mg/ml	-	
	Petroleum ether extract	<i>In vitro</i>	<i>S. aureus</i> <i>C. albicans</i> <i>S. mutans</i> <i>E. coli</i> <i>E. faecalis</i>	MIC:250 mg/ml MIC:125 mg/ml	-	

continued on following page

Traditional Uses, Phytochemistry, and Pharmacological Properties of *Zingiber officinale* Essential Oil

Table 5. Continued

Pharmacological activities	Study/extract/ GEO	In vitro/ In vivo	Target/ Model	IC 50/ Dosage	Control	Reference
Antimicrobial activity	Aqueous extract	<i>In vitro</i>	<i>K. pneumoniae</i> <i>Proteus vulgaris</i> <i>P. mirabilis</i> <i>B. subtilis</i> <i>C. albicans</i> <i>E. coli</i>	MIC:156.3 µg/ml MIC:39.1 µg/ml	Positive: Amracin (for bacteria) Nystatin (for yeast)	Švarc-Gajić et al. (2017)
	Subcritical extract	<i>In vitro</i>	<i>K. pneumoniae</i> <i>Proteus vulgaris</i> <i>P. mirabilis</i> <i>B. subtilis</i> <i>C. albicans</i> <i>E. coli</i>	MIC:78.1 µg/ml MIC:19.5 µg/ml	Positive: Amracin (for bacteria) Nystatin (for yeast)	Švarc-Gajić et al. (2017)
Antimicrobial activity	Methanol extract	<i>In vitro</i>	<i>B. subtilis</i> <i>K. pneumoniae</i> <i>P. mirabilis</i> <i>S. aureus</i> <i>P. aeruginosa</i> <i>E. coli</i>	MIC: 8.17µg/ml MBC:30.0 µg/ml MIC: 16.4µg/ml MBC:61.8µg/ml MIC: 20.5 µg/ml MBC:74.3µg/ml MIC: 18.2µg/ml MBC:64.5µg/ml MIC: 16.3µg/ml MBC:44.9µg/ml MIC: 26.3µg/ml MBC:86.5µg/ml	-	Chakraborty et al. (2014)
Antimicrobial activity	Ethanol extract	<i>In vitro</i>	<i>B. subtilis</i> <i>K. pneumoniae</i> <i>P. mirabilis</i> <i>S. aureus</i> <i>P. aeruginosa</i> <i>E. coli</i>	MIC: 10.6µg/ml MBC:36.8µg/ml MIC: 17.6µg/ml MBC:66.4µg/ml MIC: 23.5µg/ml MBC:83.2µg/ml MIC: 20.3µg/ml MBC:67.5µg/ml MIC: 18.9µg/ml MBC:52.8µg/ml MIC: 34.0µg/ml MBC:84.3µg/ml	-	Chakraborty et al. (2014)
	Acetone extract	<i>In vitro</i>	<i>B. subtilis</i> <i>K. pneumoniae</i> <i>P. mirabilis</i> <i>S. aureus</i> <i>P. aeruginosa</i> <i>E. coli</i>	MIC: 10.5µg/ml MBC:40.8µg/ml MIC: 21.5µg/ml MBC:77.8µg/ml MIC: 27.9µg/ml MBC:94.2µg/ml MIC: 28.2µg/ml MBC:75.9µg/ml MIC: 11.5µg/ml MBC:40.2µg/ml MIC: 13.3µg/ml MBC:50.5µg/ml	-	Chakraborty et al. (2014)
	Aqueous extract	<i>In vitro</i>	<i>B. subtilis</i> <i>K. pneumoniae</i> <i>P. mirabilis</i> <i>S. aureus</i> <i>P. aeruginosa</i> <i>E. coli</i>	MIC: 11.5µg/ml MBC:45.6µg/ml MIC: 15.8µg/ml MBC:42.7µg/ml MIC: 19.3µg/ml MBC:65.7µg/ml MIC: 13.1µg/ml MBC:45.7µg/ml MIC: 21.3µg/ml MBC:55.9µg/ml MIC: 20.2µg/ml MBC:78.2µg/ml	-	Chakraborty et al. (2014)
Antimicrobial activity	Ethanol extract	<i>In vitro</i>	<i>P. aeruginosa</i> <i>B. subtilis</i>	MIC:12.5 mg/ml MBC: 50mg/ml MIC: 6.3 mg/ml MBC: 25 mg/ml	Negative: Sterile water	Lucky et al. (2017)
Antifungal activity	GEO	<i>In vitro</i>	<i>Fusarium verticillioides</i>	MIC: 5000mg/ml	-	Yamamoto-Ribeiro et al. (2013)
Antifungal activity	GEO	<i>In vitro</i>	<i>Aspergillus niger</i> <i>M. hemalis</i> <i>F. oxysporum</i>	MIC: 70µg/ml MIC: 75µg/ml	-	El-Baroty et al. (2010)

continued on following page

Table 5. Continued

Pharmacological activities	Study/extract/ GEO	In vitro/ In vivo	Target/ Model	IC 50/ Dosage	Control	Reference
Antifungal activity	GEO	<i>In vitro</i>	<i>Aspergillus flavus</i> <i>Penicillium expansum</i>	MIC: 500 μ g/ml	-	Sharma et al. (2013)
Antioxidant activity	Aqueous extract	<i>In vitro</i>	<i>Rats</i>	IC ₅₀ : 6.8 μ g/ml	-	Nanjundaiah et al. (2011)
Gastro protective activity	Aqueous extract	<i>In vivo</i>	<i>Ulcer induced rats by ethanol/ swim stress</i>	200 mg/kg body weight	Positive: Lansoprazole	Nanjundaiah et al. (2011)
Gastro protective activity	Zingerone	<i>In vivo</i>	<i>Ethanol-induced gastric ulcers in rats</i>	200 mg/kg body weight	Positive: Ranitidine	Karampour et al. (2019)
Antidiabetic activity	Aqueous Extract	<i>In vivo</i>	Streptozotocin (STZ)-induced type I diabetic rats	4 ml/kg, p.o. daily for 6 weeks	Negative: Sterile water	Akhani et al. (2004)
Antidiabetic activity	Ethanol Extract	<i>In vivo</i>	STZ-induced diabetic rats	200 mg/kg p.o daily for 20 days	Positive: Gliclazide	Bhandari et al. (2005)
Cytotoxic activity	Subcritical water extracts	<i>In vitro</i>	Hep2c cells RD cells L20B cells	IC ₅₀ : 9.82 μ g/ml IC ₅₀ : 13.81 μ g/ml IC ₅₀ : 6.88 μ g/ml	-	Švarc-Gajić et al. (2017)
Cardioprotective activity	Ethanol extract	<i>In vivo</i>	Wistar rats	400 mg/kg body weight	-	Amran et al. (2015)
Antiproliferative activity	Aqueous extract	<i>In vitro</i>	A549 cells HeLa cells	IC ₅₀ : 239.4 μ g/ml IC ₅₀ : 253.4 μ g/ml	Control: Untreated	Choudhury et al. (2010)
Insecticidal activity	GEO	<i>In vivo</i>	<i>Culex theileri</i>	1 ml	-	Madreseh-Ghafarokhi et al. (2018)

Note: GEO, Ginger essential oil, MIC, Minimum inhibition concentration; MBC, Minimum bactericide concentration; LC₅₀, Lethal concentration; IC₅₀, Inhibitory concentration

studies (Kikusaki and Nakatani, 1993; Dugasani et al., 2010). Increasing antioxidant activity of the human body will undoubtedly protect against the oxidative stress (Shukla and Singh, 2007). Bellik, (2014) reported that ginger oleoresin has greater antioxidant activity (IC₅₀ = 1.82 mg/ml) compared to essential oil (IC₅₀ = 110.14 mg/ml). The bioactive molecule [6]-Gingerol is the major pungent constituent that has considerable antioxidant activity. [6]-Gingerol have greater scavenging activity compared to ethanol extract of ginger against 1,1-diphenyl-2-picrylhydrazyl and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical at lower concentrations (<100 μ g/ml). However, both the ginger extract and [6]-gingerol displayed same antioxidant potential at higher doses (100–1000 μ g/ml) (Harliyansyah et al. 2007). Ginger extracts also protect the DNA from lipopolysaccharide-induced oxidation damage in rats (Tchombé et al., 2012). Ginger oil can act as a scavenger of oxygen radical and could be used as antioxidant (Yadav et al., 2016). The alcoholic extracts of ginger have shown effective antioxidant effects and can prevent lipid peroxidation (Shobana and Naidu, 2000).

Antimicrobial and Antifungal Activity

Ginger extracts have significant antimicrobial activity against *Bacillus subtilis*, *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhimurium*, *Bacillus cereus*, *Candida albicans* and *B. subtilis* (Thongson et al., 2005; Natta et al., 2008; Singh et al. 2008; Bellik, 2014) and antifungal activity against *Fusarium* sp., *Pseudomonas aeruginosa* and *Aspergillus Niger* (Sa-Nguanpuag et al., 2011; Auta et al. 2011; Bellik, 2014; Riaz et al., 2015). The active biomolecule [6]-gingerol and [12]-gingerol revealed potential antibacterial effects against gram negative bacteria, *Porphyromonas gingivalis*, *P. endodontalis* and *Prevotella intermedia*. However, another bioactive molecule, [10]-gingerol showed antibacterial

activity against *Mycobacterium avium* and *M. tuberculosis* (Hiserodt et al., 1998). Furthermore, several antimicrobial studies were summarized in Table 5.

Anticancer Activity

Worldwide, researchers are interested in identifying plant derived bioactive constituents that have the capacity to interfere with carcinogenic processes. Several spices and medicinal plants are known to possess an array of pharmacological properties including anticarcinogenic and antimutagenic activities. Tumor induction is strictly linked to oxidative stress, a constituent that exhibits antioxidant properties might be act as antitumorogenic agent. Masuda et al. (2004) isolated more than 50 antioxidants from the rhizomes of ginger. Among them topical application of [6]-gingerol to DMBA initiated skin cancer in SENCAR mice contributed a substantial protection against skin cancers reported by Katiyar et al. (1996). Glioblastoma multiforme (GBM) is the most lethal, destructive and malignant astrocytoma of primary brain tumors in adults. Lee et al., 2008 reported the [6]-Gingerol induced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis of glioblastoma. The previous study reports noticed that the bioactive molecule [6]-gingerol had been induced apoptosis of gastric cancer cells by increasing caspase-3/7 activation (Prasad and Tyagi, 2015). The other bioactive constituent gingerdione has been demonstrated as a potential antitumor agent in human leukemia cells(Hsu et al., 2005).

In another study, the methanolic extract of ginger inhibited the growth of 19 *Helicobacter pylori* (HP) strains with a minimum inhibitory concentration (MIC) range of 6.25-50 μ g/ml (Mahady et al., 2003). Yusof et al. (2009) demonstrated that oleoresin of ginger has chemopreventive activity against liver cancer in rats. The ginger extract also remarked that suppression of cell cycle progression and prompted the death of human pancreatic cancer cell lines (Akimoto et al. 2015). Tahir et al. (2015) observed that fresh ginger extract contains a high level of gingerols, and it is used to induce cell death of colon cancer cells.

Anti-inflammatory Activity

The anti-inflammatory activity of ginger has been well known for centuries. However, the scientific evidence confirmed it mostly in animal models more than humans, Wei et al. (2005). Anti-inflammatory potential of gingerols was evidenced by the inhibitory effects of prostaglandins and leukotrienes synthesis in Rat Basophilic Leukemia -1 (RBL-1) cells (Kiuchi et al., 1982). The ginger rhizome contains bioactive constituents such as [6]-gingerol and [6]-paradol which has been reported to have durable anti-inflammatory effects and suppress the production of TNF α in TPA- treated female ICR mice (Surh et al., 1999).Ramadan et al. (2011) reported that oral administration of ginger (200 mg/kg) suppressed the incidence and severity of adjuvant-induced arthritis by increasing the production of anti-inflammatories and decreasing pro-inflammatory cytokines in rat.

OTHER ACTIVITIES

Anti-nausea Activity

The consumption of ginger may be a safe and effective option for the treatment of nausea and vomiting in the pregnancy period (Borrelli et al., 2005). Maitre et al. (2011) evaluated four randomized controlled trials (RCTs) on the use of ginger for pregnancy-induced nausea, and vomiting (PINV) which were sourced from MEDLINE, TRIP CINAHL, and the Cochrane library. All the trials noticed that orally administered ginger was significantly more effective for reducing vomiting and nausea. Additionally, in the U.K, the National Institute of Health and Clinical Excellence, has included a list of ginger acceptable therapies to cure nausea and vomiting during early pregnancy.

Anti-respiratory Diseases Activity

Ginger rhizome has been used for centuries in treating respiratory diseases. Gingerols remarkably reduced the eosinophils in the lungs of ovalbumin-sensitized mice and suppressed the allergen-induced Th2 cell-driven airway inflammation (Ahui et al., 2008). Ingestion of 6-, 8- gingerols, and 6-shogaol reduced asthma disease at doses ranged between 100 to 300 μ M, by prompt relaxation of precontracted airway smooth muscle (Townsend et al., 2013).

Anti-diabetic and Anti-obesity Activity

The oral administration of ethanolic ginger extract significantly decreased fasting blood glucose levels in streptozotocin (STZ) - treated type 1 diabetic rat model (Ojewole, 2006). Okamoto et al. (2011) reported that [6]-gingerol reduce body weight and fat accumulation in mice. In another study, [6]-gingerol inhibits rosiglitazone-induced adipogenesis through suppressing oil droplet accumulation and reduces the oil droplet size in 3T3-L1 cells (Tzeng and Liu, 2013).

Cardio Protective and Lipid-Lowering Activity

Cardiovascular activity of ginger reported that ginger extract has an antioxidative potent, and it can scavenge the superoxide anion and hydroxyl radicals (Fuhrman et al., 2000). *In vitro* and *in vivo*, studies with animal models showed that ginger extract possessed antioxidant activity, and it might be triggering the anti-inflammatory response and protect against cardiovascular disease (Masuda et al., 2004). The ethanol extract of ginger at 400 mg/kg body weight of Wistar rats showed a significant decrease in all the cardiac enzyme activities. (Amran et al., 2015). The aqueous ginger extract also exhibited durable inhibitions against low-density lipoprotein (LDL) and platelet aggregation (Saputri and Jantan, 2011). Ethanolic *Zingiber officinale* extract (200 mg/kg)p.o. for 20 days is substantially lowering the lipids in streptozotocin (STZ) - induced diabetic rats (Bhandari et al., 2005).

Antithrombotic Activity

Earlier studies reported that ginger extract was found to possess antithrombotic activity as a result of inhibiting platelet aggregation and thromboxane-B2(TXB2) *in vitro*. Whereas, effect of *in vivo* experiments, oral administration of high doses of ginger extract in rats substantially reduced the level of TXB2 and prostaglandin-E2 (PGE2) production (Srivastava and Mustafa, 1989; Thomson et al., 2002).

CONCLUSION

Nowadays, plant based nutraceutical compounds have increased wider acceptance as chosen alternatives to several synthetic medicines, mainly for cancer and diabetes. Also, people are aware that long term uses of synthetic drugs are connected with various side effects. The rhizome of ginger is well known for its medicinal value and flavor-enhancing agent. Gingerol is the key pungent constituent, it is a major bioactive compound accumulated in the rhizome of fresh ginger. Presently, ginger is mainly used for the prevention of travel sickness and chemoprevention of cancer. Several studies are extensively investigated for discovering the therapeutic potential of ginger extracts, GEO and its bioactive compounds such as α -zingiberene, gingerol and shogaol in humans and animal models.

Various results accounted that ginger has antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, insecticidal, and other miscellaneous activities. Future research should focus on the genetic variability of GEO and bioactive constituents from various cultivated varieties as well as the country of origin. GEO contains major active constituents such as zingiberene, geranial, camphene, β -sesquiphellandrene, neral, citrol, farnesene, bisabolene, and ar-curcumene. The presence of these biologically active molecules as major constituents in ginger essential oil can be used in food, aroma, cosmetics and pharmaceutical domains. Additionally, future research needs attention on the influence of environmental factors attributed to ginger and its active compounds.

Further studies on determining the various pharmacological potential of the ginger extracts, GEO, gingerol, shogaol and other active compounds should include human intervention clinical trials to investigate the activity against humans from various diseases. Future research should also focus on the suitable duration, maximum dosage of ginger, concerns of overdosage and its side effects. Furthermore, future investigations also are required to study the genetic diversity of phytochemicals among various ginger germplasm lines grown across the world or country for improving GEO or particular bioactive constituents, which are essential for developing varieties with higher beneficial bioactive constituents.

REFERENCES

Adel, S. P. R., & Prakash, J. (2010). Chemical composition and antioxidant properties of ginger root (*Zingiber officinale*). *Journal of Medicinal Plants Research*, 4(24), 2674–2679. doi:10.5897/JMPR09.464

Agrawal, P., Kotagiri, D., & Kolluru, V. C. (2018). Comparative analysis of antimicrobial activity of herbal extracts against pathogenic microbes. *Current Trends in Biomedical Engineering & Biosciences*, 16, 1–7.

Agu, C. S., Igwe, J. E., Amanze, N. N., & Oduma, O. (2016). Effect of oven drying on proximate composition of ginger. *American Journal of Engineering Research*, 5(8), 58–61.

Ahui, M. L., Champy, P., Ramadan, A., Pham Van, L., Araujo, L., Brou André, K., ... Herbelin, A. (2008). Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. *International Immunopharmacology*, 8(12), 1626–1632. doi:10.1016/j.intimp.2008.07.009 PubMed

Ajai, O. B., Akomolafe, S. F., & Akinyemi, F. T. (2013). Food value of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria. *ISRN Nutrition*. doi:10.5402/2013/359727

Akhani, S. P., Vishwakarma, S. L., & Goyal, R. K. (2004). Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. *The Journal of Pharmacy and Pharmacology*, 56(1), 101–105. doi:10.1211/0022357022403 PubMed

Akimoto, M., Iizuka, M., Kanematsu, R., Yoshida, M., & Takenaga, K. (2015). Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. *PLoS One*, 10(5). doi:10.1371/journal.pone.0126605

Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. *Food and Chemical Toxicology*, 46(2), 409–420. doi:10.1016/j.fct.2007.09.085 PubMed

Amran, A. Z., Jantan, I., Dianita, R., & Buang, F. (2015). Protective effects of the standardized extract of Zingiber officinale on myocardium against isoproterenol-induced biochemical and histopathological alterations in rats. *Pharmaceutical Biology*, 53(12), 1795–1802. doi:10.3109/13880209.2015.1008147 PubMed

An, K., Zhao, D., Wang, Z., Wua, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. *Food Chemistry*, 197, 1292–1300. doi:10.1016/j.foodchem.2015.11.033 PubMed

Ashokkumar, K., Arjun, P., Murugan, M., Dhanya, M. K., Sathyan, T., Sivakumar, P., & Surya, R. (2018a). Simple and rapid extraction method for determination of carotenoids in the edible parts of Vitis vinifera, Vaccinium sect. cyanococcus, Ipomoea batatas and Capsicum annum. *Advances in Research*, 17(4), 1–8. doi:10.9734/AIR/2018/45132

Ashokkumar, K., Diapari, M., Jha, A. B., Tar'an, B., Arganosa, G., & Warkentin, T. D. (2015). Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. *Journal of Food Composition and Analysis*, 43, 49–60. doi:10.1016/j.jfca.2015.04.014

Ashokkumar, K., Elayabalan, S., Shobana, V. G., Sivakumar, P., & Pandiyan, M. (2018b). Nutritional value of cultivars of Banana (Musa spp.) and its future prospects. *Journal of Pharmacognosy and Phytochemistry*, 7(3), 2972–2977.

Ashokkumar, K., Kumarakurubaran, S., & Saradha Devi, S. M. (2013). Reverse phase-high performance liquid chromatography-diode array detector(RP-HPLC-DAD) analysis of flavonoids profile from curry leaf (Murraya koenigii L.). *Journal of Medicinal Plants Research*, 7, 3393–3399. doi:10.5897/JMPR2013.5150

Ashokkumar, K., Murugan, M., Dhanya, M. K., Surya, R., & Kamaraj, D. (2019b). Phytochemical variations among four distinct varieties of Indian cardamom Elettaria cardamomum (L.) Maton. *Natural Product Research*, 1–4. doi:10.1080/14786419.2018.1561687

Ashokkumar, K., Murugan, M., Dhanya, M. K., & Warkentin, T. D. (2020). Botany, traditional uses, phytochemistry and biological activities of cardamom [*Elettaria cardamomum* (L.) Maton] - A critical review. *Journal of Ethnopharmacology*, 246, 112244. doi:10.1016/j.jep.2019.112244 PubMed

Ashokkumar, K., Pandian, A., Murugan, M., Dhanya, M. K., Sathyan, T., Sivakumar, P., . . . Warkentin, T. D. (2019). Profiling bioactive flavonoids and carotenoids in select south Indian spices and nuts. *Natural Product Research*, 1–5. doi:10.1080/14786419.2018.1557179

Ashokkumar, K., & Shunmugam, A. S. K. (2016). Curry leaf (*Muraya koenji* L. Spreng): its phytochemistry and pharmacological properties - A review. *Medicinal Plants: Phytochemistry. Pharmacology & Therapeutics*, 4, 375–390.

Ashokkumar, K., Sivakumar, P., & Saradha Devi, M. (2018). Identification and determination of naturally occurring folates in grains of rice (*Oryza sativa* L.) by UPLC-MS/MS analysis. *Natural Product Research*, 32(14), 1733–1737. doi:10.1080/14786419.2017.1392957 PubMed

Ashokkumar, K., Tar'an, B., Diapari, M., Arganosa, G., & Warkentin, T. D. (2014). Effect of cultivar and environment on carotenoid profile of pea and chickpea. *Crop Science*, 54(5), 2225–2235. doi:10.2135/cropsci2013.12.0827

Auta, K. I., Galadima, J. U., Olowoniyi, O. D., Moses, O. O., & Yako, A. B. (2011). Antimicrobial properties of the ethanolic extracts of *Zingiber officinale* (Ginger) on *Escherichia coli* and *Pseudomonas aeruginosa*. *Research Journal of Biological Sciences*, 6(1), 37–39. doi:10.3923/rjbsci.2011.37.39

Baliga, M. S., Haniadka, R., Pereira, M. M., D'Souza, J. J., Pallaty, P. L., Bhat, H. P., & Popuri, S. (2011). Update on the chemopreventive effects of ginger and its phytochemicals. *Critical Reviews in Food Science and Nutrition*, 51(6), 499–523. doi:10.1080/10408391003698669 PubMed

Bellik, Y. (2014). Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of *Zingiber officinale* Roscoe. *Asian Pacific Journal of Tropical Disease*, 4(1), 40–44. doi:10.1016/S2222-1808(14)60311-X

Bhandari, U., Kanojia, R., & Pillai, K. K. (2005). Effect of ethanolic extract of *Zingiber officinale* on dyslipidaemia in diabetic rats. *Journal of Ethnopharmacology*, 97(2), 227–230. doi:10.1016/j.jep.2004.11.011 PubMed

Bode, A. M., & Dong, Z. (2004). Ginger. In L. Packer, C. N. Ong, & B. Halliwell (Eds.), *Herbal and traditional medicine: molecular aspects of health* (pp. 131–156). New York: Marcel Dekker; doi:10.1201/9780203025901.ch8

Bone, M. E., Wilkinson, D. J., Young, J. R., McNeil, J., & Charlton, S. (1990). Ginger root, a new antiemetic. The effect of ginger root on postoperative nausea and vomiting after major gynaecological surgery. *Anaesthesia*, 45(8), 669–671. doi:10.1111/j.1365-2044.1990.tb14395.x PubMed

Borrelli, F., Capasso, R., Aviello, G., Pittler, M. H., & Izzo, A. A. (2005). Effectiveness and safety of ginger in the treatment of pregnancy induced Nausea and vomiting. *Obstetrics and Gynecology*, 105(4), 849–856. doi:10.1097/01.AOG.0000154890.47642.23 PubMed

Butt, M. S., & Sultan, M. T. (2011). Ginger and its health claims: Molecular aspects. *Critical Reviews in Food Science and Nutrition*, 51(5), 383–393. doi:10.1080/10408391003624848 PubMed

Chakraborty, B., Nath, A., Saikia, H., & Sengupta, M. (2014). Bactericidal activity of selected medicinal plants against multidrug resistant bacterial strains from clinical isolates. *Asian Pacific Journal of Tropical Medicine*, 7, S435–S441. doi:10.1016/S1995-7645(14)60271-6 PubMed

Choudhury, D., Das, A., Bhattacharya, A., & Chakrabarti, G. (2010). Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells. *Food and Chemical Toxicology*, 48(10), 2872–2880. doi:10.1016/j.fct.2010.07.020 PubMed

Debbarma, J., Kishore, P., Nayak, B. B., Kannuchamy, N., & Gudipati, V. (2013). Antibacterial activity of ginger, eucalyptus and sweet orange peel essential oils on fish-borne bacteria. *Journal of Food Processing and Preservation*, 37(5), 1022–1030. doi:10.1111/j.1745-4549.2012.00753.x

Dehghani, I., Mostajeran, A., & Asghari, G. (2011). In vitro and in vivo production of gingerols and zingiberene in ginger plant (*Zingiber officinale* Roscoe). *Indian Journal of Pharmaceutical Sciences*, 7, 129–133.

Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., & Korlakunta, J. N. (2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. *Journal of Ethnopharmacology*, 127(2), 515–520. doi:10.1016/j.jep.2009.10.004 PubMed

El-Baroty, G. S., El-Baky, H. H. A., Farag, R. S., & Saleh, M. A. (2010). Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. *African Journal of Biochemistry Research*, 6, 167–174.

Fuhrman, B., Rosenblat, M., Hayek, T., Coleman, R., & Aviram, M. (2000). Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. *The Journal of Nutrition*, 130(5), 1124–1131. doi:10.1093/jn/130.5.1124 PubMed

Grontved, A., Brask, T., Kambskard, J., & Hentzer, E. (1988). Ginger root against seasickness: A controlled trial on the open sea. *Acta Oto-Laryngologica*, 105(1-2), 45–49. doi:10.3109/00016488809119444 PubMed

Guo, J. B., Fan, Y., Zhang, W. J., Wu, H., Du, L. M., & Chang, Y. X. (2017). Extraction of gingerols and shogaols from ginger (*Zingiber officinale* Roscoe) through microwave technique using ionic liquids. *Journal of Food Composition and Analysis*, 62, 35–42. doi:10.1016/j.jfca.2017.04.014

Gurib-Fakim, A., Maudarboccus, N., Leach, D., Doimo, L., & Wohlmuth, H. (2002). Essential oil composition of zingiberaceae species from Mauritius. *The Journal of Essential Oil Research*, 14(4), 271–273. doi:10.1080/10412905.2002.9699850

Harliyansyah, H., Murad, N. A., & Wan Ngah, W. Z. (2007). Antiproliferative, antioxidant and apoptosis effects of *Zingiber officinale* and 6-gingerol on HepG2 cells. *Asian Journal of Biochemistry*, 2(6), 421–426. doi:10.3923/ajb.2007.421.426

Héritier, V. N. V., Arthur, D. N., Augustin, M. M., Nadège, N. K., & Roger, K. V., Eric et, S. Z. L. P., & Jude-Thaddée, M. N. (2018). Article. *J. Pharmacogn. Phytochem.*, 7(1), 643–648.

Hiserodt, R. D., Franzblau, S. G., & Rosen, R. T. (1998). Isolation of 6-, 8-, and 10-gingerol from ginger rhizome by HPLC and preliminary evaluation of inhibition of *Mycobacterium avium* and *Mycobacterium tuberculosis*. *Journal of Agricultural and Food Chemistry*, 46(7), 2504–2508. doi:10.1021/jf9709481

Hsu, M. H., Kuo, S. C., Chen, C. J., Chung, J. G., Lai, Y. Y., & Huang, L. J. (2005). 1-(3,4-Dimethoxy-phenyl)3,5-dodecenedione (I6) induces G1 arrest and apoptosis in human promyelocytic leukemia HL-60 cells. *Leukemia Research*, 29(12), 1399–1406. doi:10.1016/j.leukres.2005.04.014 PubMed

Hussein, K. A., & Joo, J. H. (2018). Antifungal activity and chemical composition of ginger essential oil against ginseng pathogenic fungi. *Current Research in Environmental & Applied Mycology*, 8(2), 194–203. doi:10.5943/cream/8/2/4

Jha, A. B., Ashokkumar, K., Diapari, M., Ambrose, S. J., Zhang, H., Tar'an, B., ... Purves, R. W. (2015). Genetic diversity of folates profiles in seeds of common bean, lentil, chickpea, and pea. *Journal of Food Composition and Analysis*, 42, 134–140. doi:10.1016/j.jfca.2015.03.006

Karampour, N. S., Arzi, A., Rezaie, A., Pashmforoosh, M., & Kordi, F. (2019). Gastro protective effect of zingerone on ethanol-induced gastric ulcers in rats. *Medicina*, 55(3), 64. doi:10.3390/medicina55030064

Karuppiah, P., & Rajaram, S. (2012). Antibacterial effect of *Allium sativum*, cloves and *Zingiber officinale* rhizomes against multiple-drug resistant clinical pathogens. *Asian Pacific Journal of Tropical Biomedicine*, 8(8), 597–601. doi:10.1016/S2221-1691(12)60104-X PubMed

Katiyar, S. K., Agarwal, R., & Mukhtar, H. (1996). Inhibition of tumor promotion in SENCA mouse skin by ethanol extract of *Zingiber officinale* rhizome. *Cancer Research*, 56(5), 1023–1030. PubMed

Kayaardi, S., Durak, F., Kayacier, A., & Kayaardi, M. (2005). Chemical characteristics of kavurma with selected condiments. *International Journal of Food Properties*, 8(3), 513–520. doi:10.1080/10942910500269568

Khaki, A., & Fathiazad, F. (2012). Diabetic nephropathy-using herbals in diabetic nephropathy prevention and treatment - the role of ginger (*Zingiber officinale*) and onion (*Allium cepa*) in diabetics' nephropathy. In A. Bhattacharya (Ed.), *A Compendium of Essays on Alternative Therapy* (pp. 207–232). Rijeka, Croatia: InTech Publisher; doi:10.5772/34953.

Khan, I., Pandotra, P., Gupta, A. P., Sharma, R., Gupta, B. D., Dhar, J. K., ... Gupta, S. (2010). RP-thin layer chromatographic method for the quantification of three gingerol homologs of ultrasonic-assisted fresh rhizome extracts of *Zingiber officinale* collected from North Western Himalayas. *Journal of Separation Science*, 33(4-5), 558–563. doi:10.1002/jssc.200900629 PubMed

Kikusaki, H., & Nakatani, N. (1993). Antioxidant effect of some ginger constituents. *Journal of Food Science*, 58(6), 1407–1410. doi:10.1111/j.1365-2621.1993.tb06194.x

Kiran, C. R., Chakka, A. K., Padmakumari Amma, K. P., Menon, A. N., Sree Kumar, M. M., & Venugopalan, V. V. (2013). Essential oil composition of fresh ginger cultivars from North-East India. *The Journal of Essential Oil Research*, 25(5), 380–387. doi:10.1080/10412905.2013.796496

Kiuchi, F., Shibuya, M., & Sankawa, U. (1982). Inhibitors of prostaglandin biosynthesis from ginger. *Chemical & Pharmaceutical Bulletin*, 30(2), 754–757. doi:10.1248/cpb.30.754 PubMed

Kubra, I. R., & Rao, L. J. M. (2012). An impression on current developments in the technology, chemistry, and biological activities of Ginger (*Zingiber officinale* Roscoe). *Critical Reviews in Food Science and Nutrition*, 52, 651–688.

Latona, D. F., Oyeleke, G. O., & Olayiwola, O. A. (2012). Chemical analysis of ginger root. *IOSR Journal of Applied Chemistry*, 1(1), 47–49. doi:10.9790/5736-0114749

Lee, H. S., Seo, E. Y., Kang, N. E., & Kim, W. K. (2008). [6]-Gingerol inhibits metastasis of MDS-MB-231 human breast cancer cells. *The Journal of Nutritional Biochemistry*, 19(5), 313–319. doi:10.1016/j.jnutbio.2007.05.008 PubMed

Lucky, E., Igbinosa, O. E., & Jonahan, I. (2017). Antimicrobial activity of *Zingiber officinale* against multidrug resistant microbial isolates. *Health Science Research*, 4, 76–81.

Madreseh-Ghahfarokhi, S., Pirali, Y., Dehghani-Samani, A., & Dehghani-Samani, A. (2018). The insecticidal and repellent activity of ginger (*Zingiber officinale*) and eucalyptus (*Eucalyptus globulus*) essential oils against *Culex theileri* Theobald, 1903 (Diptera: Culicidae). *Annals of Parasitology*, 64(4), 351–360. PubMed

Mahady, G. B., Pendland, S. L., Yun, G. S., Lu, Z. Z., & Stoia, A. (2003). Ginger (*Zingiber officinale* Roscoe) and the gingerols inhibit the growth of Cag A+ strains of helicobacter pylori. *Anticancer Research*, 23, 3699–3702. PubMed

Maitre, S., Neher, J., & Safranek, S. (2011). FPIN's clinical inquiries: Ginger for the treatment of nausea and vomiting in pregnancy. *American Family Physician*, 84, 1–2. PubMed

Masuda, Y., Kikuzaki, H., Hisamoto, M., & Nakatani, N. (2004). Antioxidant properties of gingerol related compounds from ginger. *BioFactors (Oxford, England)*, 21(1-4), 293–296. doi:10.1002/biof.552210157 PubMed

Mesomo, M. C., Corazza, M. L., Ndiaye, P. M., Santa, O. R. D., Cardozo, L., & Scheer, A. P. (2013). Supercritical CO₂ extracts and essential oil of ginger (*Zingiber officinale* R.): Chemical composition and antibacterial activity. *The Journal of Supercritical Fluids*, 80, 44–49. doi:10.1016/j.supflu.2013.03.031

Muthukrishnan, S. D., Ashokkumar, K., & Annapoorani, S. (2014). Identification and determination of flavonoids, carotenoids and chlorophyll concentration in *Cynodon dactylon* (L.) by HPLC analysis. *Natural Product Research*, 29(8), 785–790. doi:10.1080/14786419.2014.986125 PubMed

Nanjundaiah, S. M., Annaiah, H. N. M., & Dharmesh, S. M. (2011). Gastroprotective Effect of Ginger Rhizome (*Zingiber officinale*) Extract: Role of Gallic Acid and Cinnamic Acid in H⁺, K⁺-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism. *Evidence-Based Complementary and Alternative Medicine*. doi:10.1093/ecam/nep060

Natta, L. K., & Orapin, N., Krittika, & Pantip, B. (2008). Essential oil from five Zingiberaceae for anti-food-borne bacteria. *International Food Research Journal*, 15, 337–346.

Odebunmi, E. O., Oluwaniyi, O. O., & Bashiru, M. O. (2010). Comparative proximate analysis of some food condiments. *Journal of Applied Sciences Research*, 6(3), 272–274.

Ogbuewu, I. P., Jiwuba, P. D., Ezeokeke, C. T., Uchegbu, M. C., Okoli, I. C., & Iloeje, M. U. (2014). Evaluation of phytochemical and nutritional composition of ginger rhizome powder. *International Journal of Agriculture & Rural Development*, 17(1), 1663–1670.

Ojewole, J. A. O. (2006). Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of *Zingiber officinale* (Roscoe) rhizomes (Zingiberaceae) in mice and rats. *Phytotherapy Research*, 20(9), 764–772. doi:10.1002/ptr.1952 PubMed

Okamoto, M., Irii, H., Tahara, Y., Ishii, H., Hirao, A., Udagawa, H., ... Shimizu, I. (2011). Synthesis of a new [6]- gingerol analogue and its protective effect with respect to the development of metabolic syndrome in mice fed a high-fat diet. *Journal of Medicinal Chemistry*, 54(18), 6295–6304. doi:10.1021/jm200662c PubMed

Onimawo, I. A., Esekheigbe, A., & Okoh, J. E. (2019). Determination of Proximate and Mineral Composition of Three Traditional Spices. *Acta Scientific Nutritional Health*, 3, 111–114.

Onyenekwe, P. C., & Hashimoto, S. (1999). The composition of the essential oil of dried Nigerian ginger (*Zingiber officinale* Roscoe). *European Food Research and Technology*, 209(6), 407–410. doi:10.1007/s002170050517

Otunola, G. A., Oloyede, O. B., Oladiji, A. T., & Afolayan, A. J. (2010). Comparative analysis of the chemical composition of three spices - *Allium sativum* L. *Zingiber officinale* Rosc. and *Capsicum frutescens* L. commonly consumed in Nigeria. *African Journal of Biotechnology*, 9(41), 6927–6931.

Park, M., Bae, J., & Lee, D. S. (2008). Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. *Phytotherapy Research*, 22(11), 1446–1449. doi:10.1002/ptr.2473 PubMed

Pino, J. A., Marbot, R., Rosado, A., & Batista, A. (2004). Chemical composition of the essential oil of *Zingiber officinale* Roscoe L. from Cuba. *The Journal of Essential Oil Research*, 16(3), 186–188. doi:10.1080/10412905.2004.9698692

Prasad, S., & Tyagi, A. K. (2015). Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer. *Gastroenterology Research and Practice*. doi:10.1155/2015/142979

Qin, F., & Xu, H. (2008). Active compounds in gingers and their therapeutic uses in complimentary medication. *Medicinal and Aromatic Plant Science and Biotechnology*, 2(2), 72–78.

Raina, V. K., Kumar, A., & Aggarwal, K. K. (2005). Essential oil composition of ginger (*Zingiber officinale* Roscoe) rhizomes from different place in india. *Journal of Essential Oil-Bearing Plants*, 8(2), 187–191. doi:10.1080/0972060X.2005.10643442

Ramadan, G., Al-Kahtani, M. A., & El-Sayed, W. M. (2011). Anti-inflammatory and anti-oxidant properties of *Curcuma longa* (turmeric) versus *Zingiber officinale* (ginger) rhizomes in rat adjuvant-induced arthritis. *Inflammation*, 34(4), 291–301. doi:10.1007/s10753-010-9278-0 PubMed

Ravindran, P. N., Nirmal Babu, K., & Shiva, K. N. (2005). Botany and crop improvement of ginger. In P. N. Ravindran & K. Nirmal Babu (Eds.), *Ginger: The Genus Zingiber* (Vol. 41, pp. 15–85). Boca Raton, FL: Medicinal and Aromatic Plants-Industrial Profiles.

Riaz, H., Begum, A., Raza, S. A., Khan, Z. M.-U.-D., Yousaf, H., & Tariq, A. (2015). Antimicrobial property and phytochemical study of ginger found in local area of Punjab, Pakistan. *International Current Pharmaceutical Journal*, 4(7), 405–409. doi:10.3329/icpj.v4i7.23591

Sa-Nguanpuag, K., Kanlayanarat, S., Srilaong, V., Tanprasert, K., & Techavuthiporn, C. (2011). Ginger (*Zingiber officinale*) oil as an antimicrobial agent for minimally processed produce: A case study in shredded green papaya. *International Journal of Agriculture and Biology*, 13, 895–901.

Saputri, F. C., & Jantan, I. (2011). Effects of selected medicinal plants on human low-density lipoprotein oxidation, 2,2-diphenyl-1-picrylhydra-zyl (DPPH) radicals and human platelet aggregation. *Journal of Medicinal Plants Research*, 5, 6182–6199.

Sasidharan, I., & Menon, A. N. (2010). Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (*Zingiber officinale* Roscoe). *International Journal of Current Pharmaceutical Research*, 2, 40–43.

Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. *Phytochemistry*, 117, 554–568. doi:10.1016/j.phytochem.2015.07.012 PubMed

Shahid, M., & Hussain, F. (2012). Chemical composition and mineral contents of *Zingiber officinale* and *Alpinia allughas* (*Zingiberaceae*) rhizomes. *International Journal of Chemical and Biochemical Science*, 2, 101–104.

Shammary, A. M. N. A. (2018). Protective effect of ginger (*Zingiber officinale*) consumption against kidney damage in rats. *Life Science Journal*, 15(1), 80–85.

Sharma, N., Tiwari, R., & Srivastava, M. P. (2013). *Zingiber officinale* Roscoe. Oil: A preservative of stored commodities against storage Mycoflora. *International Journal of Current Microbiology and Applied Sciences*, 2, 123–134.

Sharma, P. K., Singh, V., & Ali, M. (2016). Chemical composition and antimicrobial activity of fresh rhizome essential oil of *Zingiber officinale* Roscoe. *Pharmacognosy Journal*, 8(3), 185–190. doi:10.5530/pj.2016.3.3

Shobana, S., & Naidu, K. A. (2000). Antioxidant activity of selected Indian spices. *Prostaglandins, Leukotrienes, and Essential Fatty Acids*, 62(2), 107–110. doi:10.1054/plef.1999.0128 PubMed

Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: A brief review. *Food and Chemical Toxicology*, 45(5), 683–690. doi:10.1016/j.fct.2006.11.002 PubMed

Singh, G., Kapoor, I. P. S., Singh, P., De Heluani, C. S., De Lampasona, M. P., & Catalan, C. A. N. (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of *Zingiber officinale*. *Food and Chemical Toxicology*, 46(10), 3295–3302. doi:10.1016/j.fct.2008.07.017 PubMed

Srivastava, K. C., & Mustafa, T. (1989). Spices: Antiplatelet activity and prostanoid metabolism. *Prostaglandins, Leukotrienes, and Essential Fatty Acids*, 38(4), 255–266. doi:10.1016/0952-3278(89)90129-4 PubMed

Stoyanova, A., Konakchiev, A., Damyanova, S., Stoilova, I., & Suu, P. T. (2006). Composition and antimicrobial activity of ginger essential oil from Vietnam. *Journal of Essential Oil-Bearing Plants*, 9(1), 93–98. doi:10.1080/0972060X.2006.10643478

Sultan, M., Bhatti, H. N., & Iqbal, Z. (2005). Chemical analysis of essential oil of ginger (*Zingiber officinale*). *Pakistan Journal of Biological Sciences*, 8(11), 1576–1578. doi:10.3923/pjbs.2005.1576.1578

Surh, Y. J., Park, K. K., Chun, K. S., Lee, L. J., Lee, E., & Lee, S. S. (1999). Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. *Journal of Environmental Pathology, Toxicology and Oncology*, 18, 131–139. PubMed

Švarc-Gajić, J., Cvetanović, A., Segura-Carretero, A., Linares, I. B., & Maškovic, P. (2017). Characterization of ginger extracts obtained by subcritical water. *The Journal of Supercritical Fluids*, 123, 92–100. doi:10.1016/j.supflu.2016.12.019

Tahir, A. A., Abdul Sani, N. F., Morad, N. A., Makpol, S., Ngah, W. Z., & Yusof, Y. A. (2015). Combined ginger extract and gelam honey modulate Ras/ERK and P13/AKT pathway genes in colon cancer HT29 cells. *Nutrition Journal*, 14(1), 31. doi:10.1186/s12937-015-0015-2 PubMed

Tchombé, N. L., Louajri, A., & Benajiba, M. H. (2012). Therapeutic effects of ginger (*Zingiber officinale*). *ISESCO Journal of Science and Technology*, 8, 64–69.

Thomson, M., Al-Qattan, K. K., Al-Sawan, S. M., Alnaqeeb, M. A., Khan, I., & Ali, M. (2002). The use of ginger (*Zingiber officinale* Rosc.) as a potential anti-inflammatory and antithrombotic agent. *Prostaglandins, Leukotrienes, and Essential Fatty Acids*, 67(6), 475–478. doi:10.1054/plef.2002.0441 PubMed

Thongson, C., Davidson, P. M., Mahakarnchanakul, W., & Vibulsresth, P. (2005). Antimicrobial effect of Thai spices against *Listeria monocytogenes* and *Salmonella Typhimurium* DT104. *Journal of Food Protection*, 68(10), 2054–2058. doi:10.4315/0362-028X-68.10.2054 PubMed

Toader, O. R. (2014). Study of the effects of *Zingiber officinale* (ginger) on spermatogenesis in mice. *Annals of West University of Timisoara. Series of Biology*, 17, 145–152.

Townsend, E. A., Siviski, M. E., Zhang, Y., Xu, C., Hoonjan, B., & Emala, C. W. (2013). Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. *American Journal of Respiratory Cell and Molecular Biology*, 48(2), 157–163. doi:10.1165/rcmb.2012-0231OC PubMed

Tzeng, T. F., & Liu, I. M. (2013). 6-Gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. *Phytomedicine*, 20(6), 481–487. doi:10.1016/j.phymed.2012.12.006 PubMed

Vasala, P. A. (2004). Ginger. In K. V. Peter (Ed.), *Handbook of Herbs and Spices* (Vol. 1, pp. 195–206). Cambridge, UK: Woodhead.

Wei, Q. Y., Ma, J. P., Cai, Y. J., Yang, L., & Liu, Z. L. (2005). Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. *Journal of Ethnopharmacology*, 102(2), 177–184. doi:10.1016/j.jep.2005.05.043 PubMed

WHO. (1991). *Traditional medicine and modern health care: progress report by the director general document A 44(10)*. World Health Organization.

Wohlmuth, H., Leach, D. N., Smith, M. K., & Myers, S. P. (2005). Gingerol content of diploid and tetraploid clones of ginger (*Zingiber officinale* Roscoe). *Journal of Agricultural and Food Chemistry*, 53(14), 5772–5778. doi:10.1021/jf050435b PubMed

Yadav, S., Sharma, P. K., & Alam, M. A. (2016). Ginger medicinal uses and benefits. *European Journal Pharmaceutical and Medical Research*, 3, 127–135.

Yamamoto-Ribeiro, M. M. G., Grespan, R., Kohiyama, C. Y., Dias, F., Galerani, S. A., Leite, E., ... Machinski, M. (2013). Effect of *Zingiber officinale* essential oil on *Fusarium verticillioides* and Fumonisin production. *Food Chemistry*, 141(3), 3147–3152. doi:10.1016/j.foodchem.2013.05.144 PubMed

Yusof, Y. A. M., Ahmad, N., & Das, S. (2009). Chemopreventive efficacy of ginger (*Zingiber officinale*) in ethionine induced rat hepatocarcinogenesis. *African Journal of Traditional, Complementary, and Alternative Medicines*, 6, 87–93. PubMed

Zarate, R., & Yeoman, M. M. (1996). Changes in the amounts of [6]-gingerol and derivatives during a culture cycle of ginger, *Zingiber officinale*. *Plant Science*, 121(1), 115–122. doi:10.1016/S0168-9452(96)04512-8