

Review

Essential Oils as Antimicrobial Agents Against WHO Priority Bacterial Pathogens: A Strategic Review of In Vitro Clinical Efficacy, Innovations and Research Gaps

Katia Iskandar ^{1,2,3,*}, Nada Ahmed ⁴, Narayan Paudyal ⁵, Maria-Jose Ruiz Alvarez ⁶, Subramani Paranthaman Balasubramani ⁷, Danielle Saadeh ³, Sami Ullah Baig ⁸, Hiba Sami ⁹, Dalal Hammoudi Halat ¹⁰, Nebojša Pavlović ¹¹, Christine Roques ^{12,13}, Meher Rizvi ¹⁴, Pascale Salameh ^{3,15,16}, Faten Hamed ¹ and Maarten Van Dongen ¹⁷

¹ Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut 1105, Lebanon; faten.hamed@liu.edu.lb

² Faculty of Public Health-Section 2, Lebanese University, Fanar 2611, Lebanon

³ INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut 1103, Lebanon; pascalesalameh1@hotmail.com (P.S.)

⁴ Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria 5424041, Egypt; n.amed.aca@gmail.com

⁵ National Animal Health Research Center, Nepal Agricultural Research Council (NARC), Khumaltar, Lalitpur P.O. Box 3733, Nepal; narayan.paudyal@outlook.com

⁶ Research Coordination and Promotion Service, National Institute of Health (ISS), Viale Regina-Elena, 299, 00161 Rome, Italy

⁷ Department of Natural Sciences, Albany State University, 2400 Gillionville Rd., Albany, GA 31707, USA; balasubramani.subramaniparanthaman@asurams.edu

⁸ Department of Humanities and Social Sciences, Bahria University Islamabad Campus, Islamabad 44000, Pakistan

⁹ Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India

¹⁰ QU Health Office of Assessment and Accreditation, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; dhammoude@qu.edu.qa

¹¹ Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; nebojsa.pavlovic@mf.uns.ac.rs

¹² Laboratoire de Génie Chimique, CNRS, INPT, UPS, Faculté de Pharmacie, Université de Toulouse, 31062 Toulouse, France; roques730@aol.com

¹³ ACM Pharma FONDEREPHAR, 3 Rue des Satellites, Canal Biotech 2, 31400 Toulouse, France

¹⁴ Department of Microbiology & Immunology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman; rizvimeher@squ.edu.om

¹⁵ Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus

¹⁶ Gilbert and Rose Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon

¹⁷ AMR Insights, 1017 EG Amsterdam, The Netherlands; maarten@amr-insights.eu

* Correspondence: katia_iskandar@hotmail.com or katia.iskandar@liu.edu.lb

Academic Editors: Nicholas Dixon, Eduardo Valarezo, Miguel Ángel Meneses and Matteo Radice

Received: 29 July 2025

Revised: 24 October 2025

Accepted: 8 November 2025

Published: 10 December 2025

Citation: Iskandar, K.; Ahmed, N.; Paudyal, N.; Ruiz Alvarez, M.-J.; Balasubramani, S.P.; Saadeh, D.; Ullah Baig, S.; Sami, H.; Hammoudi Halat, D.; Pavlović, N.; et al. Essential Oils as Antimicrobial Agents Against WHO Priority Bacterial Pathogens: A Strategic Review of In Vitro Clinical Efficacy, Innovations and Research Gaps. *Antibiotics* **2025**, *14*, 1250.

<https://doi.org/10.3390/antibiotics14121250>

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Abstract

The rapid rise of antimicrobial resistance (AMR) has emerged as a critical global health crisis, driven by the widespread emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) pathogens. This growing threat, coupled with the stagnation in the development of novel antibiotics, necessitates the investigation of alternative antimicrobial strategies. Plant-derived essential oils (EOs) have emerged as promising candidates due to their broad-spectrum antibacterial activity, multi-targeted mechanisms, and capacity to enhance the efficacy of existing antibiotics. Recent studies have underscored the potential of EOs in disrupting biofilms, inhibiting quorum sensing, modulating efflux pumps, and reversing resistance in a variety of bacterial pathogens, including those listed as priorities by the World Health Organization. Notably, many of these effects have been demonstrated

against resistant strains isolated directly from clinical samples, thereby enhancing the translational significance of EOs. In addition to their antimicrobial properties, advances in analytical, omics-based, and microfluidic technologies have further elucidated the mechanisms of EOs and may accelerate their therapeutic development. Nevertheless, challenges such as variability in composition, lack of standardized testing protocols, and limited in vivo data continue to impede clinical application. Therefore, the aim of this scoping review is to critically examine the advances over the past decade in the antibacterial activity of plant EOs against clinical isolates, with a particular focus on their efficacy against resistant bacterial pathogens and their potential role in combating AMR.

Keywords: plant essential oils; antibacterial; antimicrobial resistance; antibiotics; clinical isolates; bacteria; synergism; challenges; extraction methods

1. Introduction

The global crisis of antimicrobial resistance (AMR) has reached unprecedented levels, with the World Health Organization (WHO) declaring it among the top ten public health threats facing humanity [1]. The emergence and proliferation of multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterial pathogens have severely compromised the efficacy of conventional antibiotic therapies, necessitating urgent exploration of alternative therapeutic strategies [2–5]. The declining pipeline of novel antibiotics, coupled with the accelerating pace of resistance development, has created a critical therapeutic gap that demands innovative approaches to combat resistant pathogenic bacteria [6–10].

To orientate research and development, the WHO has published a Bacterial Priority Pathogens List (BPPL) that identified 24 pathogens across 15 families of antibiotic-resistant bacterial pathogens as priority targets for new antibiotics development [11]. The report emphasizes Gram-negative bacteria (GNB) resistant to last-resort antibiotics, such as *Acinetobacter baumannii*, third-generation cephalosporin-resistant and carbapenem-resistant *Enterobacterales*, as well as other high-burden resistant pathogens, including *Salmonella* spp., *Pseudomonas aeruginosa*, Group A and B *Streptococci*, *Enterococcus faecium* and *Staphylococcus aureus* [11]. According to the BPPL report, the antibiotic pipeline suffers from limited innovation and global access to new and current treatments [11].

Plant essential oils (EOs) have emerged as compelling candidates in the fight against AMR, demonstrating remarkable antimicrobial properties through complex, multifaceted mechanisms of action [12–17]. Unlike conventional antibiotics that typically target single bacterial processes, EOs exhibit synergistic effects with existing antibiotics and possess the unique ability to re-sensitize multidrug-resistant bacteria to available therapies [12,18–23]. This multi-target approach, combined with their capacity to disrupt biofilm formation, inhibit efflux pumps, and modulate bacterial quorum sensing, positions EOs as promising leads for developing novel adjunctive or alternative antimicrobial strategies [10,13–17].

The therapeutic potential of EOs stems from their complex chemical composition, which predominantly consists of volatile secondary metabolites including terpenes, terpenoids, and aromatic compounds [24–26]. These bioactive components, particularly phenolic compounds such as thymol, carvacrol, and eugenol, demonstrate potent antimicrobial effects against a broad spectrum of bacterial pathogens, including WHO-priority pathogens [13,14,27–29]. The natural origin and multi-component nature of EOs contribute to their reduced likelihood of inducing rapid resistance development compared to single-molecule antibiotics [30,31].

Despite extensive in vitro research demonstrating the promising antimicrobial properties of EOs, significant knowledge gaps remain regarding their clinical translation. Multiple systematic reviews have identified critical limitations, including insufficient data on in vivo bioavailability, tissue distribution, selectivity, stability, and comprehensive safety profiles required for clinical practice [10,13–17,32]. These limitations, coupled with concerns about complex regulatory processes, potential resistance development, and possible antagonistic interactions with conventional antibiotics, have hindered the progression of EOs from laboratory bench to clinical bedside [8,9,33,34].

The past decade has witnessed substantial advances in EO research, with increased focus on their activity against clinical isolates and exploration of their potential as lead compounds for antimicrobial drug development [15,35–44]. However, a comprehensive analysis of recent progress specifically examining EOs' antibacterial efficacy against resistant clinical pathogens, while addressing the challenges impeding their clinical implementation, remains lacking in the current literature.

Therefore, this review aims to critically examine advances during the past decade (2014–2024) in the antibacterial activity of plant EOs against clinical isolates, with particular emphasis on their efficacy against resistant bacterial pathogens. Furthermore, we explore the current challenges and recent technological advances that may facilitate the translation of EOs into viable therapeutic options resistant bacteria. By integrating current evidence and highlighting key research gaps, this review seeks to provide a comprehensive framework for future research directions and clinical applications of EOs in the global fight against AMR.

2. Search Strategy

The scoping review is based on 48 studies included according to their thematic consistency and relevance to the review objective. Searched databases included Web of Science, PubMed, Google Scholar, and grey literature, from 2014 to 2024.

The search strategy consisted of four main concepts: “essential oils”, “antibacterial use” and “antibiotic resistance” and “clinical isolates”. Relevant keywords and Medical Subject Headings (MeSH) terms were combined using Boolean operators to capture the pertinent literature. The initial search results were screened based on titles and abstracts, and only relevant studies tackling the EOs antibacterial activity against clinical isolates were included in the review.

3. The Antimicrobial Effect of Essential Oils

3.1. Mechanisms of Antimicrobial Activity of Essential Oils

Plant EOs exert antimicrobial activity through multiple concurrent mechanisms, including membrane disruption, biofilm inhibition, quorum sensing (QS) interference, and suppression of antimicrobial resistance determinants such as efflux pumps and β -lactamases [45]. This multi-target activity distinguishes EOs from conventional single-target antibiotics and may explain the limited development of bacterial resistance observed in vitro.

3.1.1. Disruption of Biofilm Formation

Biofilms, structured bacterial communities encased in a self-produced matrix, significantly contribute to pathogenesis and antibiotic resistance [46,47].

Some EOs act as antibiofilm agents by disrupting formation processes and dismantling mature biofilms across a broad spectrum of GNB and Gram-positive bacteria (GPB) [37,48]. During biofilm formation, EOs disrupt planktonic cells before attachment through cell wall [48,49] or membrane disruption [50], reactive oxygen species (ROS) generation [51]

and interference with energy production [52]. They also alter surface properties such as hydrophobicity and charge [53], preventing bacterial cells attachment [38] or microcolony formation [54]. Additionally, EOs affect virulence factors directly by regulating gene expression [55] or by interacting with proteins involved in virulence processes [48,56]. The latter effects occur via intracellular signaling pathways such as C-AMP [54] or c-di-GMP [57–62].

In vitro studies have demonstrated that cassia oil, cinnamon oil, tea tree oil, and palmarosa oil effectively reduce biomass and bacterial cells within established *P. aeruginosa* biofilms, in some cases outperforming antibiotics such as ciprofloxacin [48]. Oregano oil containing 72.3% carvacrol completely eradicated *S. aureus* and *P. aeruginosa* within biofilms, with no bacterial resistance development observed after 20 passages [35].

In clinical settings, EOs and their compounds could be valuable at biocidal concentrations by reducing bacterial colonies and destroying biofilm matrix [63]. This finding is relevant in preventing biofilm formation on clinical surfaces and devices, particularly catheters. Jafri and Colleagues (2014) evaluated the anti-biofilm activities of various EOs and active compounds against antibiotic-resistant *S. aureus* strains, reporting that eugenol and thyme oil exhibited concentration-dependent biofilm inhibition [63]. At biocidal concentrations of 4–12.8%, eugenol inhibited biofilm formation of antibiotic-resistant *S. aureus* strains by nearly 90%, while thyme oil demonstrated a maximum reduction of 88.7% in biofilm formation [63].

3.1.2. Modulation of Quorum Sensing Activity

QS is a bacterial communication system responding to population density changes, regulating virulence factors and biofilms protection against innate immune system [64–69]. The process involves autoinducers (AIs): GNB predominantly use autoinducing peptides (AIPs), while GNB employ acyl-homoserine lactones (AHLs or AI-1) [48,70], with both types producing AI-2 (furanosyl borate diester) for intra- and interspecies communication [46,56].

Recent in vitro studies have shown that certain EOs and their components modulate QS-related genes expression, inhibiting biofilm formation and virulence factor production [48,68,70–76]. *Melaleuca bracteata* and *Artemisia princeps* EOs regulated QS genes (*lasI*, *lasR*, *rhlI*, and *rhlR*) in *P. aeruginosa* [71] and virulence genes (*mecA*, *sea*, *agrA*, and *sarA*) in MRSA, respectively [72]. Clove oil, peppermint oil, and menthol exhibit anti-QS activity by interfering with the AHL-QS signaling cycle, inhibiting the LasR/RhlR regulatory system in *P. aeruginosa* [74,75], and attenuating virulence factors production, including pyocyanin, elastase, chitinase, and proteases. Notably, monoterpenes and phenylpropanes (thymol, carvacrol, and linalool) demonstrated anti-QS effects at sub-MICs, suggesting a specific interference with QS systems rather than general antimicrobial activity [76].

3.1.3. Cellular Targets: Membrane Activity and Genetic Material

Primary antibacterial mechanism of plant EOs involves the disrupting bacterial cytoplasmic membrane integrity and function [48]. EOs alter membrane fluidity and permeability, interfere with transport proteins, and influence fatty acid composition [48,70]. They also impact cell division, cell wall structure, morphology, respiration, ion transport, and energy balance [48].

Specific mechanisms include forming multilamellar structures within membranes, disintegrating outer membranes and lipopolysaccharides (LPS) in GNB, and inducing cell lysis [48]. Some EOs eliminate R-plasmids contributing to AMR spread [77]. For example, cinnamic acid interacts with the FtsZ protein to inhibit cell division and elongation [78], while thyme EOs alter cellular protein composition similarly to streptomycin and gentamicin [79]. Cinnamaldehyde, the predominant compound in cinnamon EOs, interacts

with β -galactosidase, an essential bacterial enzyme, leading to conformational changes and significant activity decline [80].

EOs generally show greater efficacy against GPB due to their hydrophobic nature allowing easier penetration of the Gram-positive peptidoglycan layer [81,82], though diverse mechanisms of EOs can potentially overcome the protective lipopolysaccharide barrier in GNB by increasing permeability and enhancing antibiotic uptake [52,82].

EOs have also demonstrated the ability to indirectly affect microbial genetic material, primarily through oxidative stress and the induction of epigenetic changes [83]. EOs derived from *Clinopodium nepeta*, *Origanum vulgare*, and *Foeniculum vulgare* showed the most pronounced inhibitory effects on bacterial growth across various cell lines by inducing epigenetic modifications, such as methylation at adenine and cytosine residues [83]. ROS generated by EOs negatively regulate gene expression involved in motility, adherence, cellular aggregation, and exopolysaccharide production in *E. coli* and *S. aureus* [84]. However, genomics and proteomics studies suggest EOs do not directly damage microbial DNA but exert their antimicrobial effects through complex genomic interactions [16,85–87].

3.1.4. Dual Pro-Oxidant and Antioxidant Activities

The dual pro-oxidant and antioxidant activities of EOs contribute to their complex antibacterial effects and potential to combat AMR [88]. EOs generate ROS or inhibit bacterial antioxidant mechanisms [88], inducing oxidative stress that damages cells, inhibits biofilm formation, and disrupts essential cellular functions [52,73,88,89]. *Cinnamomum verum* EOs elevate ROS levels in *K. pneumoniae*, causing leakage of intracellular contents and interfering with energy production and cell wall synthesis [89]. *Lavandula angustifolia* EOs combined with meropenem increase ROS levels in *K. pneumoniae* cells, leading to oxidative damage and membrane disruption [52]. *Rosmarinus officinalis* and *Myrtus communis* EOs reduce catalase production jeopardizing bacterial adaptation to oxidative stress [90]. Bowbe and Colleagues (2023) showed that the anti-staphylococcal activity of *Rosmarinus officinalis* and *Myrtus communis* EOs involved modulating the bacterium antioxidant responses by reducing catalase production and jeopardizing the bacterial adaptation to oxidative stress induced by the EOs [90].

In hosts, EOs exhibit antioxidant properties protecting host cells from oxidative damage and modulating immune responses, supporting the ability to fight infections and reduce inflammation [64–68,88].

3.1.5. Inhibition of Resistance Mechanisms

Efflux Pump Effect

Efflux pumps are membrane proteins that expel antibiotics, maintaining subtherapeutic concentrations [91]. *Cinnamomum zeylanicum* EO demonstrated potent antibacterial activity against MDR *P. aeruginosa* by significantly downregulating the expression of *mexA* and *mexB* efflux pump genes, enhancing existing antibiotic efficacy [92]. *Mentha* EOs constituents effectively inhibit DNA gyrase and the MDR *E. coli* AcrB-TolC efflux pump [93], while thyme extract inhibits *nora* gene expression encoding a multidrug efflux pump protein in *S. aureus* clinical isolates [94,95]. Oregano and thyme EOs inhibited the *pmrA* gene expression in fluoroquinolone-resistant *S. pneumoniae* [96].

β -Lactamase Inhibition

Various EOs have demonstrated promising β -lactamase inhibition abilities. *Piper tuberculatum* EOs exhibited activity comparable to sulbactam in *S. aureus* [37], while clove EOs inhibited β -lactamases across *S. aureus*, *E. coli*, *K. pneumoniae*, and *P. aeruginosa* [97]. Terpinolene in various EOs showed effective β -lactamase inhibition [98], and ginger EOs

demonstrated a synergistic effect with cefepime against β -lactamases of *E. coli* causing urinary tract infection (UTI) [99].

3.1.6. Additional Anti-Virulence Mechanisms

EOs target and inhibit bacterial toxins from species such as *Klebsiella pneumoniae* [100], *E. coli* [101], and *P. aeruginosa* [102]. Clove, cinnamon, and oregano oils reduced *Campylobacter jejuni* (*C. jejuni*) attachment and invasion of intestinal epithelial cells [103]. Regarding antimotility effects, carvacrol, found in oregano EO, inhibited flagellin production in *E. coli* E157:H7, rendering it non-motile [104], while trans-cinnamaldehyde, carvacrol, and eugenol inhibited *C. jejuni* motility, and thymol inhibited *P. aeruginosa* motility [102,103].

3.2. Antibacterial Efficacy of Selected Plant Essential Oils Against Resistant Clinical Pathogens

EOs are complex volatile compounds derived from various plant parts, including leaves, flowers, fruits, seeds, bark, and root [10]. Their chemical composition primarily consists of terpenes (monoterpenes and sesquiterpenes), terpenoids (oxygenated derivatives such as phenols, alcohols, aldehydes, ketones, and ethers), and aromatic compounds [25,105]. Typically colorless to pale yellow, EO possess strong aromatic properties and are poorly water-soluble but highly soluble in organic solvents [106,107].

The major bioactive components (20–70%) of EO exhibit potent antimicrobial effects, with phenolic compounds being the most effective, followed by terpenes and non-aromatic alcohols [13,105,108]. Oxygenated terpenes demonstrate more potent activity than their hydrocarbon counterparts [108]. The synthesis of these secondary metabolites occurs via pathways such as the mevalonic acid and methylerythritol phosphate pathways [107]. Their antimicrobial efficacy stems from their complex composition, with notable potency observed in the Lamiaceae family due to high thymol and carvacrol content [109]. Beyond direct antibacterial effects, some EO can sensitize resistant bacteria to conventional antibiotics [110], making them promising candidates against AMR. This section reviews recent studies on the antibacterial effects of different EO and is summarized in Table 1.

Table 1. Antibacterial activity of selected plant essential oils against resistant pathogens.

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
Cinnamon and cinnamaldehyde/Lauraceae	Not available	Clinical isolates of <i>E. coli</i> : 32 μ L per mL of cinnamon; MIC cinnamaldehyde ranges between 0.00002 to 0.03 μ L/mL	<i>E. coli</i> carrying <i>pks</i> gene	Colon cancer patients, inflammatory bowel disease and healthy subjects	AB, ABF, AV	[111]
	Cinnamaldehyde (78.1%), benzyl alcohol (16.67%)	EOs MIC: 0.0562–0.225 μ L/mL	Pan and Extensive Drug-Resistant <i>P. aeruginosa</i>	Burn wounds and urine samples	AB, AE	[112]
Cinnamon, Thyme, Eucalyptus/Lauraceae	cinnamaldehyde (E)—(40.91%), cinnamaldehyde dimethyl acetal (37.54%)	EOs MIC (Resistant strains): 4.88 to 312.5 μ g/mL	Colistin-resistant strains	Cancer patients.	AB	[113]
Cinnamon bark oil (<i>Cinnamomum zeylanicum</i>) and other EOs/Lauraceae	Cinnamaldehyde and Eugenol	EOs MIC: 0.0562–0.225% (v/v)	<i>P. aeruginosa</i> (PAO1) and MDR <i>P. aeruginosa</i> (MDR-PA)	Clinical isolates	AB	[114]

Table 1. Cont.

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
<i>Cinnamom cassia</i>	Cinnamaldehyde (87.6%)	EOs MIC: 281.25 µg/mL	Carbapenemase-producing <i>K. pneumoniae</i> (KP-KPC) and <i>S. marcescens</i> (SM-KPC)	Rectal swab and urine sample	AB	[115]
<i>Cinnamom cassia</i>	Cinnamaldehyde (87.6%)	EOs MIC: 17.57 µg/mL	Carbapenem- and polymyxin-resistant <i>Klebsiella aerogenes</i>	Nasal swab	AB	[116]
Clove (<i>Syzygium aromaticum</i>)/Myrtaceae	Eugenol (96.35%)	EOs MIC: 23.0 to 51.0 µg/mL	MDR <i>Helicobacter pylori</i>	Clinical samples	AB, ABF	[117]
	Eugenol (67.4%)	EOs MIC: 200 µg/mL	<i>Campylobacter jejuni</i>	Clinical samples	AB, AV	[118]
Clove (<i>Syzygium aromaticum</i>)/Myrtaceae, Thyme (<i>Thymus vulgaris</i>) chitosan coated emulsions for nose and brain delivery/Lamiaceae	Clove EO: eugenol (80.1%); Thyme EO: thymol (44.4%)	Not specified	<i>S. aureus</i> subsp. <i>aureus</i> -MSSA, <i>E. coli</i> , MRSA, carbapenem-resistant <i>K. pneumoniae</i> (CR-Kp), carbapenem-resistant <i>A. baumannii</i> (CR-Ab), and carbapenem-resistant <i>P. aeruginosa</i> (CR-P)	MRSA isolated from skin; CR-Kp isolated from urine; R-Ab clinical strain isolated from sputum; CR-Pa clinical strain isolated from bronchoalveolar lavage	AB	[119]
<i>Nigella sativa</i> seed oil/Ranunculaceae	Not specified	Not specified	Methicillin-resistant <i>S. aureus</i> (MRSA)	Diabetic patients' wounds	AB	[120]
<i>Nigella sativa</i> seed oil/ Ranunculaceae	Thymoquinone (30–52.6%) and p-cymene (7–25.8%)	EOs MIC: <0.25 µg/mL to 1.0 µg/mL	Methicillin-resistant <i>S. aureus</i> (MRSA), and methicillin-resistant CoNS (MRCoNS)	Clinical samples	AB	[121]
(<i>Coriandrum sativum</i>)/Apiaceae, <i>Cinnamomum cassia</i> /Lauraceae, <i>Ziziphora hispanica</i> /Lamiaceae	Not specified	<i>Cinnamomum cassia</i> EO MIC: <5 mg/mL	MDR uropathogenic <i>E. coli</i>	Patients with UTIs	AB	[122]
Eucalyptus (<i>Eucalyptus camaldulensis</i>) leaf/Myrtaceae	Patulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene	EOs MIC: 0.5 to 2 µL/mL	MDR <i>Acinetobacter baumannii</i>	Wound isolates	AB	[20]
Eucalyptus (<i>Eucalyptus globulus</i>), Tea Tree (<i>Melaleuca alternifolia</i>), Clove (<i>Syzygium aromaticum</i>)/Myrtaceae, Cinnamomum (<i>Cinnamomum zeylanicum</i>)/Lauraceae	Not specified	Not specified	<i>P. aeruginosa</i> and <i>S. aureus</i>	Clinical isolates	ABF	[59]
Geranium (<i>Pelargonium graveolens</i> Ait)/Geraniaceae	Citronellol (26.7%) and geraniol (13.4%)	EOs MIC vary between 3.0 µL/mL to 10.5 µL/mL	<i>E. coli</i> , <i>C. freundii</i> , <i>E. sakazakii</i> , <i>E. cloacae</i> , <i>P. mirabilis</i> and <i>P. aeruginosa</i> resistant strains	Patients with difficult to heal wounds	AB	[124]

Table 1. Cont.

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
Geranium (<i>Pelargonium graveolens</i>)/ <i>Geraniaceae</i> , Rosemary (<i>Rosemary officinalis</i>)/ <i>Lamiaceae</i> , and Peppermint (<i>Mentha piperita</i>)/ <i>Lamiaceae</i>		Mint EOs MIC: 2.5–5 μ L/mL; Geranium EOs MIC: 5–20 μ L/mL; Rosemary EOs MIC: 5–20 μ L/mL	XDR colistin-resistant and colistin susceptible <i>A. baumannii</i>	Clinical isolates	AB, ABF	[40]
Ginger (<i>Zingiber officinale</i>)/ <i>Zingiberaceae</i>	9,12-Octadecadienoic acid methyl ester (50.49%) and Hexadecanoic acid methyl ester (38.05%)	EOs MIC: 1.5 mg/mL	<i>P. aeruginosa</i> producing extended spectrum β -lactamase (ESBL) enzyme	Wound samples of burn patients	AB	[125]
	Not specified	Not specified	MDR and XDR <i>E. coli</i> blaTEM genotypes	Clinical samples from patients with UTIs	AB	[99]
Lemongrass (<i>Cymbopogon citratus</i>)	<i>b-myrcene</i> (57.52%)	EO MIC ranges between 0.1–3.2% (v/v)	<i>Klebsiella pneumoniae</i> , <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus epidermidis</i>	Patients with Chronic rhinosinusitis	AB, ABF	[126]
Lemongrass (<i>Cymbopogon citratus</i>) topical application/Poacea and other EOs	Citral (60.6%)	EOs MIC: 0.1 mg/mL	<i>Bacillus thuringiensis</i> , <i>Kytococcus sedentarius</i> , <i>Dermatophilus congolensis</i>	Pitted keratolysis lesions	AB	[127]
Lemongrass (<i>Cymbopogon citratus</i>)/Poaceae, Lavender (<i>Lavandula angustifolia</i>)/ <i>Lamiaceae</i> , Marjoram (<i>Origanum majorana</i>)/ <i>Lamiaceae</i> , Peppermint (<i>Mentha × piperita</i>)/ <i>Lamiaceae</i> , Tea Tree (<i>Melaleuca alternifolia</i>)/ <i>Myrtaceae</i> , and Rosewood (<i>Rosmarinus officinalis</i>)/ <i>Lamiaceae</i>	Monoterpene including monoterpene alcohols such as terpinen-4-ol or geraniol; bicyclic monoterpenes such as camphene, borneol, pinenes, sabinene or camphor; acyclic monoterpenoids (or derivatives) such as myrcene, geranyl acetate, citronellol or linalool	Terpinen-4-ol MIC: 0.125–0.5% v/v; Geraniol MIC: 0.125–1% v/v	MDR <i>Burkholderia cepacia</i> complex	Patients with cystic fibrosis	AB, AE	[41]
Peppermint (<i>Mentha × piperita</i>)/ <i>Lamiaceae</i>	Monoterpene hydrocarbons (34.23%), monoterpene oxygenates (60.83%)	EOs MIC (<i>S. aureus</i> , <i>E. coli</i> , and <i>P. mirabilis</i>) < 20 mg/mL; EOs MIC (<i>K. pneumoniae</i> , <i>P. aeruginosa</i> , and <i>A. baumannii</i>) > 40 mg/mL	MDR <i>A. baumannii</i> , <i>E. coli</i> , <i>K. pneumoniae</i> , <i>P. mirabilis</i> , <i>P. aeruginosa</i> and <i>S. aureus</i> .	<i>A. baumannii</i> : bronchoalveolar lavage samples; <i>E. coli</i> : urine and wound secretion; <i>K. pneumoniae</i> : urine and bronchoalveolar lavage; <i>P. mirabilis</i> : wound secretion; <i>P. aeruginosa</i> : wound secretion and otic discharge; <i>S. aureus</i> : nasal swabs and wound secretion.	AB	[128]

Table 1. Cont.

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
Menthol and Mint (<i>Mentha longifolia</i>)		With Ciprofloxacin: 4-fold MIC reduction; With Imipenem: 8-fold MIC reduction; Menthol + Imipenem: up to 16-fold MIC reduction (90% isolates)	Carbapenem- resistant and fluoroquinolones- resistant <i>A. baumannii</i>	Clinical isolates	AB, AE	[42]
Oregano EO ^s (<i>Origanum vulgare</i>)/Lamiaceae	Carvacrol (71%)	EOs MIC (<i>K. pneumoniae</i> and <i>S. marcescens</i>): 0.059% (v/v); EO ^s MIC (<i>A. baumannii</i>): 0.015% (v/v).	Carbapenem- resistant <i>K. pneumoniae</i> and <i>S. marcescens</i> , and <i>A. baumannii</i>	Rectal swab, urine sample, and nasal swab, respectively	AB	[129]
	Carvacrol (71%)	EOs MIC: 1.75 to 3.50 mg/mL	MDR <i>A. baumannii</i>	Clinical isolates	AB	[130]
Oregano and thyme red/Lamiaceae	Oregano EO ^s : Carvacrol (77.8%); Thyme red oil: thymol (53.3%)	MIC of oregano oil, thyme red oil, carvacrol, and thymol against UPEC were 0.1%, 0.1%, 0.05% v/v respectively	Uropathogenic <i>E. coli</i> O6:H1 strain (UPEC)	Clinical isolates	AB, ABF	[131]
Oregano (<i>Origanum onites</i>)/Lamiaceae	Carvacrol (51.4%), linalool (11.2%), p-cymene (8.9%) and γ-terpinene (6.7%)	MIC: 1.56–25 μL/mL	Extended spectrum beta lactamase (ESBL) producer, carbapenem resistant <i>E. coli</i>	Clinical samples	AB	[132]
Oregano EO ^s /Lamiaceae	Carvacrol (72.25%)	MIC: 0.08 to 0.64 mg/mL	<i>A. baumannii</i> , <i>P. aeruginosa</i> , and MRSA	Clinical samples from combat casualties	AB, ABF	[35]
Wild oregano/Lamiaceae, Garlic/ Amaryllidaceae, Black pepper/Piperaceae	Not specified	Oregano EO ^s MIC: 0.02–1.25 mg/mL; Garlic EO ^s MIC: 0.02–40 mg/mL; Black pepper EO ^s MIC: 0.04–40 mg/mL	<i>Clostridioides difficile</i>	Stool specimens of hospitalized patients with diarrhea and CDI	AB, ABF	[133]
Oregano (<i>Origanum vulgare</i>)/Lamiaceae, Thyme (<i>Thymus vulgaris</i>)/Lamiaceae, Lavender (<i>Lavandula angustifolia</i>)/Lamiaceae, Peppermint (<i>Mentha × piperita</i>)/ Lamiaceae, Tea Tree (<i>Melaleuca alternifolia</i>)/Myrtaceae	Carvacrol	Thyme and oregano EOs MIC: 256 to 512 μg/mL; Carvacrol EO ^s MIC: 64 to 256 μg/mL	<i>Erythromycin</i> - resistant <i>Streptococcus pyogenes</i> [Group A streptococci (GAS)]	Children with pharyngotonsillitis	AB, AE	[43]
Rosemary (<i>Rosmarinus officinalis</i>)/Lamiaceae	1,8-cineole (17.16%), α-pinene (16.95%) and verbenone (15.78%)	MIC: 0.06 to 0.16 ± 0.07 mg/mL	<i>S. aureus</i> , <i>K. pneumoniae</i> , and <i>Proteus vulgaris</i>	Urine samples from patients suspected of UTI	AB	[134]

Table 1. Cont.

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
Rosemary (<i>Rosmarinus officinalis</i>)/Lamiaceae, Oregano (<i>Origanum majorana</i>)/Lamiaceae, Thyme (<i>Thymus zygis</i>)/Lamiaceae, Juniper (<i>Juniperus communis</i>)	<i>J. communis</i> EOs: α -Pinene (47.1%), β -Myrcene (11.7%); <i>Z. officinale</i> : α -Zingiberene (33.1%), β -Sesquiphellandrene (13.5%); <i>O. majorana</i> EOs: terpinen-4-ol (25.9%), γ -Terpinene (16.9%), Linalool (10.9%). <i>T. zygis</i> : Linalool (39.7%), Terpinen-4-ol (11.7%); <i>R. officinalis</i> EOs: 1,8-Cineole (47.7%), α -Pinene (11.7%),	Rosemary EOs MIC: 1.56–3.125 mg/mL; Thyme EOs MIC: 0.19–0.78 mg/mL; Marjoram EOs MIC: 0.19–0.78 mg/mL.	<i>E. coli</i>	Urine samples from patients with clinical symptoms of UTI	AB, ABF	[135]
Cupressaceae, Ginger (<i>Zingiber officinale</i>)/Zingiberaceae						
Tea Tree (<i>Melaleuca alternifolia</i>)/Myrtaceae	Terpinen-4-ol (40.4%), γ -terpinene (19.5%), and α -terpinene (7.7%).	EOS MIC (<i>S. aureus</i>): 0.048–3.125 mg/mL for the whole essential oil, terpinen-4-ol MIC (<i>S. aureus</i>): 0.048–1.52 mg/mL	MRSA	Superficial and deep pus, blood culture and strains of various other specimens (tracheal aspiration, wound)	AB, ABF, AQS	[60]
	-	-	MDR <i>P. aeruginosa</i>	Patients with cystic fibrosis	AB, ABF	[136]
	-	-	Carbapenem-resistant <i>S. marcescens</i>	Clinical isolates	AB, ABF	[137]
Thymbra capitata/Lamiaceae, <i>Thymus pallescens</i> /Lamiaceae, White Wormwood (<i>Artemesia herba-alba</i>)/Asteraceae	<i>Thymbra capitata</i> EO: Carvacrol (58.68%); <i>Thymus pallescens</i> EO: Carvacrol (70.22%); <i>Artemesia herba-alba</i> : Camphor (34.62%), Chrysanthene (25.11%)	<i>T. pallescens</i> EOs MIC: 0.16 to 0.63 mg/mL	<i>K. pneumoniae</i> , <i>E. coli</i> , and <i>S. aureus</i> .	Clinical isolates	AB, ABF	[138]
<i>Thymus daenensis</i> L., <i>Origanum vulgare</i> L./Lamiaceae	Thyme EOs: Carvacrol (40.69%), γ -terpinene (30.28%); Oregano EOs: pulegone (44.31%), 1,8-cineole (17.47%),	Thyme EOs MIC: 0.625–2.5 μ L/mL; Oregano EOs MIC: 1.25–5 μ L/mL	Fluoroquinolone-resistant <i>Streptococcus pneumoniae</i>	Clinical isolates	AB, AB, AE	[96]
Thyme (<i>Thymus daenensis</i>), Summer savory (<i>Satureja hortensis</i>), Oregano (<i>Origanum vulgare</i>)/Lamiaceae	<i>T. daenensis</i> EO: carvacol (40.69%) γ -terpinene (30.28%), and α -terpinene (5.52%); <i>S. hortensis</i> EO: thymol (41.28%), γ -terpinene (37.63%), pcyrene (12.2%) and α -terpinene (3.52%).	Thyme EOs MIC: 0.625–1.25 μ L/mL; <i>Satureja hortensis</i> EOs MIC: 2.5 μ L/mL; Oregano EOs MIC: 2.5–10 μ L/mL	<i>S. pneumoniae</i>	Clinical isolates	AB, ABF, AQS	[139]

Table 1. *Cont.*

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
<i>Thyme (Thymus vulgaris)/Lamiaceae, Cinnamon (Cinnamomum verum)/Lauraceae, Oregano (Origanum majorana)/Lamiaceae, and Clove (Eugenia caryophyllata)/Myrtaceae</i>	Not specified	Not specified	MDR bacteria	Clinical isolates	AB, ABF, AQS	[44]
<i>Thyme (Thymus vulgaris)/Lamiaceae, Clove (Eugenia caryophyllata)/Myrtaceae, Oregano (Origanum vulgare)/Lamiaceae, and other EOs</i>	<i>Origanum vulgare</i> EO: carvacrol (71.8%), p-cymene (11.6%); <i>Thymus vulgaris</i> EO: Thymol (43.1%), p-cymene (47.9%); <i>Eugenia caryophyllata</i> EO: Eugenol (85%), β -caryophyllene (9%)	Not specified	<i>B. cepacia</i> complex	Patients with cystic fibrosis	AB	[140]
<i>Laurel (Nectandra megapotamica)/Lauraceae</i>	Caryophyllene oxide (22.3%)	EOs MIC: 36,000 μ g/mL	MDR OXA-23-producing <i>A. baumannii</i>	Human nasal swab	AB, AV	[141]
<i>Sage (Salvia fruticosa, Salvia officinalis and Salvia sclarea)/Lamiaceae</i>	Not specified	Not specified	Tetracycline resistant <i>S. epidermidis</i>	Clinical isolates	AB, AE	[142]
<i>Basil (Ocimum basilicum), Sage (Salvia officinalis)/Lamiaceae</i>	Basil EOs: Linalool and (E)-anethole; Sage EOs: α -thujone and camphor		<i>P. aeruginosa</i> resistant strains	Urine sample, skin, throat, eye, ear, and wound swabs	AB, ABF	[143]
<i>Pituranthos chloranthus, Teucrium ramosissimum, Mastic (Pistacia lentiscus) areal parts/Apiaceae</i>	sabinene (29.6%), limonene (16.65%), terpinen-4-ol (15.55%)	<i>Pistacia chloranthus</i> EOs MIC: 0.25–0.5 mg/mL; <i>Teucrium ramosissimum</i> EOs MIC: 0.25–1 mg/mL; <i>Pistacia lentiscus</i> EOs MIC: 0.125–1 mg/mL against MRSA. MIC: 1 mg/mL against <i>E. coli</i> and <i>Acinetobacter baumannii</i>	<i>E. coli</i> (ESBL), ceftazidime-resistant <i>A. baumannii</i> , and MRSA	Patients with UTI	AB	[12]
<i>Java plum (Syzygium cumini) leaves/Myrtaceae</i>	α -pinene (53.21%)	EOs MIC (<i>E. coli</i>): 512 μ g/mL	<i>E. coli</i> , <i>P. aeruginosa</i> and <i>S. aureus</i> , and clinical isolates MDR <i>E. coli</i> , <i>P. aeruginosa</i> and <i>S. aureus</i>	Laboratory and clinical isolates	AB	[144]

Table 1. *Cont.*

Essential Oils Proprietary Name (Species)/Family	Major Components	MIC	Targeted Bacteria	Isolation Source	Antimicrobial Mechanism	Ref.
<i>Mentha pulegium</i> /Lamiaceae, White Wormwood (<i>Artemisia herba alba</i>) / Asteraceae	<i>M. pulegium</i> EO: pulegone (74.8%) and neoisomenthol (10.0%); <i>A. herba alba</i> EO: camphor (32.0%), α -thujone (13.7%), 1,8-cineole (9.8%), β -thujone (5.0%), bornéol (3.8%), camphene (3.6%), and p-cymene (2.1%).	<i>M. pulegium</i> EO: MIC: 1.2 to 9.4 μ L/mL; <i>A. herba alb</i> EO: MIC: 1.2 to 4.7 μ L/mL.	<i>Listeria innocua</i> , <i>S. aureus</i> and <i>MRSA</i> ; <i>E. coli</i> , <i>P. aeruginosa</i> and <i>Imipenem-resistant A. baumannii</i> , producing OXA-23 enzyme and resistant to cefotaxime (CTX) and cefepime (FEP).	<i>Listeria innocua</i> , <i>S. aureus</i> and <i>MRSA</i> were isolated from pus; <i>E. coli</i> , <i>P. aeruginosa</i> , and <i>Imipenem-resistant A. baumannii</i> isolated from the catheter.	AB	[145]
<i>Melaleuca alternifolia</i> /Theaceae, <i>Eucalyptus globulus</i> /Theaceae; <i>Mentha × piperita</i> /Lamiaceae, and <i>Thymus vulgaris</i> /Lamiaceae	Tea Tree EO: MIC: 0.5–4 μ g/mL for <i>K. pneumoniae</i> (55%), <i>P. aeruginosa</i> (45%), and <i>E. coli</i> (95%)	Thyme EO: MIC: 1–16 μ g/mL for <i>K. pneumoniae</i> (90%), <i>P. aeruginosa</i> (90%), and <i>E. coli</i> (85%)	ESBL <i>E. coli</i> and <i>K. pneumoniae</i> , metallo-beta-lactamase (MBL)-producing <i>P. aeruginosa</i> and carbapenemase (KPC)-producing <i>K. pneumoniae</i> .	Urine, rectal swabs, and respiratory tracts	AB, ABF	[146]
	Peppermint EO: MIC: 8–128 μ g/mL for <i>K. pneumoniae</i> (90%), <i>P. aeruginosa</i> (80%), and <i>E. coli</i> (95%)	Eucalyptus EO: MIC: 32–64 μ g/mL for <i>K. pneumoniae</i> (90%), <i>P. aeruginosa</i> (80%), and <i>E. coli</i> (95%)				

3.2.1. Cinnamon Essential Oils

Several types of cinnamon essential oils are known, which vary based on the plant species and the part of the plant used for extraction. The two most common species used for essential oil production are *Cinnamomum verum* (true cinnamon) and *Cinnamomum cassia* (Chinese cinnamon) [89,111–116,147–152].

Cinnamon EO and their main component, cinnamaldehyde, have shown notable antibacterial, anti-QS, and antibiofilm activities against numerous bacterial pathogens. This includes antibacterial and anti-biofilm activity against *Escherichia coli* (*E. coli*) carrying *pks* gene isolated from patients with colon cancer and inflammatory bowel disease, as well as healthy individuals, with MICs of 32 and 0.03 μ g/mL for the EO and cinnamaldehyde respectively [111]. Cinnamon EO also exhibited antibacterial and anti-efflux activity against pan- and extensively drug-resistant *Pseudomonas aeruginosa* (*P. aeruginosa*) isolated from human burns and urine samples with MICs ranging from 0.0562–0.225 μ g/mL, while the minimum bactericidal concentrations (MBC) were 0.1125–0.225 μ g/mL [112]. In another study, cinnamon, thyme, and eucalyptus EO were tested against multi-drug-resistant (MDR) colistin-resistant Gram-negative bacteria (GNB) isolated from cancer patients, and exhibited MICs of 4.88–312.5 μ g/mL [113]. Cinnamon oil demonstrated the highest efficacy against colistin-resistant *Proteus mirabilis* and *E. coli* compared with thyme and eucalyptus EO [113]. The treatment with cinnamon oil led to a significant downregulation of the *mcr-1* gene, associated with colistin resistance, by 20 to 35 fold [113].

In one study, eugenol, the most abundant EOS component, was shown to penetrate and disrupt the phospholipid bilayer of the cell membrane, altering its fluidity and permeability and ultimately leading to cell death in some pathogens including *P. aeruginosa*, *Staphylococcus aureus*, and *K. pneumoniae* [150].

Cinnamomum cassia (*C. cassia*) EOs showed synergistic potential with various antibiotics against various GNB and GPB [151]. Similarly, the EOS exhibited antibacterial activity against carbapenemase-producing *K. pneumoniae* and *Serratia marcescens* (*S. marcescens*) strains isolated from human specimens [115]. The major components of these EOs were cinnamaldehyde (87.6%), α -humulene (3.1%), γ -element (2.5%), borneol (1.5%), cinnamic acid (0.7%), benzaldehyde (0.5%), and eugenol (0.4%) [115]. The EOs showed a MIC of 281.25 μ g/mL and a FICI of 0.006 when combined with polymyxin B, indicating a strong synergistic effect [115]. In an extremely drug-resistant *K. aerogenes*, with 17 resistance genes identified by whole genome sequencing, and conferring resistance to carbapenems (*bla*_{KPC-2}), cephalosporins (*bla*_{CTX-M-15}), aminoglycosides, chloramphenicol, trimethoprim, fluoroquinolones, sulfamethoxazole, and tetracycline, *C. cassia* EOs exhibited antibacterial activity with a MIC of 17.57 μ g/mL, highlighting the potential of this EO against MDR *Klebsiella* [115].

3.2.2. Clove Essential Oils

Eugenol EOs, derived from *Syzygium aromaticum* buds, demonstrated significant antibacterial and antbiofilm properties against MDR *Helicobacter pylori* clinical isolates, with MIC values ranging from 23.0 to 51 μ g/mL [117]. In another study, clove EOS showed antimicrobial and virulence-modulating effects against *Campylobacter jejuni*, a prevalent food-borne pathogen [118]. Proteomic and transcriptomic analyses further revealed that clove EOs disrupted the expression of multiple virulence-related genes, including those involved in flagellar synthesis, protein energy binding 1 and 4 (PEB1 and PEB4), lipopolysaccharide biosynthesis, and serine protease production. The induced stress responses significantly impacted motility, highlighting the dual role of clove EOs as an antimicrobial agent and a modulator of virulence factors in *C. jejuni* [118].

Additional studies examined the potential of clove and thyme EOs to be incorporated into chitosan-coated nanoemulsions (NEs) for intranasal drug delivery to treat brain infections [119]. The intranasal route presents an alternative to traditional delivery methods by bypassing the blood-brain barrier (BBB) through the olfactory region [119]. The chitosan-coated NEs exhibited significant efficacy against methicillin-susceptible *S. aureus* and MDR GNB, including carbapenem-resistant strains of *A. baumannii* and *K. pneumoniae* [119].

3.2.3. Eucalyptus Essential Oils

Eucalyptus camaldulensis EOs demonstrated significant antimicrobial efficacy against MDR *A. baumannii* isolates, with MIC values ranging from 0.5 to 2 μ L/mL [20]. The oils, rich in spatuolol, cryptone, and p-cimene, exhibited remarkable synergistic effects when combined with conventional antibiotics, particularly polymyxin B [20]. Similarly, the antibacterial activity of eucalyptus (*Eucalyptus globulus*), in addition to the tea tree (*Melaleuca alternifolia*), clove (*Syzygium aromaticum*), and cinnamomum (*Cinnamomum zeylanicum*) EOS, were evaluated against GPB and GNB [59]. Results showed that 64.43% of *P. aeruginosa*-producing biofilm and 80.32% of non-biofilm-producing strains showed sensitivity to eucalyptus EOs [59]. In addition, 54.16% of *S. aureus* biofilm producers and 68.75% of non-biofilm producers were sensitive to Eucalyptus EOs [59].

3.2.4. Geranium Essential Oils

The EOs extracted from *Pelargonium graveolens* (geranium) demonstrated antibacterial efficacy against drug-resistant strains of *E. coli*, *Citrobacter freundii*, *Enterobacter sakazakii*,

E. cloacae, *P. mirabilis*, and *P. aeruginosa* isolated from clinical wounds [124]. The findings suggest that geranium EOs can be a topical treatment for recurrent drug-resistant wound infections, predominantly those due to *E. coli* [124]. Kafa (2022) studied in vitro the antibacterial and antibiofilm activity of *Pelargonium graveolens* L., *Rosemary officinalis* L., and *Mentha piperita* L. against extensive drug-resistant (XDR) colistin-resistant and colistin-susceptible *A. baumannii* clinical strains [40]. The EOs sub-MICs exerted a biofilm inhibitory effect ranging from 48% to 90% of the tested clinical isolates [40]. Pelargonium EO and rosemary EO antibacterial activity ranged from 5 to 20 μ L/mL [40], and a potent synergistic effect with colistin allowing for a 2- to 32-fold reduction in colistin MIC when used with these EOs [40].

3.2.5. Lemongrass Essential Oils

Prophylactic application of lemongrass EOs to *K. pneumoniae*, *P. aeruginosa*, and *S. epidermidis* isolates from chronic rhinosinusitis patients effectively led to the disruption of biofilm formation across all bacterial isolates and enhanced *P. aeruginosa* swarming motility while maintaining cellular compatibility with human tissue [126].

In a comparative analysis of twelve EOs, *Cymbopogon citratus* EOs demonstrated superior antibacterial efficacy against bacterial species implicated in pitted keratolysis, a cutaneous infection predominantly affecting plantar pressure points [127]. The investigation revealed remarkably low MIC and MBC values (0.1 mg/mL) against *Kytococcus sedentarius*, *Dermatophilus congolensis*, and *Bacillus thuringiensis* [127]. In a comprehensive analysis of 51 clinical isolates comprising 18 sequence types, six EOs, including lemongrass, lavender, marjoram, peppermint, tea tree, and rosewood, exhibited potent antimicrobial properties against *Burkholderia cepacia* complex [41]. Among these, lemongrass and rosewood oils demonstrated superior efficacy, with remarkably low MIC50 and MIC90 values of 0.5% and 1%, respectively [41].

3.2.6. Mentha Essential Oils

The bactericidal activity of peppermint EOs against MDR and XDR strains of *S. aureus*, *E. coli*, *K. pneumoniae*, *P. mirabilis*, *P. aeruginosa*, and *A. baumannii* [128]. Results demonstrated a bactericidal effect, with a MIC ranging from 20 mg/mL for *S. aureus*, *E. coli*, and *P. mirabilis* to 40 mg/mL for *K. pneumoniae*, *P. aeruginosa*, and *A. baumannii* [128]. The MBC was equal to the MIC for most strains, except for *P. aeruginosa*, where the MBC was twice the MIC [128].

Mentha longifolia demonstrated significant potential in combating AMR in *A. baumannii* with overexpression of efflux pump genes [42]. In this study, *M. longifolia* EOs reduced the MICs of ciprofloxacin and imipenem by 4- and 8-fold, respectively, while menthol, its active ingredient, decreased imipenem resistance by up to 16-fold [42].

3.2.7. Oregano Essential Oils

The EOs derived from various *Origanum* species, particularly *Origanum vulgare* (oregano) and *Origanum compactum*, have demonstrated potent antibacterial and anti-biofilm activities against various bacterial pathogens. For instance, *Origanum vulgare* EOs showed significant inhibitory effects against carbapenem-resistant *K. pneumoniae*, *S. marcescens*, and *A. baumannii* isolated from human rectal swab, urine, and nasal swab, respectively [129]. The MICs were as low as 0.059% v/v for *K. pneumoniae* and *S. marcescens* and 0.015% v/v for *A. baumannii* [129]. Similarly, *Origanum vulgare* EOs alone or in combination with polymyxin B inhibited MDR *A. baumannii* clinical isolates [130]. Additionally, oregano and thyme EOs effectively inhibited biofilm formation in uropathogenic *E. coli* O6:H1 strain CFT073 (UPEC) [131]. Similarly, *Origanum onites* EOs showed antibacterial effect against ESBL *E. coli* clinical isolates [132].

The potential antibacterial activity of oregano EOs against MDR bacteria was also demonstrated, particularly in trauma-associated wound infections [35]. Oregano EOs exhibited significant antibacterial activity against 11 MDR clinical isolates, including *A. baumannii*, *P. aeruginosa*, and MRSA, with MICs ranging from 0.08 mg/mL to 0.64 mg/mL. Resistance to oregano oil was not detected even after 20 passages in the presence of sub-lethal doses [35]. In a study where multiple EOs were tested, oregano oil also showed a MIC/MBC value up to 64 times lower than ethyl alcohol, particularly against MRSA [153].

Other investigations included the evaluation of the antibacterial and anti-biofilm activities of wild oregano, garlic, and black pepper EOs against *C. difficile* clinical isolates, which frequently exhibit multidrug resistance [133]. Wild oregano EOs exerted potent inhibitory activity with concentrations ranging from 0.02–1.25 mg/mL and potent bactericidal activity with concentrations varying from 0.08 to 10 mg/mL [133]. In another study, various EOs including oregano were tested against 32 strains of erythromycin resistant *Streptococcus pyogenes* isolated from children with pharyngotonsillitis [43]. While oregano and thyme EOs showed moderate antibacterial activity, their major component carvacrol demonstrated the strongest effects, killing bacteria within an hour and showing no development of resistance [43]. When carvacrol was combined with erythromycin, it significantly reduced the required amount of erythromycin by 2 to 2,048 times using checkerboard assays in many strains, with the synergistic effect particularly strong in bacteria that only expressed resistance when exposed to erythromycin [43].

3.2.8. Rosemary Essential Oils

Rosmarinus officinalis L. EOs exhibited potent antibacterial activity against *S. aureus* (ATCC 29737), *K. pneumoniae* (ATCC 10031), and *Proteus vulgaris* (PTCC 1182) isolated from urine specimens of patients suspected of UTI [134]. The predominant EO components were 1,8-cineole (17.16%) and α -pinene (16.95%) [134]. Similarly, the antibacterial and antibiofilm activities of *Rosmarinus officinalis*, *Origanum majorana*, and *Thymus zygis* EOs were evaluated against *E. coli* isolated from patients with UTI [135]. *Rosmarinus officinalis* EOs were most effective against biofilm formation, inhibiting 77.27% of the isolates [135].

3.2.9. Tea Tree Essential Oils

Numerous studies showed that *Melaleuca alternifolia* (tea tree) EOs exhibits promising antibacterial and antibiofilm activities against MDR clinical bacterial isolates. Terpinen-4-ol, the primary EO constituent, significantly inhibited MRSA biofilm formation on glass by 73.70%, reduced violacein production in *C. violaceum* by 69.3% at a MIC value of 0.048 mg/mL, and decreased swarming motility in *P. aeruginosa* PAO1 by 33.33% [60]. These findings suggest that tea tree EOs, at very low doses, exhibit promising anti-QS and antibiofilm activities, warranting further investigation as a potential alternative treatment for MRSA infections [60]. In another study, inhaled tea tree EOs displayed synergistic effects with tobramycin against clinical cystic fibrosis-associated MDR *P. aeruginosa* isolates [136], with a fractional biofilm eradication concentration index (FBECI) of 0.42 [136]. Tea tree EOs nanoemulsion showed comprehensive antimicrobial activity, eliminating planktonic and biofilm-associated bacterial forms, alongside a capacity to reduce bacterial virulence factors and induce the production of ROS within bacterial cells [137].

3.2.10. Thyme Essential Oils

Thymus EOs extracted from various thyme plant species, including *Thymus vulgaris* (thyme), *Thymus zygis*, *Thymus defenses*, and *Thymus pallescens*, have demonstrated remarkable antibacterial, anti-biofilm, and anti-QS properties against a diverse array of bacterial pathogens. Notably, *Thymus pallescens* EOs emerged as the most potent antimicrobial agent against clinical strains of *K. pneumoniae*, *E. coli*, and *S. aureus*, exhibiting large inhibition

zones (up to 50 mm against *S. aureus*), low MICs (0.16–0.63 mg/mL), and potent biofilm eradication at 24- and 60-min post-exposure [138].

Thymus daenensis and *Origanum vulgare* EOs demonstrated the ability to modulate efflux pumps in fluoroquinolone-resistant *S. pneumoniae* clinical isolates [96]. At sub-inhibitory concentrations (MIC/2), both EOs caused significant downregulation of the *pmrA* gene, involved in efflux pump activity and antibiotic resistance [96]. The major EOs in *Thymus daenensis* were carvacrol, γ -terpinene, and α -terpinene, and pulegone, 1,8-cineole, and borneol in *Origanum vulgare* EOs. Similarly, a study evaluated *Thymus daenensis* EOs, *Satureja hortensis* EOs, and *Origanum vulgare* EOs' antimicrobial activities on planktonic growth, biofilm formation, QS, and the competence system of *S. pneumoniae* [139]. The MICs against planktonic *S. pneumoniae* ranged from 0.625–1.25 μ L/mL for *Thymus daenensis*, 2.5 μ L/mL for *Satureja hortensis*, and 2.5–10 μ L/mL for *Origanum vulgare* EOs, with *Thymus daenensis* exhibiting the most potent anti-biofilm activity [139]. The *luxS* and *pfs* genes involved in QS were downregulated following treatment with MIC/2 concentrations of *Thymus* and *Satureja* EOs [139]. Further research studied *Cinnamomum verum*, *Origanum majorana*, *Thymus vulgaris*, and *Eugenia caryophyllata* EOs against MDR bacterial clinical isolates, including *E. coli*, *K. pneumoniae*, *A. baumanii*, *P. aeruginosa*, *Citrobacter freundii*, *Klebsiella oxytoca*, *Salmonella enteritidis*, *S. Typhimurium*, *Salmonella zinzibar*, *Salmonella livingstone*, *Salmonella derby*, and *Salmonella heidelberg*, *Corynebacterium striatum* and *S. aureus* [44]. Clove EOs, thyme, and cinnamon EOs exhibited significant reductions in violacein production (84.13%, 99.41%, and 91.68%, respectively), while marjoram EOs had the lowest effect (9.09%). *Cinnamon verum* EOs and *Thymus vulgaris* EOs demonstrated remarkable antibacterial activity, with inhibition zone diameters above 20 mm [44]. With marjoram EOs showing limited antibacterial efficacy, these findings suggest that cinnamon, clove, and thyme are promising antimicrobial, anti-biofilm, and anti-QS agents against MDR bacterial pathogens [44]. In an additional study, the potent antimicrobial activity of six essential oils, including that of *Thymus vulgaris* (thyme), was demonstrated against both environmental and the EOs of thyme, clove and oregano showed efficacy against ciprofloxacin-resistant strains, suggesting potential therapeutic applications for treating MDR Bcc infections, especially in immunocompromised and cystic fibrosis patients where such infections pose a significant clinical challenge [140].

3.2.11. Other Essential Oils

In addition to the plant EOs described above, research has demonstrated diverse antimicrobial properties of other EOs against clinically significant bacteria.

The chemical composition and antimicrobial properties of essential oils from four *Piper* species were studied [154]. The results demonstrated that *Piper nigrum* (*P. nigrum*) and white pepper were rich in monoterpenes (87.6% and 80% respectively), while *Piper cubeba* was distinctive for its high aromatic content (59%). Notably, all oils exhibited inhibitory activity against *H. pylori*, with *Piper longum* showing the most potent effect (MIC 1.95 μ g/mL, equivalent to clarithromycin) [154]. *Nectandra megapotamica* EOs demonstrated potent synergistic antibacterial effects with imipenem against carbapenem-resistant *A. baumannii* [141]. The FICI of 0.156 indicated synergism, with the oil reducing imipenem's MIC 8-fold while its own MIC decreased 32-fold in combination [141]. The proposed mechanisms include bacterial outer membrane destabilization, facilitating antibiotic entry, and membrane permeabilization [141]. *Ocimum basilicum* (basil) and *Salvia officinalis* (sage) EOs inhibited *P. aeruginosa* clinical isolates biofilm formation by up to 99.9% compared with controls and significantly reduced biofilm production, motility patterns and pyocyanin production [143]. Other studies investigated the potential of *Salvia* EOs, particularly *S. fruticosa*, as efflux pump inhibitors in tetracycline-resistant *S. epidermidis*. This EO effectively

reduced tetracycline MIC, decreased antibiotic efflux, and downregulated *tet(K)* gene expression [142]. These findings suggest potential therapeutic applications in combination therapy, where EOs could help restore bacterial susceptibility to antibiotics through efflux pumps inhibition [142]. The EOs from *Pituranthos chloranthus*, *Teucrium ramosissimum*, and *Pistacia lentiscus* were tested against MDR strains, including ESBL-producing *E. coli*, ceftazidime-resistant *A. baumannii*, and MRSA [12]. Results indicated synergism with ofloxacin and novobiocin against ESBL-producing *E. coli* and showed potent antibacterial effectiveness against MRSA compared with Gram-negative tested strains [12].

Investigation of the *Syzygium cumini* EOs effect showed moderate activity against *E. coli* ATCC 25922 and potentiated effect of antibiotics, including gentamicin, erythromycin, and norfloxacin, suggesting possible synergism [144].

Studies also highlighted the synergistic potential of *Mentha pulegium* and *Artemisia herba alba* EOs in combination with antibiotics against MDR GPB and GNB bacteria [145]. MIC values ranged from 1.2 to 9.4 μ L/mL for *M. pulegium* EOs and 1.2 to 4.7 μ L/mL for *A. herba alba* EOs [145]. Both EOs were effective against *Listeria innocua*, *S. aureus* (including MRSA) from pus, and *E. coli*, *P. aeruginosa*, and imipenem-resistant *A. baumannii* from catheters [1]. The strongest synergistic effects were observed for *M. pulegium* EOs with amikacin against imipenem-resistant *A. baumannii* and for *A. herba alba* EOs with cephalexin against MRSA [145].

Nigella sativa EO demonstrated dose-dependent antibacterial activity against multidrug-resistant *Staphylococcus aureus* isolates from diabetic wounds, with 8 of 19 isolates (42%) showing susceptibility at concentrations ranging from 200 mg/ml to undiluted oil. The remaining 11 isolates (58%) exhibited complete resistance to all tested oil concentrations [120]. In another study, *N. sativa* EO displayed potent antimicrobial effects against clinical strains of methicillin-resistant *S. aureus* and methicillin-resistant coagulase-negative Staphylococci, achieving inhibition at remarkably low minimum inhibitory concentrations below 0.25–1.0 μ g/mL [121].

Coriander EOs along with *Cinnamomum (Cinnamomum cassia)*, and *Ziziphora hispanica* EOs were tested against different susceptible and resistant bacterial phenotypes isolated from patients with UTI [123]. In this study, only cassia EOs showed a potent antibacterial activity with a MIC< 5mg/ml [123]. Coriander EOs demonstrated activity against MDR uropathogenic *E. coli* (UPEC) strains by inducing structural modifications in bacterial cells and reducing the gentamicin MIC, indicative of a synergistic effect [122].

Ginger EOs were also effective against *P. aeruginosa* producing extended-spectrum β -lactamase (ESBL) enzymes isolated from burn wounds with MIC and MBC values of 1.5 mg/mL and 2.0 mg/mL, respectively [125]. The antibacterial mechanism of ginger EOs in combination with cefepime demonstrated considerable efficacy against beta-lactamase-producing UTI *E. coli* isolates [99]. The synergistic action operates through ginger EOs' ability to inhibit beta-lactamase enzymes, particularly those encoded by blaTEM genes, thereby enhancing cefepime's antibacterial activity [99]. Finally, the antibacterial and anti-biofilm activity of four EOs, including *Melaleuca alternifolia*, *Eucalyptus globulus*, *Mentha piperita*, and *Thymus vulgaris*, were tested against ESBL-producing *E. coli*, *K. pneumoniae*, metallo-beta-lactamase (MBL)-producing *P. aeruginosa*, and carbapenemase (KPC)-producing *K. pneumoniae* [146]. Results showed that *M. alternifolia* and *T. vulgaris* EOs exhibited the best antibacterial activity, with MICs ranging from 0.5 to 16 μ g/mL [146]. *M. alternifolia* EOs was the most effective, outperforming reference antibiotics [146].

While this review demonstrates the promising antibacterial activity of various EOs against numerous MDR pathogens, it is important to note that not all WHO priority pathogens have been adequately tested. Within the scope of this review, significant gaps remain in the literature regarding EOs efficacy against certain critical

pathogens, including *Mycobacterium tuberculosis* (rifampicin-resistant), *Neisseria gonorrhoeae* (cephalosporin/fluoroquinolone-resistant), vancomycin-resistant *Enterococcus faecium*, and *Shigella* species.

3.3. Methods Adopted for Testing the Antibacterial Activity of Plant Essential Oils

A rigorous evaluation of EOs' antibacterial activity requires a diverse methodological toolkit, encompassing traditional antimicrobial screening and MIC determination, as well as advanced structural, molecular, and computational approaches. The selection of appropriate methods depends on the research question, whether it involves conducting preliminary activity screening, investigating mechanisms of action, assessing biofilm disruption, or evaluating the clinical translation potential. However, the lack of standardized protocols across studies remains a critical barrier, limiting reproducibility, cross-study comparability, and clinical integration of findings. This section reviews current methodologies employed in EO antibacterial research (Table 2), highlighting their applications, limitations, and best practices for generating robust and translatable data.

Table 2. Methods for assessing the antibacterial mechanisms and activity of plant EOs.

Category	Description	Subcategory	References *
Basic Antimicrobial Activity Methods			
Agar Disk Diffusion	Screens for antimicrobial activity by measuring inhibition zones around disks impregnated with EOs, assessing the inhibition of bacterial growth on agar plates.	Disk Diffusion Method	[39,42,52,111,114,142,143, 147,155–157]
Agar Dilution	Determines antimicrobial activity by incorporating EOs into agar and measuring bacterial growth at various concentrations to find the minimum inhibitory concentration (MIC).	MIC Determination Methods	[39,42,52,111,114,142,143, 147,155,156]
Broth Micro-dilution	Determines MIC and minimum effective concentration (MEC) in liquid media by evaluating bacterial growth in diluted EOs concentrations.	MIC Determination Methods	[2,42,85,111,115,119,125, 137,143,146,148,158–160]
Time Kill Assay	Measures bacterial viability at various time points post-exposure to EOs to assess bactericidal or bacteriostatic effects over time.	Time-Kill Method	[20,52,64,89,125,137,159, 161,162]
Turbidimetry	Assesses antimicrobial activity by measuring turbidity changes in liquid cultures, indicating bacterial growth or inhibition.	Turbidimetric Method	[163]

Table 2. *Cont.*

Category	Description	Subcategory	References *
Bioautography	Detects antimicrobial activity of EOCs using a chromatographic technique with a biological assay to identify active compounds based on inhibition zones.	Bioautographic Method	[20,114,164]
Broth Dilution Volatilization Assay	Combines broth microdilution and vapor-phase methods to assess antimicrobial activity of EOs' volatile compounds in both liquid and vapor phases.	Volatilization Assay	[165,166]
Vapor Assay	Evaluates EOs' antimicrobial activity in their vapor phase by exposing bacteria to vapor and assessing growth inhibition or bactericidal effects.	Volatilization Assay	[161,167]
Microscopy and Imaging Techniques			
Scanning Electron Microscopy (SEM)	Provides high-resolution, three-dimensional images of biofilm structure and bacterial surfaces to assess EOs' impact on biofilm integrity.	Imaging Technique	[35,137,148–150,168–171]
Transmission Electron Microscopy (TEM)	Delivers high-resolution images of microbial cell ultrastructure to observe internal cellular effects of EOs.	Imaging Technique	[125,172]
Light microscopy	Uses optical lenses and visible light to observe and analyze bacterial morphology and the effects of EOs on biofilm formation and disruption.	Imaging Technique	[173,174]
Confocal Laser Scanning Microscopy (CLSM)	Provides high-resolution, three-dimensional images of biofilm structure and EOs' effects on biofilm formation and disruption.	Biofilm Inhibition and Disruption Assays	[142,149]
Advanced Analytical Methods			
Flow cytometry	Examines bacterial cell viability and vitality post-exposure to EOs, providing rapid, sensitive single-cell analyses.	Single-cell analysis techniques	[85,143]

Table 2. *Cont.*

Category	Description	Subcategory	References *
Raman spectroscopy	Quantifies EOCs and detects interactions with bacterial cells by measuring vibrational spectra, offering insights into molecular composition.	Single-cell analysis techniques	[175,176]
Liquid Chromatography-Mass Spectrometry (LC-MS/MS)	Identifies and quantifies proteins expressed in response to EOs, revealing molecular mechanisms and potential targets.	Mass Spectrometry-Based Proteomics	[177]
X-Ray Diffraction (XRD)	Provides structural information on antimicrobial agents by analyzing the diffraction patterns of X-rays.	Analytical Methods	[172]
Fourier Transform Infrared Spectroscopy (FTIR)	Analyzes functional groups and molecular interactions by detecting vibrational modes of molecules.	Analytical Methods	[172]
Attenuated Total Reflectance Infrared (ATR-IR) Spectroscopy	Analyzes chemical composition and interactions by detecting changes in functional groups and molecular bonds.	Analytical Methods	[178]
Dynamic Light Scattering (DLS)	Measures the size distribution and stability of nanoparticles in a solution by analyzing fluctuations in scattered light intensity.	Analytical Methods	[161]
Spectrofluorometry	Measures fluorescence emitted by samples to analyze interactions, quantify fluorescent probes, and investigate the behavior of EOs with bacterial cells.	Analytical Methods	[179]
Biofilm Analysis Methods			
XTT Viability Assay	Measures metabolic activity and viability of biofilms exposed to EOs by quantifying reduction of XTT dye.	Biofilm Formation and Viability assays	[180]
Microtiter Plate Method (MtP)	Quantifies biofilm formation, bacterial growth, and metabolic activity post-EO exposure, allowing high-throughput analysis.	Biofilm Formation and Viability assays	[111,137,170,174]

Table 2. *Cont.*

Category	Description	Subcategory	References *
Congo Red Agar Method (CRA)	Visualizes biofilm production using Congo red dye; black colonies indicate biofilm production, while pink colonies suggest weak formation.	Biofilm Formation and Viability assays	[59]
Antibiofilm Activity Assay	Assesses the effectiveness of EOs in disrupting established biofilms using the Alamar Blue assay for bacterial viability.	Biofilm Formation and Viability assays	[127,142,174,181]
Surface Coating with Biofilm Inhibitors	Evaluates the efficacy of EOs in preventing microbial adhesion and biofilm formation through cell membrane surface treatments.	Biofilm Formation and Viability assays	[182]
Alginate Assay	Measures alginate production, a key extracellular polymeric substance, to assess EOs' impact on biofilm matrix integrity.	Biofilm Formation and Viability assays	[73]
Crystal Violet Staining for Biofilm Quantification	Quantifies biofilm biomass by staining adhered cells with crystal violet, measuring reduction in biofilm biomass due to EOs.	Biofilm Formation and Viability assays	[12,69,71,73,91,137]
Extracellular polymeric substances (EPS) Inhibition Assays	Evaluates EOs' effect on EPS to assess their ability to disrupt biofilm formation and stability.	Biofilm Inhibition and Disruption Assays	[58]
Ethidium Bromide Cartwheel (EtBr-CW) Method	Visualizes and quantifies biofilm formation by staining with ethidium bromide, allowing assessment of EOs' effects on biofilm.	Biofilm Formation and Viability assays	[54,74,158]
DNA Fixation with Ethanol	Preserves DNA integrity for analyzing changes due to EOs, assessing their impact on biofilm structure and stability.	Biofilm Formation and Viability assays	[49]
Cell Viability and Damage Assessment			
Live/Dead Assay	Utilizes fluorescent dyes to measure bacterial viability, distinguishing live cells from dead ones to evaluate EOs' impact.	Biofilm Formation and Viability assays	[155]

Table 2. *Cont.*

Category	Description	Subcategory	References *
MTT Viability Assay	Evaluates cytotoxicity to ensure the safety of EOs for therapeutic applications by measuring metabolic activity.	Cytotoxicity Evaluation	[137,150,171]
Resazurin Microplate Assay	Assesses cell viability and metabolic activity by measuring the reduction of resazurin to resofurin.	Analytical Methods	[52,142,183]
	Molecular and Genetic Analysis		
Real-Time Quantitative PCR (RT-qPCR)	Quantifies mRNA levels to study gene regulation in response to EOs, revealing molecular responses and mechanisms.	Molecular Techniques	[96,119,127,137,170]
Proteomic Expression Validation through qRT-PCR	Confirms changes in protein expression due to EOs, validating proteomic data and revealing antimicrobial mechanisms.	Molecular Techniques	[52,89]
Detection of adeABC genes	Identifies efflux pump genes associated with antibiotic resistance to assess the impact of EOs on resistance mechanisms.	Molecular Techniques	[42]
Multiplex PCR	Allows simultaneous amplification of multiple target DNA sequences, detecting various bacterial genes or virulence factors in response to EOs.	Molecular Techniques	[184]
RNA isolation	Extracts and purifies RNA for subsequent analyses, such as RT-qPCR, to investigate gene expression changes following EOs exposure.	Molecular Techniques	[111,149]
	Membrane and Cell Surface Analysis		
Outer Membrane Permeability Assay	Evaluates the disruption of the outer membrane of Gram-negative bacteria by EOs, facilitating increased permeability and antibacterial effects.	Analytical Methods	[52,141]
zeta potential measurement	Assesses changes in bacterial surface charge upon exposure to EOs, quantifying effects on bacterial cell surface properties.	Analytical Methods	[52,136,185]

Table 2. *Cont.*

Category	Description	Subcategory	References *
Ethidium Bromide Influx/Efflux Assay	Measures the influx and efflux of ethidium bromide in bacteria to assess the impact of EOs on bacterial efflux pump activity and membrane permeability.	Analytical Methods	[96,119,127]
ATP Concentration Determination	Measures intracellular ATP levels to assess cell viability and metabolic activity following exposure to EOs.	Analytical Methods	[92]
Membrane Integrity Assay	Evaluates the integrity of bacterial cell membranes by detecting leakage of intracellular components or uptake of membrane-impermeable dyes.	Analytical Methods	[64,186]
Bacterial Virulence Assessment			
Bioluminescence Expression Anti-QS Assay	Uses bioluminescent reporter strains to evaluate the effect of EOs on QS pathways and bacterial communication.	Quorum Sensing (QS) Inhibition Bioassay:	[10,141]
Violacein Inhibition Assay	Assesses interference with QS using <i>C. violaceum</i> strain CV026 and changes in violacein production.	Quorum Sensing (QS) Inhibition Bioassay:	[149,187,188]
Skim Milk Agar Assay	Assesses protease activity by observing clear zones around colonies on agar plates with skim milk, indicating EOs' ability to inhibit protease production.	Assays of Virulence Factors	[189]
Azocasein assay	Measures protease activity through degradation of azocasein, providing insights into EOs' impact on protease activity and bacterial virulence.	Assays of Virulence Factors	[142]
Swarming Motility	Evaluates bacterial migration across solid surfaces to assess EOs' impact on motility and pathogenicity.	Assays of Virulence Factors	[142,149]
Hemagglutination Assay	Assesses bacterial migration across surfaces to evaluate EOs' effects on motility and pathogenicity.	Assays of Virulence Factors	[146]

Table 2. *Cont.*

Category	Description	Subcategory	References *
Advanced Systems and Models			
Microfluidic Systems	Facilitates high-throughput screening, real-time monitoring, and precise control to study EO nanoemulsions against pathogenic bacteria.	Microfluidics and Lab-on-a-Chip (LOC) Devices.	[190,191]
Computational Fluid Dynamics (CFD) Models	Models fluid flow and interactions to investigate kinetics of antibacterial activity and parameters affecting bacterial lysis.	Microfluidics and Lab-on-a-Chip (LOC) Devices.	[16,89,191]
Organs-on-Chips	Simulates human organ functions using microfluidic devices to study EO's effects on human microbiomes or pathogen-host interactions.	Advanced Cell-Based Assays	[55,173,190,191]
Synergy Studies			
Fractional Inhibitory Concentration Index (FICI) Calculation	Quantifies the degree of synergy or antagonism between EO and antibiotics by calculating the FICI.	Synergistic effect determination	[40,114,115,136,138,147,151,192]
Checkerboard Assay	Evaluates the synergistic effects of combinations of EO and antibiotics by assessing their combined antimicrobial activity.	Synergistic effect determination	[20,43,52,85,89,96,114,115,142,147,158,193–195]

* The listed references represent the studies included in this review.

3.3.1. Microbiological Techniques for Evaluating EO's Antimicrobial Activity

In vitro evaluation of EO's antimicrobial activity employs two primary methods: dilution methods (agar or liquid broth) [9,42,52,111,114,132,137,147,148,192,196] and diffusion methods (disk or well diffusion) [32,43,120,121,132,154,168,192,197,198]. Disk diffusion is a simple, cost-effective preliminary screening tool measuring inhibition zone, but it's unsuitable for highly volatile compounds due to rapid evaporation [199].

While agar diffusion methods are useful as preliminary screening, they should be complemented with dilution-based assays for quantitative assessment [187]. To address EO's hydrophobicity without inhibiting microbial growth, solvents such as 0.15% agar or Tween 80 (0.1–2% *v/v*) are commonly employed [187].

For precise quantification, dilution methods, particularly broth microdilution assays [32,42,111,128,130,131,136,137,148,155,181,196,197,200], enable the determination of MIC and minimum effective concentrations (MEC) [139,201]. Reported EO MIC values range from 6.25 to 100 μ L/mL [30,153], although variability arises from differences in EO's solubility and assay conditions [187].

To enhance reproducibility, standardized parameters are recommended: 6 mm disks loaded with 10 μ L of EO for disk diffusion, and solvents such as DMSO or ethanol validated at low concentrations ($\leq 1\%$) to avoid artifactual inhibition, particularly for fastidious strains [187]. All assays should be performed in triplicate, with MICs reported in mass-based units (mg/mL) for cross-study comparisons [187].

Volatilization assays combine broth microdilution with vapor-phase methods for rapid screening of volatile compounds [178,202]. Modified protocols using agar Petri dishes with central glass vials are required due to high volatility and hydrophobicity [203]. Bioautography combines chromatography with antimicrobial testing, overlaying separated EO components on chromatographic plates with microbial suspensions to identify active compounds [20,114,203]; however, it remains unsuitable for volatile compounds [204].

Time-kill assays [20,52,69,89,116,136,155,181,202] confirm bactericidal effects by plotting viable cell numbers over time, providing insights about time-dependent efficacy [205,206]. The bactericidal or bacteriostatic effect of the EOs can also be determined by analyzing the time to death (survival curve) in a nutrient medium, where the number of viable cells in the medium after EOs addition is plotted against time. Sometimes, a combination of various methods is used for EO bioassays [205,206].

Challenges in the aforementioned methods include discrepancies in data due to varying MIC standards, difficulty in detecting interactions between different antimicrobial agents, and limitations in assays for volatile compounds. Comprehensive reviews of antimicrobial susceptibility testing methods provide further details [179,186,205–209].

3.3.2. Techniques for Studying Antimicrobial Mechanisms

Understanding how EOs exert their effects requires mechanistic investigation. Both conventional and advanced techniques are employed to elucidate EOs' impacts on biofilm formation, membrane integrity, gene regulation, and cellular metabolism [188,209]. This section progresses from foundational methods to cutting-edge approaches that provide molecular-level insights.

Conventional Methods

Foundational techniques include microtiter plate assays [111,139,201,210] and micro-atmosphere methods [52] for assessing EOs' effects on biofilms and microbial growth. Biofilm studies utilize surface coating with inhibitors, biofilm inhibition assays [148,210–212], and light microscopy [209,210]. Virulence factor expression and activity are examined through skim milk agar [143], azocasein assays [148], and swarming motility assays [148,149]. Molecular techniques, including RNA isolation [111,149] and the ethidium bromide cartwheel (EtBr-CW) method [96,197,211], investigate gene regulation related to AMR and biofilm formation. Analytical methods such as bacterial surface charge measurement, checkerboard assay [20,43,52,96,114,115,128,130,142,147,148,153,156,200,213], PCR [130], and UV-visible spectra [169] characterize physicochemical properties and antimicrobial interactions.

Advanced Methods

Building on these foundational approaches, advanced techniques provide deeper mechanistic insights at the molecular and ultrastructural levels. For instance, biofilm studies employ XTT viability assay [188], scanning electron microscopy (SEM) [35,135,139,148–150,157,168,181,201], QS inhibition bioassays using *C. violaceum* CV026 [149], confocal laser scanning microscopy (CLSM) [148,149], and EPS inhibition assays [148]. Molecular techniques, including real-time quantitative PCR (RT-qPCR) [96,139,197,201,211] and proteomic expression validation through qRT-PCR analysis [52,89], offer high sensitivity in studying gene and protein expression changes in response to EOs treatment. Analytical methods include bioluminescence assays [10,85], resazurin microplate assay [52,115,148], X-ray diffraction (XRD) [158], Fourier transform infrared spectroscopy (FTIR) [158], and transmission electron microscopy (TEM) [155,158] for detailed structural and functional characterization. The MTT viability assay, based on the reduction of the yellow tetra-

zolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), evaluates cytotoxicity of EOs for therapeutic safety assessment [139,150,157].

These comprehensive techniques enable a deeper understanding of EOs' mechanisms, efficacy, and applications in combating microbial infections and resistance, though limitations include high costs and implementation complexity.

3.3.3. Specialized Techniques and Emerging Techniques

Beyond conventional mechanistic approaches, specialized and emerging techniques offer unprecedented resolution and novel perspectives on EO–bacteria interactions. These cutting-edge methods, including single-cell analysis, computational modeling, microfluidic platforms, and multi-omics integration, are transforming our understanding of EOs' antibacterial mechanisms and accelerating translational research.

Single-Cell Analysis Techniques

Single-cell analysis techniques provide high-resolution insights into EOs' antibacterial effects. Flow cytometry accurately and rapidly assesses bacterial viability [130,192]. It detects viable but non-cultivable (VBNC) subpopulations missed by traditional methods, yet requires improved dual staining systems [159,160]. Raman spectroscopy effectively quantifies major EOs compounds and detects adulterations when combined with chemometrics [170,193], but it struggles with low-content substances and volatile EO nature, requiring specialized setups and comprehensive spectral databases [170,193].

Computational Approaches

Computational methods, including molecular docking, dynamics simulations, and machine learning, enable detailed analysis of EOs-bacterial target interactions and predict antibacterial activity based on chemical composition. These techniques combine *in vitro* and *in vivo* studies, provide novel insights, enhanced accuracy, and high-throughput screening potential. However, implementation requires specialized equipment, expertise, and multidisciplinary collaboration [100,158,161,167].

Microfluidics and Lab-on-a-Chip Devices

Microfluidics and lab-on-a-chip (LOC) devices offer powerful tools for studying EOs' antibacterial and antibiofilm activities [162,164,214]. These platforms enable high-throughput screening, real-time monitoring, and precise spatiotemporal control with enhanced sensitivity and rapid mass and heat transfer. Their high surface area-to-volume ratio intensifies antibacterial activity, achieving near-complete bacterial inhibition within minutes compared with hours required for traditional methods. Additionally, they require minimal reagents and samples, reducing costs and environmental impact. Researchers have utilized microfluidic chips to evaluate EOs nanoemulsions through cytoplasmic constituent release measurement and computational fluid dynamics (CFD) modeling [16,162,164], facilitating differential GNB and GPB effect studies via desorption electrospray ionization (DESI) and atomic force microscopy (AFM) [215]. Implementation requires specialized setups and interdisciplinary collaboration [162,164,214,215].

Omics Approaches

Omics technologies enable comprehensive, multi-component analysis and systems-level approaches to study complex molecular EOs–target interactions, overcoming conventional method limitations [52,216,217]. However, a critical challenge remains in pinpointing which specific molecules are indispensable for observed bioactivity, both *in vitro* and *in vivo*. This ambiguity complicates quality control and validation of EO batches for therapeutic applications, as even minor compositional variations, driven by plant geno-

type, environment, or extraction methods, can alter efficacy. Reductionist single-active molecule approaches exclude minor component contributions and synergistic interactions, while testing based on abundant molecules often fails to capture original phytocomplex bioactivity [216,217]. Integrating multi-omics data with bioinformatics and *in silico* approaches identifies multi-component, multi-target interactions, addressing the limitations of conventional bioactivity-guided fractionation [217].

Genomic data can help identify genes and regulatory elements involved in the biosynthetic pathways of EOs components, providing insights into their mode of action [218–220]. When integrated with metabolomics, which analyzes complete EO metabolite profiles using GC-MS and NMR, and advanced analytical techniques like flow-modulated comprehensive two-dimensional gas chromatography coupled with mass spectrometry (FM-GC × GC-MS) and chemometrics provides improved chemical analysis and metabolic profiling, enabling comprehensive characterization of plant metabolites [173].

Transcriptomics examines gene expression patterns in EO biosynthesis and metabolic pathways, studying the complete RNA transcripts produced by genomes under specific conditions using microarrays and RNA sequencing (RNA-Seq) [220,221]. Lai (2020) used microarray transcriptomic analysis to elucidate piperacillin and *Lavandula angustifolia* EOs synergistic activity against MDR *E. coli* K-12, identifying 90 differentially expressed genes with biochemical pathway analysis showing upregulation of genes in numerous biological processes and up/down-regulation of microbial processes [174].

Metabolomics analyzes complete EO metabolite profiles using GC-MS and NMR, providing global metabolic composition overviews and identifying biomarkers or biosynthetic pathways [189,194]. For instance, metabolomic analysis has revealed how EOs disrupt bacterial quorum sensing by affecting tryptophan metabolism pathways [56], while integrated metabolomic–transcriptomic studies have shown that sublethal EO exposure triggers bacterial adaptive responses involving aminoacyl-tRNA biosynthesis and alterations in 47 metabolites including lipids, amino acids, and nucleotide-related compounds [189,219].

Proteomics examines complete protein sets to reveal enzymes and regulatory proteins involved in EO biosynthesis and antibacterial action, complementing transcriptomic and metabolomic data by linking gene expression to functional outcomes [52,56,195]. Proteomic studies have confirmed that EOs induce oxidative stress and membrane disruption in resistant pathogens, with qRT-PCR validation demonstrating concordance between protein abundance and gene expression profiles [89]. Comparative proteomic analysis has also enabled identification of the most potent antibacterial constituents within complex EO mixtures; for instance, thymol was identified as more effective than carvacrol in *Origanum vulgare* EO through its interference with protein regulation and DNA synthesis at sub-lethal concentrations [195].

The integration of omics data highlights EO bioactivity as an emergent property of complex mixtures. However, this very complexity challenges the identification of critical active constituents and the reproducibility of therapeutic effects. Future work must bridge omics insights with bioassay-guided fractionation to validate consistent markers for batch-to-batch quality control, ensuring reliability in EO-based therapies.

4. The Challenges for the Development of Essential Oils as Therapeutics

Despite the rapid progress and mounting interest in EOs for their promising antimicrobial properties, multiple complex technical, regulatory, and safety hurdles must be considered prior to their successful implementation in clinical settings. Issues of consistency and standardization, environmental sustainability, pharmacological and stability complexities, regulatory requirements, and clinical translation represent some of these challenges. Understanding these limitations is crucial for researchers, healthcare providers,

and regulatory bodies to develop effective strategies to leverage the therapeutic potential of EOs while also ensuring their safety and efficacy in clinical applications. A summary of some of these challenges is presented below.

4.1. Variability of Essential Oils Yields and Bioactivity

A significant limitation in EO research resides in the substantial variability in EO yields and bioactivity, which affects data interpretation and cross-study comparability of antimicrobial efficacy data. This compositional heterogeneity is particularly evident when examining EOs bearing identical botanical nomenclature across different studies. For example, Ceylon cinnamon (*Cinnamomum verum*) demonstrated compositional differences across multiple studies, where cinnamaldehyde concentrations ranged from 64.49% to 72.81%, while eugenol concentrations varied dramatically from 6.57% to 77% [111,148–150,152]. Similarly, peppermint (*Mentha piperita*) exhibited variability in the concentrations of menthol from 43.66% to 68%, and menthone from 8.36% to 24.43% [89,128,155,171]. The interconnected factors affecting EOs yields and bioactivity are detailed below.

4.1.1. Endogenous and Exogenous Factors

Plant EO composition and bioactivity are affected by endogenous factors (genetic makeup, chemotype, developmental stage, target organ/tissue) and exogenous factors (biotic activities, abiotic stress, extraction methods, post-harvest handling/storage) [39,172,183,222]. Distinct chemotypes within species exhibit different chemical profiles without morphological differences, substantially modifying EO activity through environmental factors like hybridization, soil quality, climate, altitude, cultural practices, and genetic factors [223].

4.1.2. Plant Age and Development

The metabolic pathway activity, environmental conditions, and genetic factors affect the relationship between plant age and essential oil production [223], contributing to distinct patterns across plant species, developmental stages, and exogenous conditions [223]. While some studies reported a decline in EOs synthesis with increasing plant age [175,176,190,224–226], potentially attributable to declining metabolic pathways, others have documented optimal yields at specific ages (6 and 15 months) [175,225], or enhanced chemical composition in mature compared with younger ones [191].

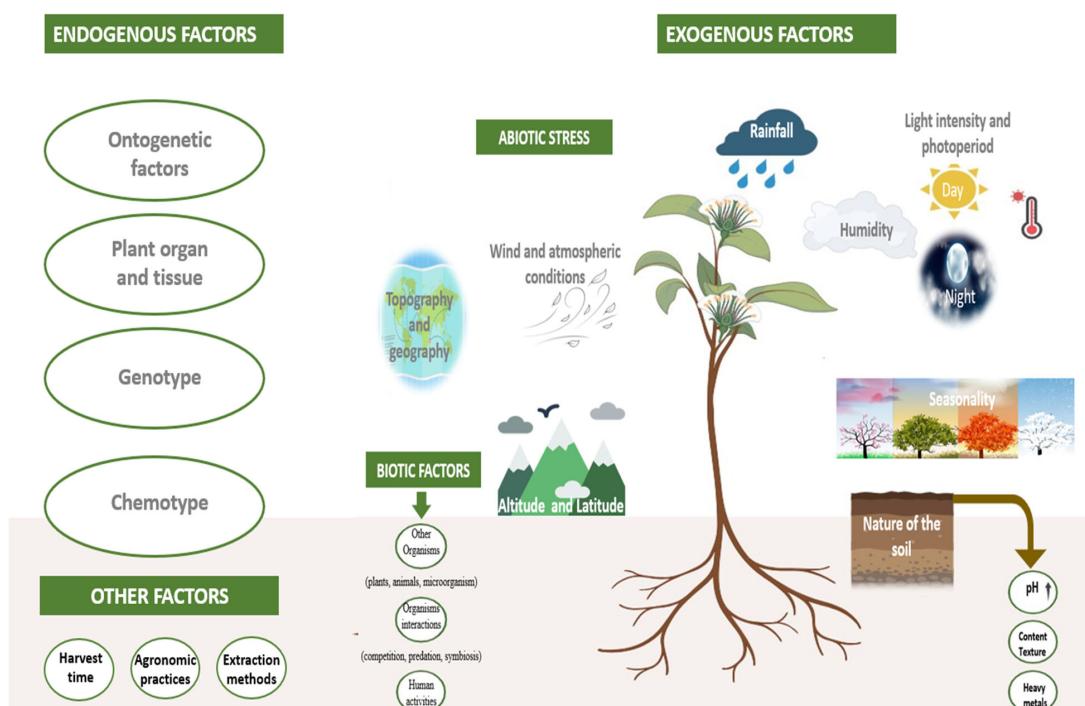
4.1.3. Plant Part Variability

EOS composition, yield, and quality vary significantly across plant parts (flowers, seeds, roots, stems, leaves) depending on genotype, chemotype, developmental stage, season, geographic locations, and harvest timing [173,190,222,227–229]. Rathore and Colleagues (2023) demonstrated that genotype and cultivar affect the predominant EOs constituent amounts within *Cymbopogon winterianus* across Western Himalayan regions [229]. Multiple studies confirm similar findings [15,115,161,173,182,185,230–236].

4.1.4. Geographic and Environmental Influences

The geographic origin of plant EOs has a predominant effect on its composition and yields [39,237]. Al-Kharousi and Colleagues (2023) found that the differences in the composition of frankincense (*Boswellia sacra*) oil were primarily related to extraction method, harvest time, and tree incision number rather than climate/geographic location [231]. Facanali and Colleagues (2020) [173] investigated three *Varrovia curassavica* Jacq. Genotypes, finding spring and summer as optimal harvest seasons with the highest active ingredient yields and higher α -humulene concentrations in the VC2 genotype [173,238].

Limonene composition in Citrus lemon oil varies by location [233]. Japanese lemon leaf oil contained geranial, limonene, and neral, while Egyptian lemon leaf oil included predominantly caryophyllene, linalool, nerol, and limonene [233]. Italian, Turkish, and Chinese lemon leaf oils contained limonene, β -pinene, and geranial, while Benin oils primarily consisted of limonene, β -pinene, and citronellal [234]. Dalli (2021) showed that *Nigella sativa* seed EO yields and chemical composition differed between Morocco, Saudi Arabia, Syria, and France [237].


4.1.5. Seasonal Variations

Seasonal variations significantly impact EO chemical profiles and bioactivities, with maturity stages interlinked to seasonal progression, creating disparate phenological patterns within species due to unique local ecological responses [223,230]. Motsa (2006) observed similarities between *Nectandra megapotamica* and *N. Nectandra lanceolata* EOs during spring/autumn but differences in summer/winter [236]. *N. megapotamica* winter/spring EOs showed the highest *E. coli* inhibition due to monoterpenes (α -pinene, β -pinene, myrcene, limonene) [239], while *N. Lanceolata* summer/autumn EOs exhibited lower *S. aureus* MIC due to sesquiterpene hydrocarbons [236].

Machado and Colleagues (2014) demonstrated seasonal fluctuations in *Lippia alba* leaf EO antimicrobial potency due to phytochemical profile changes related to environmental conditions, with varying effectiveness against different species: *S. aureus* (December–February), *Listeria monocytogenes* (June–August), and *L. innocua* (December–August) [232].

4.1.6. Environmental Factors

Environmental factors, including rainfall, temperature, humidity, life cycle stage, sunlight exposure, night light, wind patterns, soil characteristics, and heavy metal content, profoundly influence plant growth and development, consequently affecting EOs' quantity and quality [223] (Figure 1).

Figure 1. Factors affecting the variability in EOs' composition and yields.

4.1.7. Extraction Methods

The selection of the extraction method impacts stereochemical and physicochemical properties, chemical composition, and biological activity [15,41,172,240]. EOs from identical species extracted using different techniques contain distinct constituents that affect biological activity [15,172,185,235]. Notably, heat-based extraction methods may create artifacts from chemical precursors not naturally present in the plant, potentially altering the final EOs composition [172].

Numerous extraction techniques, ranging from conventional and widely employed methods to emerging eco-friendly approaches, are outlined in Appendix A.1.

The conventional methods of EOs extraction remain the most commonly used methods at industrial scales [241–243]. However, their inherent limitations, including high energy consumption, adverse effects on heat-sensitive compounds, low extraction efficiency, potential loss of volatile compounds, and the formation of toxic solvent residues in EOs [241], have driven a shift toward greener extraction techniques [241–243]. Advanced methods offer several advantages over conventional approaches [241–243], including enhanced quality and purity of EOs. However, they generally require higher resource allocation, careful optimization, and adjustment of parameters such as temperature, enzyme types, and concentrations depending on the plant material [240,243]. These techniques are more complex than conventional methods, and newer technologies necessitate more research and development [243]. A comparison between conventional and advanced methods is summarized in Appendix A.2.

End-product quality control of EOs consists of using analytical techniques designed to cope with volatile compounds. The most used method is gas chromatography (GC) coupled to either a mass spectrometer (MS) or a flame ionization detector (FID) [244]. More recent techniques have included GC-IMS (Ion Mobility Spectrometry) as a viable alternative for end-product quality control, indicating that this newer technique can discriminate between the geographic origins of oils [245]. In-process controls are needed to ensure that the extraction process of the EOs complied with the process validated for the manufacture of the EOs as a therapeutic developed according to the Quality Guidelines of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use [246].

4.2. Safety Concerns

According to the U.S. Food and Drug Administration (FDA), numerous EOs are generally recognized as safe (GRAS) [247], meaning consumer exposure do not “exceed the amount reasonably required to achieve intended physical, nutritional, or other technical effects in food” [248]. Consequently, this classification allows including EOs in cosmetics, food, and feed applications but precludes their use as therapeutic agents. However, at the concentrations required for therapeutic application, some EOs exhibit toxic effects, including respiratory problems, acute toxicity, reproductive toxicity, and organ toxicity, even at very low concentrations [249].

Studies have highlighted potential adverse effects including skin sensitization, contact dermatitis, neurological toxicity, and endocrine disruption, emphasizing safety considerations particularly during pregnancy and lactation, as some EOs components may cross the placental barrier and pose fetal risks [249,250]. Specific EOs have exhibited teratogenic effects (*Eucalyptus staigeriana* [163], *Thymus* spp. [165], *Salvia lavandulifolia* [251]), embryotoxic effects (*Curcuma zedoria* [252]), neurotoxic effects (*Artemisia vulgaris* [253]), and nephropathic, carcinogenic, and genotoxic effects (*Mentha piperita* [254]). Additionally, *Salvia officinalis*, *Hyssopus officinalis*, lavender and tea tree oils exhibited neurological toxicity and endocrine-disrupting effects [255]. Some studies have generated contradic-

tory findings regarding EO toxicity in vitro and in vivo [249]. Some EOs exhibited toxic properties even at very low concentrations, potentially due to variations in their chemical composition [249,254].

Therefore, before gaining drug approval, EOs must undergo extensive toxicological assessments according to safety guidelines established by the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use [246], which represent minimum requirements by major regulatory agencies worldwide [246]. Comprehensive EO toxicity assessment determines safe and toxic concentration ranges, exposure time, toxicity mechanisms, and specific constituents responsible for these effects [253,256]. Methods involving in vitro cytotoxicity assays, in vivo models using non-mammalian organisms (e.g., *Caenorhabditis elegans*), hen's egg test, gene expression analysis, mucous membrane irritation testing, and chemical profiling are essential for ensuring safe and effective EOs utilization in therapeutic settings [253]. These approaches aim to provide an understanding of EO toxicity while reducing reliance on traditional animal models [253].

4.3. Supply and Environmental Concerns

Securing the continuity of supply is crucial before a drug gains marketing authorization. The consistency of the supply often leads to the often-overlooked environmental issue during phytochemical drug development about whether sufficient plant material will be available to produce the drug annually. For example, before synthetic Taxol manufacturing, the raw material for the drug was harvested from the bark of plants, and, for the Taxol clinical trial alone, 12,000 trees were harvested to obtain sufficient bark to extract the drug compound [257]. A further issue complicating the supply of EOs for clinical use is the correct selection of the plant species used for the initial identification and subsequent clinical evaluation of the therapeutic EOs [166]. Despite not having occurred with an EO, this problem was raised in 1997 when plantain, a herbal remedy and culinary ingredient, was contaminated with *Digitalis lanata*, leading to significant, unexpected cardiac side effect [258].

4.4. Regulatory Landscape

The challenges of obtaining regulatory approval for a therapeutic agent developed from a complex plant extract rather than a single molecule is immense. This issue often revolves around the challenge of identifying single or multiple active molecules in the chromatogram of the EOs for development into a therapeutic agent. The same concern applies to identifying potentially toxic compounds that may be present in the product [259].

The EO industry is subject to a complex regulatory landscape covering quality standards, ethical sourcing, labeling, and international trade [31]. Regulation and standardization of essential oil products vary globally [34], leading to different quality control and labeling. Numerous countries have their regulatory bodies, while others follow the WHO, Food and Agriculture Organization (FAO), the FAO/WHO Codex Alimentarius Commission (CAC), and the International Organization for Standardization (ISO) for the use of EOs [260]. These organizations work together to develop strategies and implement regulations for the safe use of EOs globally. The WHO provides a digital platform addressing the safety of plant materials, publishes guidelines on good manufacturing practices for herbal medicines, and issues scientific information on the safety and quality of EOs [260]. The WHO and FAO also established committees to evaluate the safety levels of food additives, including EOs. The national entities in different countries regulate EOs, and their authentication can be difficult, requiring various techniques, including chiral gas chromatography, isotope-ratio mass spectrometry, nuclear magnetic resonance (NMR), thin-layer chromatography, vibrational spectroscopy, multidimensional chromatography, high-performance liquid chro-

matography, headspace chromatography, and chemometrics-metabolomics [145]. All these aspects should be incorporated into the different guidelines [261,262] that emerged based on specific cultivation and processing methods. Examples include the WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants [263], WHO guidelines for sampling of pharmaceutical products and related materials [264], and the European Medicines Agency (EMA) Guideline on Quality of Herbal Medicinal Products (CPMP/QWP/2819/00)[265].

Given the current progress that has been made in the field of regulations for EOs, there remains a pressing need to reassess the EOs mechanism of action and support rigorous studies to explore their full potential for human health within the framework of integrative health approaches [266].

4.5. Pharmacokinetic and Pharmacodynamic Properties

Due to the complexity of EOs' chemical composition, volatility, and susceptibility to degradation, it is crucial to have a better understanding of their bioavailability and kinetics [267] to allow the discovery and identification of EO candidates for clinical practice [17]. The EOs' pharmacodynamic properties were studied in vitro. Their target organs and safety profiles lack confirmation in vivo due to various degradative pathways and enzymes [32]. Therefore, further studies on absorption, distribution, metabolism, and excretion are necessary to establish the relationship between in vitro and in vivo investigations [268]. Adopting multimodal approaches is essential to comprehensively examine the intricate interplay between chemical profiles of EOs and their respective metabolites, mobilome, resistance, and metabolism in cohabiting bacteria, and this appears to be particularly crucial in ecological settings where community-driven resistance selection occurs [13]. The complexity and variability of EOs compositions make it difficult, if not impossible, to explore their bioavailability in vivo.

Plant extracts, including components of EOs, have been shown to affect drug metabolism by affecting the activity of cytochrome enzymes [144] or drug transporters [269], and may affect the activity of other drugs concomitantly taken by the patient. EOs are volatile substances and prone to oxidation and enzymatic breakdown. This issue may necessitate encapsulation to be delivered successfully to the body without losing activity, adding to the complexity of the drug development process and cost [270].

Another challenge is the reluctance to develop a biofilm-dismantling product without biocidal activity due to concerns that disrupting the biofilm could lead to bacteremia [271].

4.6. Drug Interactions and Delivery

EO components can affect drug metabolism by influencing cytochrome enzyme activity and drug transporters, potentially impacting the efficacy of other medications [31]. The volatile nature of EOs and susceptibility to oxidation and enzymatic breakdown may require advanced delivery methods, such as encapsulation, adding to development costs and challenges [270]. Understanding the potential interactions of EOs with medications is crucial, as it can affect their effectiveness and lead to adverse effects. This is especially important given that the mechanism of action of EOs as a multicomponent mixture (more than one constituent substances (MOCS), including hundreds of individual compounds), has shown diversity and therapeutic advantages with fewer side effects compared to using a single compound [31].

4.7. Co-Administration Challenges

The multi-component nature of EOs complicates trial design, especially when testing their synergistic effect in combination with standard antibiotics. This issue is problematic in Phase 3 clinical trials, as the co-administration of drugs usually requires a superior primary

endpoint. For example, van Vuuren and Colleagues (2009) [272] explored the interactions of EOs, including *Melaleuca alternifolia*, *Thymus vulgaris*, *Mentha piperita*, and *Rosmarinus officinalis* with ciprofloxacin. When combined with ciprofloxacin against *S. aureus*, the EOs exhibited primarily antagonistic effects [272]. However, against *K. pneumoniae*, the combinations produced varied outcomes, with isobolograms indicating antagonistic, synergistic, and additive interactions depending on the ratio used [272]. The *R. officinalis*-ciprofloxacin combination showed the most favorable synergistic effect against *K. pneumoniae* [272]. This variability in interaction suggests that the effectiveness of EOs combined with antibiotics is highly dependent on their specific ratios, and caution is advised when using such combinations to avoid reducing therapeutic efficacy [272].

4.8. Research Translation in Clinical Care

Clinical trials are required to confirm the efficacy and safety of MOCS in treating infectious diseases under various health conditions, including cancer, obesity, diabetes, and cardiovascular diseases, due to the complexity of EOs and taking into consideration the potential synergism with conventional antibiotics [31,273].

Other relevant studies include evaluating bacterial resistance and tolerance to EOs, as well as determining whether their use as adjunctive therapy can prevent cross-resistance to antibiotics and antagonistic effects [8,9].

Another challenge in translating EO research lies in the limited systematic comparisons between laboratory reference strains and clinical isolates. While direct head-to-head studies remain scarce, this gap represents a fundamental barrier to predicting clinical efficacy from laboratory data, requiring more rigorous comparative research to guide therapeutic development.

Beyond laboratory or clinical settings, studying the adherence to EO-based treatments, integration of interventions into healthcare practices, and public acceptance of these interventions need evidence-based practices and extensive research.

5. Understanding Essential Oils Resistance Development

The potential for bacteria to develop resistance against EOs mandated extensive investigations into their complex mechanisms of action and adaptive responses. While numerous studies reported no significant development of direct genetic resistance, likely due to the complex compositions and multi-targeted mechanisms of EOs [10,17,180,274], others have observed the emergence of resistant variants or decreased susceptibility [274–277]. Notably, the emergence of resistant variants appears strain-specific, with some bacterial species exhibiting resistance or tolerance development against certain EOs or their components, while others remain unaffected [274,276,277]. There are several possible mechanisms through which AMR could develop. One of these mechanisms is the overexpression of efflux pumps. Increased efflux pump activity can lead to reduced intracellular concentrations of EOs, thereby limiting their antimicrobial activity. Moken and Colleagues (1997) studied *E. coli* isolates with resistance against pine EOs, potentially mediated by mutations of the multiple antibiotic resistance (*mar*) locus [278]. This region controls the expression of multiple resistance mechanisms, including efflux pumps [278]. It is also associated with target modification and decreased membrane permeability, potentially due to the downregulation of outer membrane protein F (OmpF) and other membrane proteins [279].

Another gene, *soxS*, was activated as well, and it induces the expression of ROS genes, which serve as an antioxidant defense system. This mechanism allows bacteria to overcome oxidative stress induced by EOs [278,280]. Studies showed that, while direct bacterial resistance is limited, sublethal EOs exposure can induce cross-resistance or decreased susceptibility to antimicrobial agents, heat, and oxidative stress [220,275,277]. This phe-

nomenon is due to phenotypic adaptations, such as altered membrane compositions, efflux pump activity, metabolic pathways, and gene expression profiles [177,220]. Pagan and Colleagues (2024) observed a lack of uniform genotypic or phenotypic patterns in *S. Typhimurium* lineages exposed to carvacrol, underscoring the complexity and unpredictability of adaptive responses [277]. While the overall risk of resistance development against EOs is lower than conventional antibiotics, continuous monitoring and responsible use are imperative, particularly in real-world scenarios where sublethal EOs stress may contribute to cross-resistance emergence [220]. Nonetheless, the rate of AMR development toward EOs may be lower than conventional antimicrobials. Becerril and Colleagues (2012) investigated the emergence of AMR against cinnamon oil by *E. coli*, *P. aeruginosa*, *S. marcescens*, *Morganella morganii*, and *P. mirabilis* [274]. After 50 passages in the presence of cinnamon EOs, *E. coli* strains failed to grow, and none of the other bacterial strains developed resistance toward cinnamon EOs [274]. Furthermore, isolates treated with cinnamon oil, unlike untreated ones, could not develop resistance against different antimicrobial classes, including β -lactams, aminoglycosides, tetracyclines, quinolones, and chloramphenicol [274]. That is probably due to the complex composition and highly diverse nature of EOs and their multiple-target approach. Thus, bacteria would need to simultaneously evolve multiple resistance mechanisms against numerous processes to become fully resistant to EOs [17]. Additionally, EOs often exhibit a synergistic effect among their constituents or when combined with other EOs or antibiotics, which can reduce selective pressure and hinder the development of AMR [12]. In addition, EOs have reportedly overcome common resistance mechanisms that are usually effective against traditional antibiotics, such as inhibition of biofilm formation and efflux pumps [37,281].

6. Potential Advantages of Using Essential Oils in the Fight Against AMR

6.1. The Multi-Target Mechanisms of Plant EOs Against Antibiotic Resistant Clinical Isolates

EOS demonstrate extensive antimicrobial activity against drug-resistant bacteria, with significant contributions from multiple plant families. The Lamiaceae family emerges as a dominant source, with oregano (*Origanum vulgare*) [43,70,129,130,195], thyme (*Thymus vulgaris*) [44,52,96,139,140,162], lavender (*Lavandula angustifolia*) [153,181,210], and peppermint (*Mentha × piperita*) [41,128,155,196,200] exhibiting broad-spectrum activity. The Myrtaceae family, represented by the tea tree (*Melaleuca alternifolia*) [60,136,137,282] and clove (*Syzygium aromaticum*) [117,118,123,197], shows potent efficacy, particularly against respiratory pathogens, while the Lauraceae family's cinnamon EOs demonstrate exceptional activity against pan-drug-resistant (PDR) strains [112]. Apiaceae (*Coriandrum sativum*) [122,213,283], Geraniaceae (*Pelargonium graveolens*) [40,284], and Poaceae (*Cymbopogon flexuosus*) [41,112,127,189] families show additional significant antibacterial effect. Plant EOs exert multifaceted mechanisms of action against resistant bacteria through five primary pathways: direct membrane disruption with precisely documented MIC values ranging from 0.0562 to 512 μ g/mL [43,112], anti-biofilm activity achieving 48–90% reduction in biofilm formation [213], QS inhibition that disrupts bacterial communication networks [69,85,152,201,282], efflux pump inhibition that restores antibiotic susceptibility [142,177,208,278], and genetic modulation of resistance mechanisms [70,148]. This mechanistic versatility is exemplified by cinnamon oil's remarkable dual action against colistin-resistant strains, achieving both direct antibacterial effects and molecular-level intervention, demonstrated by 20–35-fold reductions in *mcr-1* gene expression in both colistin-resistant *P. mirabilis* and *E. coli* [113]. Structural analyses reveal critical component-specific activities: cinnamaldehyde demonstrates superior antimicrobial action compared to eugenol against *P. aeruginosa* (MIC: 0.00002–0.03 μ L/mL) [111], while terpinene-4-ol, a key tea tree

oil component, shows significant broad-spectrum activity (MIC: 0.048–1.52 mg/mL) [282]. The molecular basis of bacterial resistance modulation is particularly noteworthy: various oils demonstrate anti-efflux-pump activity, with menthol-imipenem combinations achieving a 16-fold reduction in imipenem MIC against resistant strains while simultaneously downregulating resistance-associated genes, including *clbB* and *mcr-1* [42]. Against specific pathogens, the activity spectrum is comprehensive: cinnamon oil shows remarkable efficacy against PDR *P. aeruginosa* (MIC: 0.0562–0.225 µg/mL) through both direct action and *mcr-1* gene downregulation, tea tree oil demonstrates consistent activity against MRSA (MIC: 0.048–3.125 mg/mL) [282], thyme oil specifically targets *Streptococcus pneumoniae* (MIC: 0.625–1.25 µL/mL) [96], and oregano oil exhibits exceptional activity against carbapenem-resistant Enterobacteriaceae (MIC: 0.015% v/v) [129]. Synergistic interactions with conventional antibiotics show particular promise across multiple combinations: lavender oil with meropenem against carbapenem-resistant KPC-producing *K. pneumoniae* (MIC reduction from 10% to 0.63% v/v) [52], rosemary and geranium oils with colistin against extensively drug-resistant (XDR) *A. baumannii* (2–32-fold MIC reduction) [285], and various combinations with β-lactams and aminoglycosides. Clinical applications demonstrate targeted efficacy: tea tree, immortelle and eucalyptus oils against respiratory tract isolates [32,286], oregano, cinnamon and rosemary EOs against uropathogens [129,134,135,197], and geranium, black cumin and tea tree against wound pathogens [120,282,284], with potent anti-biofilm activity from cinnamon and peppermint oils (optimal at 30 µL/100 µL) [121]. An important aspect highlighted in the research is the ability of certain EOs to modulate bacterial resistance mechanisms, with several oils demonstrating anti-efflux pump activity and the ability to downregulate resistance-associated genes [42,184]. The potential of EOs in preventing biofilm formation is a crucial factor in bacterial persistence and AMR, with EOs such as cinnamon and peppermint EOs showing significant anti-biofilm activity at sub-inhibitory concentrations, suggesting potential applications in preventing bacterial colonization without promoting resistance development [121].

6.2. Synergistic Effect of Plant EOs and Conventional Antibiotics

Plant EOs demonstrated potentiating action on conventional antibiotics such as penicillins, cephalosporins, quinolones, chloramphenicol, and sulfamethoxazole-trimethoprim [12,18,19,22,23,287]. They can also re-sensitize MDR [12]. The EOs effectiveness was reported both alone and in synergy with antibiotics against resistant GPB and GNB, including MRSA, ESBL-producing *E. coli*, MDR *A. baumannii* [12], and carbapenemase-producing *K. pneumoniae* [52]. Knezevic and Colleagues (2016) demonstrated that *Eucalyptus camaldulensis* EOs in combination with ciprofloxacin, gentamicin, and polymyxin B exhibited MICs ranging from 0.5 to 2 µL/mL [20]. The combined application of EOs and conventional antibiotics significantly enhanced antibacterial efficacy and even resensitized MDR *A. baumannii* strains, particularly with polymyxin B, rapidly reducing bacterial counts [20]. Soliman and Colleagues (2017) [287] assessed the antimicrobial potential of Lawsone and Calli EOs against MDR pathogens. Lawsone EOs showed significant activity at 200–300 µg/mL, while Calli EOs were effective at 180–200 µg/mL against MDR bacteria [287]. Lawsone in combination with Calli EOs enhanced antimicrobial efficacy by at least three-fold, achieving ≥90% inhibition of all tested strains [287].

Dhara and Tripathi (2020) evaluated cinnamaldehyde, both alone and with cefotaxime and ciprofloxacin, against ESBL-producing and quinolone-resistant Enterobacteriaceae [18]. MICs were 7.34 µg/mL for *E. coli* and 0.91 µg/mL for *K. pneumoniae*. Synergistic interactions were found in 75% of *E. coli*, 60.6% of *K. pneumoniae* with cefotaxime, and 39.6% and 42.4% with ciprofloxacin, leading to a 2 to 1024-fold reduction in MICs [18]. Cinnamaldehyde also significantly altered bacterial morphology and gene expression related to porins,

efflux pumps, and antibiotic resistance [19]. In another study, the same authors showed that Eugenol combined with cefotaxime and ciprofloxacin demonstrated substantial synergism (FICI: 0.08–0.5), reducing MIC values by 2- to 1024-fold and demonstrating a dose reduction index (17- to 165,030-fold) [18]. Eugenol alone or in combination disrupted bacterial cell structure, downregulated efflux pumps, overexpressed porins, and inhibited β -lactamase genes, thus reversing AMR [18].

Köse (2022) [23] demonstrated the synergistic effects of carvacrol combined with meropenem against carbapenem-resistant *K. pneumoniae* (CRKP) strains. MICs for both carvacrol and meropenem ranged from 32 to 128 μ g/mL [23]. These findings highlight the complex and promising role of EOs-antibiotic combinations in addressing MDR [12,18,20,21,23,287].

However, inconsistencies in methods and interpretation criteria across studies warrant the need for further comprehensive research to understand the interactions and mechanisms of action and optimize these combinations for clinical use [22].

6.3. Nanoencapsulation of Plant Essential Oils

EOs nanoencapsulation is a promising strategy to enhance antimicrobial activity, particularly against antibiotic-resistant bacteria [17,256,288–291]. This technology offers several advantages over unencapsulated EOs, including bioactive protection from external environment [290–294], prevention of thermal oxidation reactions [17,239], lower cytotoxicity [17,239,294,295], and improved stability, solubility, bioavailability, and penetration ability [292,296].

Nanostructured delivery systems (NDSs) are molecularly composed of different biomaterials and processed in various forms to interact specifically with targets. Various nanocarriers have been explored for EOs encapsulation, including eco-friendly and biodegradable polymeric and lipidic nanodelivery systems such as chitosan-based systems (CHT) [289,291,297], liposomes [289,292,293], solid lipid nanoparticles, and nanoemulsions [289]. Other materials, such as cyclodextrins [296] and nanogels, have also shown potential [288,290]. The determination of EOs' nanodelivery system, excipients, concentrations, and preparation method should be carefully planned to ensure successful encapsulation, long-term stability, high encapsulation efficiency, and therapeutic potency of bioactive EO-loaded nanocarriers [239]. The choice depends on the intended application, as size, shape, and component nature influence selection [17].

Synergistically combining EOs with potent antimicrobial nanoparticles (NPs) may potentiate collective antimicrobial efficacy through complementary mechanisms against diverse pathogens, appearing optimal for combating MDR microorganisms [17]. Nanocarriers facilitate controlled release [289,291,293], desirable shelf life [292], targeted delivery to specific sites, increased retention time and penetration into bacterial cells/biofilms [290,291], synergistic effects when combined with other antimicrobial agents, and minimized side effects [17,289–291].

Recent advances in biopolymeric nanoparticles research show that chitosan and zein-based nanosystems are highly effective in targeting antibiotic-resistant bacteria in both sessile and biofilm forms [291]. These biopolymer-based nanocarriers are convenient carriers due to their biocompatibility, low toxicity, and surface modification effect [291]. Nanoencapsulation enhances EOs' antimicrobial and antibiofilm activity through increased retention time and penetration into bacterial cells/biofilms, synergistic effects with other antimicrobial agents, targeted delivery to infection sites, and prolonged therapeutic effects via sustained release [17,288,291]. Numerous studies demonstrate improved antibacterial and antibiofilm efficacy of nanoencapsulated EOs against *Pseudomonas* spp., *Staphylococcus* spp., and *E. coli* compared with free EOs [290–293].

However, multiple challenges remain to overcome for successful industrial adoption and clinical translation of nanoencapsulated EOs. Primary challenges include the need for large-scale, cost-effective production methods ensuring consistent quality and reproducibility [289]. Optimizing release kinetics, maintaining long-term stability, and investigating potential toxicity concerns require further research [239,291,298,299]. The complex structure and varying compositions of biofilms, depending on microbial strains, can make NP interaction prediction and effective delivery challenging [291]. Additionally, quantitative in vivo studies and specific dosage guidelines for EOs in different infections are currently lacking [289]. Nano-delivery system characteristics such as size, shape, surface functionalization, roughness, and charge significantly influence efficient EOs release and antimicrobial activity.

7. Conclusions and Future Directions

EOS represent a paradigm shift in antimicrobial therapy due to their multi-target mechanisms of action, which differ fundamentally from those of conventional single-molecule antibiotics. Their ability to simultaneously disrupt bacterial cell membranes, inhibit biofilm formation, interfere with QS, and modulate efflux pump activity positions them as particularly valuable weapons against AMR. The mechanistic diversity of EOs, exemplified by the efficacy of cinnamon, clove, oregano, and tea tree oils against WHO-priority pathogens such as MRSA, carbapenem-resistant *K. pneumoniae*, *A. baumannii*, and *P. aeruginosa*, demonstrates their potential to address urgent public health needs where conventional antibiotics have failed.

The synergistic potential of EOs with existing antibiotics emerges as one of their most clinically relevant attributes. This combinatorial approach not only enhances the efficacy of established antimicrobial agents but also provides a pathway to revive antibiotics that have lost effectiveness due to the development of resistance. The ability of EOs to inhibit β -lactamases, downregulate efflux pumps, and modulate bacterial gene expression provides multiple avenues for overcoming established resistance mechanisms.

However, the path to clinical implementation faces significant obstacles. The inherent variability in EO composition presents a fundamental challenge to standardization and reproducibility, indicating the need for robust quality control measures, standardized extraction protocols, and chemotype selection strategies. While nanoencapsulation technologies, including chitosan nanoparticles and liposomal formulations, offer promising solutions to enhance stability, bioavailability, and targeted delivery, the practical hurdles of scaling up production, managing costs, and navigating regulatory approval for nanoformulations remain substantial.

The current evidence base, while compelling, is heavily weighted toward in vitro and ex vivo studies, and well-designed clinical trials to validate efficacy and safety in human subjects are essential for future translation of EOs potential into clinical practice. The limited availability of in vivo models and clinical data represents a significant gap that needs to be bridged before EOs can be considered viable therapeutic alternatives. Additionally, while EOs are generally considered less prone to resistance development due to their multi-target nature, emerging evidence suggests that bacterial adaptation mechanisms, such as efflux pump upregulation, may still pose risks that warrant careful monitoring. Should EOs value be preserved as alternatives to conventional antibiotics, such adaptation and probable resistance emergence are potential venues for ongoing investigation.

The integration of artificial intelligence and machine learning approaches, as demonstrated by the successful application of artificial neural networks in predicting antimicrobial activity with >70% accuracy, offers a promising avenue for optimizing EO formulations and predicting therapeutic outcomes. These computational tools can help navigate the

complex chemical variability of EOs and provide rapid, cost-effective screening methods for identifying optimal antimicrobial combinations.

Economic and feasibility considerations, while under-discussed in current literature, represent critical determinants of real-world adoption. The cost-effectiveness of EOs compared to conventional antibiotics, hurdles of their large-scale production, and market viability issues remain interesting to tackle.

In conclusion, essential oils present a compelling and scientifically sound approach to combating AMR through their unique multi-target mechanisms and synergistic potential with conventional antibiotics. However, successful clinical translation requires a coordinated effort to address standardization challenges, conduct rigorous clinical trials, develop advanced delivery systems, and optimize combination therapies. Research addressing these multifaceted aspects can help realize the full therapeutic potential of essential oils to tackle AMR, ultimately contributing to the preservation of antimicrobial efficacy for future generations.

Supplementary Materials: The following supporting information can be downloaded at: <https://www.mdpi.com/article/10.3390/antibiotics14121250/s1>, Table S1. Antibacterial efficacy of selected plant essential oils against resistant clinical pathogens.

Author Contributions: Conceptualization, K.I., N.A., N.P. (Nebojša Pavlović), M.-J.R.A., S.P.B., D.S., S.U.B. and H.S.; writing—original draft preparation, K.I., N.A., N.P. (Narayan Paudyal), M.-J.R.A., S.P.B., D.S., S.U.B. and H.S.; writing—review and editing, D.H.H., N.P. (Nebojša Pavlović), C.R., M.R., P.S., F.H. and M.V.D.; visualization, K.I., D.H.H., N.P. (Narayan Paudyal) and N.P. (Nebojša Pavlović); supervision, K.I. and M.V.D.; project administration, K.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Acknowledgments: During the preparation of this manuscript/study, the author used Biorender for the purposes of preparing the figures. The authors have reviewed and edited the output and take full responsibility for the content of this publication.

Conflicts of Interest: Author Christine Roques was employed by the company ACM Pharma FONDEREPHAR. Author Maarten Van Dongen was employed by the company AMR Insights. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABC	ATP-binding cassette
AFM	Atomic force microscopy
AIPs	Autoinducing peptides
AI	Autoinducers
AMR	Antimicrobial resistance
AST	Antimicrobial susceptibility testing
BMD	Broth microdilution
BPPL	Bacterial Priority Pathogens List
CAC	Codex Alimentarius Commission
CFD	Computational fluid dynamics

CHT	Chitosan-based systems
CLSI	Clinical and Laboratory Standards Institute
CLSM	Confocal laser scanning microscopy
CRKP	carbapenem-resistant <i>K. pneumoniae</i>
DESI	Desorption electrospray ionization
EMA	European Medicines Agency
EOCs	Plant EOs and their components
EOs	Plant essential oils
ESBLs	Extended-spectrum β -lactamases
EtBr-CW	Ethidium bromide cartwheel
EUCAST	and the European Committee on Antimicrobial Susceptibility Testing
FAO	Food and Agriculture Organization
FBECI	Fractional biofilm eradication concentration index
FDA	Food and Drug Administration
FICI	Fractional inhibitory concentration index
FID	Flame ionization detector
FTIR	Fourier transform infrared spectroscopy
GACP	Good Agricultural and Collection Practices
GC	gas chromatography
GNB	Gram-negative bacteria
GPB	Gram-positive bacteria
ISO	International Organization for Standardization
LOC	Lab-on-a-chip
LPS	lipopolysaccharides
MATE	Multidrug and toxic compound extrusion
MBC	minimum bactericidal concentrations
MBL	Metallo-beta-lactamase
MDR	multidrug-resistant
MeSH	Medical Subject Headings
MF	Major facilitator
MIC	Minimum inhibitory concentrations
MOCS	Substance with more than one constituent
MRCoNS	Methicillin-resistant coagulase-negative staphylococci
MRSA	Methicillin resistant <i>Staphylococcus aureus</i>
MS	Mass spectrometer
NDS	Nanostructured delivery systems
NMR	Nuclear magnetic resonance
OmpF	Outer membrane protein F
PCR	Polymerase chain reaction
PEB	protein energy binding
QS	Quorum sensing
RND	Resistance nodulation division
ROS	Reactive oxygen species
SEM	Scanning electron microscopy
SMR	Staphylococcal multi-resistance
TEM	Transmission electron microscopy
UTI	Urinary tract infection
XDR	extensively drug-resistant
XRD	X-ray diffraction

Appendix A.

Appendix A.1. Current Plant EO Extraction Methods

Methods	Process	Advantages	Disadvantages
Conventional methods			
Cold-press extraction	<ul style="list-style-type: none"> -Used extensively for extraction of citrus peel EOs -Predominantly mechanical process which compresses peels or whole fruits to release the EOs -Released oils are washed from the resultant paste using water -Water may be evaporated to produce concentrated EOs 	<ul style="list-style-type: none"> -Minimal heat exposure -Preserves natural oil properties -Suitable for citrus fruits 	<ul style="list-style-type: none"> ▪ Contains non-volatile impurities, coumarins, and pigments ▪ Limited application (only suitable for citrus fruit peels) ▪ Low purity and yield
Hydrodistillation (HD)	<ul style="list-style-type: none"> -Plant material is placed into water and brought to boiling (100 °C) -Evaporated components are captured by condensation -Components are separated from residual water 	<ul style="list-style-type: none"> -Extracts compounds with boiling points below 100 °C -Faster process than steam distillation -Convenient set-up and operation -Low cost -Efficient extraction due to better penetration 	<ul style="list-style-type: none"> -Limited extraction of high boiling point compounds -Lower yield than steam distillation -Susceptibility to hydrolysis reactions -High energy consumption -Prolonged process time -Potential volatile losses -Thermal degradation of sensitive compounds -High carbon dioxide emissions
Steam distillation (SD)	<ul style="list-style-type: none"> -Plant material is exposed to steam at 250–350 °C -EOs components evaporate and are captured in a condenser -Components separated from residual water 	<ul style="list-style-type: none"> -Widely used at industrial scale -Lower susceptibility to hydrolysis than HD -Higher yields than HD -Convenient process control 	<ul style="list-style-type: none"> -Thermal degradation and structural alterations, especially for monoterpenes, due to high temperature
Solvent extraction	<ul style="list-style-type: none"> -Plant material is mixed with a solvent (ethanol, methanol, acetone, ether, or hexane) -Mixture is heated to less than 100 °C -Extract is filtered to remove plant material -EOs- is concentrated by evaporation of solvent, often under vacuum 	<ul style="list-style-type: none"> -Simple method for EOs extraction 	<ul style="list-style-type: none"> -Potential solvent contamination and impurities -Volatile losses during solvent evaporation -Environmental hazards from solvent waste -Extraction yield and quality depend on numerous factors (solvent type, temperature, extraction cycles, vessel design, raw materials particle size)
Advanced Methods			
Omic-assisted hydrodistillation (OAHD)-modern route	<ul style="list-style-type: none"> -Electrical current passed through mixture of plant material and water -Plant material acts as resistor, converting electrical energy into heat via Joule effect -Internal heating causes release of essential oils -Oils collected through process similar to traditional HD 	<ul style="list-style-type: none"> -Overcomes HD limitations -Rapid extraction -Minimizes volatile losses -Energy-efficient -Improved process control -Cost-effective 	<ul style="list-style-type: none"> -Electrical conductivity concerns -Operational safety challenges -High capital investment required

Methods	Process	Advantages	Disadvantages
Microwave-assisted hydrodistillation (MAHD)	<ul style="list-style-type: none"> -Advanced HD technique utilizing a microwave oven -Based on dielectric heating from microwaves for effective and selective heating -Modified microwave oven connected to Clevenger apparatus for lab-scale distillation -Microwave energy converted to heat energy in water due to high dielectric properties -Heat transferred to plant materials 	-Rapid process	-Transition to coaxial MAHD recommended for better cost, scalability, safety, and cost-effectiveness
Microwave steam distillation (MSD)	<ul style="list-style-type: none"> -Microwave oven connected to reactor containing plant materials or standard steam distillation apparatus -Saturated steam generated and passed through plant material in microwave zone -Combination of steam and direct microwave heating causes rapid release of essential oils -Oils collected through condensation 	<ul style="list-style-type: none"> -Effective heating -Selective extraction -High extraction efficiency -Reduced energy consumption -Reduced extraction time -Less structural alteration of chemical compounds due to lower overall heat exposure 	
Turbo Hydrodistillation	<ul style="list-style-type: none"> -Mixture of water and plant materials constantly stirred at specific rpm while undergoing hydrodistillation -Agitation enhances extraction process by increasing contact between plant material and water 	-Improved extraction efficiency	-Potential degradation of sensitive compounds due to intense agitation/stirring
Salt-Assisted Hydrodistillation	<ul style="list-style-type: none"> -Plant materials mixed with water and NaCl (salt) before conventional hydrodistillation -Salt alters polarity of water, potentially improving extraction efficiency 	-Faster processing	-Increased processing cost and complexity
Enzyme-Assisted Hydrodistillation	<ul style="list-style-type: none"> -Plant materials mixed with water and specific enzyme -Mixture incubated at particular temperature with stirring before hydrodistillation -Enzymes break down cell walls, potentially releasing more essential oils 	-Higher yields	-Salt residue removal required
Micelle-Mediated Hydrodistillation	<ul style="list-style-type: none"> -Plant materials mixed with aqueous surfactant solution (e.g., 10% Tween 40) before hydrodistillation -Surfactant forms micelles that can encapsulate essential oil components 	<ul style="list-style-type: none"> -Milder extraction conditions than HD -Reduced or eliminated need for added water/solvents in some techniques 	<ul style="list-style-type: none"> -High enzyme costs -Careful selection and optimization needed for different plant materials -Added chemical complexity and cost from surfactant use -Environmental concerns with surfactant disposal.

Methods	Process	Advantages	Disadvantages
Solvent-Free Microwave Assisted Extraction (SFMAE)	<ul style="list-style-type: none"> -Plant materials placed directly in microwave extraction vessel without added solvents or water -Microwaves rapidly heat internal plant water, causing cells to expand and rupture -Released oils are vaporized, then condensed and collected 	<ul style="list-style-type: none"> -Increased extraction kinetics compared to MAHD -Elimination of added solvents or water -Reduced risk of hydrolysis of essential oil components -Potentially higher quality of extracted oils due to minimal water interaction. 	<ul style="list-style-type: none"> -Requires specialized microwave equipment, increasing capital costs -Potential for uneven heating and hot spots in plant material -Potential for uneven heating and hot spots in plant material
Microwave Hydrodiffusion and Gravity (MHG)	<ul style="list-style-type: none"> -Plant material subjected to microwave energy, heating internal water molecules and causing thermal stress -Leads to rupture of oil glands -EOs drain due to gravity (not evaporated) -EOs are collected at bottom of apparatus 	<ul style="list-style-type: none"> -Improved efficiency, potentially higher quality oils -Reduced processing time and minimal water use. 	<ul style="list-style-type: none"> -Requires specialized microwave equipment -Complex gravity drainage setup compared to traditional condensation -Risk of extract contamination if drainage not properly controlled
Microwave-assisted extraction (MAE)	<ul style="list-style-type: none"> -Can be performed with or without solvents -Water or solvent added to plant material exposed to microwaves -Heated liquid penetrates plant material and extracts EO -Liquid/EO mixture evaporated to produce concentrated EO -Yields affected by microwave power, time, and solvent quality/quantity 	<ul style="list-style-type: none"> -Rapid extraction -Reduced solvent consumption -High yields -Suitable for thermally sensitive compounds -Disruption of weak hydrogen bounds -Environmentally friendly -Various techniques available. 	<ul style="list-style-type: none"> -Limited to small-scale applications -High energy consumption
Ultrasound-assisted extraction (UAE)	<ul style="list-style-type: none"> -Uses sound waves between 20 kHz and 2000 kHz to cause acoustic cavitation in solvent -Sound waves rupture plant cell walls releasing EO -Can use range of solvents at temperatures from ambient to 90 °C 	<ul style="list-style-type: none"> -Rapid extraction -Reduced solvent consumption -High yields -Suitable for thermally sensitive compounds -Disruption of weak hydrogen bounds; Environmentally friendly; Various techniques available. 	<ul style="list-style-type: none"> -Limited to small-scale applications -High equipment cost.
Supercritical Fluid Extraction	<ul style="list-style-type: none"> -Uses properties of both liquid and gaseous phase at critical point -Supercritical fluid passed through plant material repeatedly to extract EO -Extracted EO removed from supercritical fluid by decompression -Gas captured for reuse -Efficacy affected by matrix nature, particle size, and water content -Carbon dioxide widely used (critical conditions: 31.1 °C and 7.38 MPa) 	<ul style="list-style-type: none"> -Rapid extraction -Selective extraction -High yields -Environmentally friendly -Low operating cost -High extraction efficiency -Fractionation capability; -Health and safety benefits of using supercritical carbon dioxide -Beneficial chemical properties such as high diffusivity, low viscosity, tunable density and dielectric constant. 	<ul style="list-style-type: none"> -Risk of carbon dioxide retention in the operator's blood -Challenges in high-pressure industrial operations

Methods	Process	Advantages	Disadvantages
Molecular distillation	<ul style="list-style-type: none"> -Operates under high vacuum and low temperature -Plant extract spread in thin film on heated surface -Molecules with lower boiling points evaporate first and are collected on cooled surface -Allows separation and concentration of specific compounds 	<ul style="list-style-type: none"> -Ability to fractionate and concentrate valuable essential oil components -Potential for high purity extracts/fractions -Mild conditions protect thermally labile compounds 	<ul style="list-style-type: none"> -Added complexity and equipment requirements -Multiple distillation steps required -Relatively low throughput may limit scalability
Fractional distillation	<ul style="list-style-type: none"> -EOs heated in column -As temperature increases, different compounds vaporize at respective boiling points -Vapors rise through column and are collected at different levels based on volatility -Allows separation of various oil components 		

The table is adapted from references [260–262].

Appendix A.2. Comparison Between Conventional and Advanced Methods of EOs Extraction

Description	Conventional Methods	Advanced Methods
Methods	Hydrodistillation, steam distillation, cold pressing, solvent extraction	Microwave-assisted, ultrasound-assisted, enzyme-assisted, ohmic-assisted, membrane-assisted extraction
Industrial Use	Widely used, especially hydrodistillation and steam distillation	Gaining traction due to advantages over conventional methods
Energy Consumption	High	Generally lower
Extraction Efficiency	Lower	Higher
Extraction Rate	Slower	Faster
Effect on Heat-Sensitive Compounds	Can be detrimental	Generally milder, better preservation
Volatile Compound Loss	Potential for significant loss	Minimal loss
Environmental Impact	Higher (more energy, potential toxic residues)	Lower (reduced energy, less or no solvent use, lower CO ₂ emissions)
Solvent Use	Some methods require solvents	Reduced or no solvent use in many techniques
Selectivity	Lower	Higher selectivity for targeted compounds
Complexity	Simpler, well-established	More complex, may require optimization
Cost	Lower initial costs, but potentially higher operating costs	Higher initial costs (equipment), but potentially lower operating costs
Quality and Purity of EOs	Can be affected by heat and processing	Generally higher
Research and Development Needs	Well-established	Require more R&D for optimization
Flexibility	Less flexible, more standardized	

References

1. World Health Organization (WHO). Ten Threats to Global Health in 2019. 2024. Available online: <https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019> (accessed on 7 November 2025).
2. Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; da Silva, D.D. An overview of the recent advances in antimicrobial resistance. *Microorganisms* **2024**, *12*, 1920. [\[CrossRef\]](#)
3. Mallari, P.; Rostami, L.D.; Alanko, I.; Howaili, F.; Ran, M.; Bansal, K.K.; Rosenholm, J.M.; Salo-Ahen, O.M. The Next Frontier: Unveiling Novel Approaches for Combating Multidrug-Resistant Bacteria. *Pharm. Res.* **2025**, *42*, 859–889. [\[CrossRef\]](#)
4. Niño-Vega, G.A.; Ortiz-Ramírez, J.A.; López-Romero, E. Novel Antibacterial Approaches and Therapeutic Strategies. *Antibiotics* **2025**, *14*, 404. [\[CrossRef\]](#)
5. Blaskovich, M.A.; Cooper, M.A. Antibiotics re-booted—Time to kick back against drug resistance. *npj Antimicrob. Resist.* **2025**, *3*, 47.
6. Yarahmadi, A.; Najafiyan, H.; Yousefi, M.H.; Khosravi, E.; Shabani, E.; Afkhami, H.; Aghaei, S.S. Beyond antibiotics: Exploring multifaceted approaches to combat bacterial resistance in the modern era: A comprehensive review. *Front. Cell. Infect. Microbiol.* **2025**, *15*, 1493915.
7. Cardona, S.T.; Rahman, A.Z.; Novomisky Nechcoff, J. Innovative perspectives on the discovery of small molecule antibiotics. *npj Antimicrob. Resist.* **2025**, *3*, 19. [\[CrossRef\]](#)
8. Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. *Antibiotics* **2022**, *11*, 200. [\[CrossRef\]](#)
9. Iskandar, K.; Murugaiyan, J.; Hammoudi Halat, D.; Hage, S.E.; Chibabhai, V.; Adukkadukkam, S.; Salameh, P.; Van Dongen, M. Antibiotic discovery and resistance: The chase and the race. *Antibiotics* **2022**, *11*, 182. [\[CrossRef\]](#) [\[PubMed\]](#)
10. Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. *Open Microbiol. J.* **2014**, *8*, 6–14. [\[CrossRef\]](#) [\[PubMed\]](#)
11. WHO Bacterial Priority Pathogens List, 2024: *Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance*; World Health Organization: Geneva, Switzerland, 2024.
12. Lahmar, A.; Bedoui, A.; Mokdad-Bzeouich, I.; Dhaouifi, Z.; Kalboussi, Z.; Cheraif, I.; Ghedira, K.; Chekir-Ghedira, L. Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. *Microb. Pathog.* **2017**, *106*, 50–59. [\[CrossRef\]](#)
13. Romanescu, M.; Oprean, C.; Lombrea, A.; Badescu, B.A.T.; Constantin, G.D. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. *Int. J. Mol. Sci.* **2023**, *24*, 9727. [\[PubMed\]](#)
14. Badescu, B.; Buda, V.; Romanescu, M.; Lombrea, A.; Danciu, C.; Dalleur, O.; Dohou, A.M.; Dumitrascu, V.; Cretu, O.; Licker, M.; et al. Current state of knowledge regarding WHO critical priority pathogens: Mechanisms of resistance and proposed solutions through candidates such as essential oils. *Plants* **2022**, *11*, 1789. [\[CrossRef\]](#)
15. Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. *Evid. Based Complement. Altern. Med.* **2016**, *2016*, 3012462.
16. Trifan, A.; Luca, S.V.; Greige-Gerges, H.; Miron, A.; Gille, E.; Aprotosoaie, A.C. Recent advances in tackling microbial multidrug resistance with essential oils: Combinatorial and nano-based strategies. *Crit. Rev. Microbiol.* **2020**, *46*, 338–357. [\[CrossRef\]](#)
17. Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. *Medicines* **2017**, *4*, 58. [\[CrossRef\]](#)
18. Dhara, L.; Tripathi, A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic *Enterobacteriaceae*. *J. Appl. Microbiol.* **2020**, *129*, 1566–1576.
19. Dhara, L.; Tripathi, A. Cinnamaldehyde: A compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic *Enterobacteriaceae*. *Eur. J. Clin. Microbiol. Infect. Dis.* **2020**, *39*, 65–73.
20. Knezevic, P.; Aleksic, V.; Simin, N.; Svircev, E.; Petrovic, A.; Mimica-Dukic, N. Antimicrobial activity of *Eucalyptus camaldulensis* essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant *Acinetobacter baumannii*. *J. Ethnopharmacol.* **2016**, *178*, 125–136. [\[CrossRef\]](#)
21. Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pagès, J.M.; Amaral, L. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. *Antimicrob. Agents Chemother.* **2009**, *53*, 2209–2211.
22. Owen, L.; Laird, K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. *Crit. Rev. Microbiol.* **2018**, *44*, 414–435. [\[CrossRef\]](#)
23. Köse, E.O. In vitro activity of carvacrol in combination with meropenem against carbapenem-resistant *Klebsiella pneumoniae*. *Folia Microbiol. Praha* **2022**, *67*, 143–156. [\[CrossRef\]](#)
24. Ben Miri, Y. Essential Oils: Chemical Composition and Diverse Biological Activities: A Comprehensive Review. *Nat. Prod. Commun.* **2025**, *20*, 1934578X241311790. [\[CrossRef\]](#)

25. Siddiqui, T.; Khan, M.U.; Sharma, V.; Gupta, K. Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. *Phytomedicine Plus* **2024**, *4*, 100549. [\[CrossRef\]](#)
26. Mráz, P.; Kopecký, M.; Hasoňová, L.; Hoštičková, I.; Vaníčková, A.; Perná, K.; Žabka, M.; Hýbl, M. Antibacterial Activity and Chemical Composition of Popular Plant Essential Oils and Their Positive Interactions in Combination. *Molecules* **2025**, *30*, 1864. [\[CrossRef\]](#)
27. Khwaza, V.; Aderibigbe, B.A. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. *Antibiotics* **2025**, *14*, 68. [\[CrossRef\]](#)
28. Maćzka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol—A natural phenolic compound with antimicrobial properties. *Antibiotics* **2023**, *12*, 824. [\[CrossRef\]](#)
29. Coque, T.M.; Cantón, R.; Pérez-Cobas, A.E.; Fernández-de-Bobadilla, M.D.; Baquero, F. Antimicrobial resistance in the global health network: Known unknowns and challenges for efficient responses in the 21st century. *Microorganisms* **2023**, *11*, 1050. [\[CrossRef\]](#)
30. Visan, D.C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original contributions to the chemical composition, microbicidal, virulence-arresting and antibiotic-enhancing activity of essential oils from four coniferous species. *Pharmaceuticals* **2021**, *14*, 1159. [\[CrossRef\]](#)
31. Bunse, M.; Daniels, R.; Gründemann, C.; Heilmann, J.; Kammerer, D.R.; Keusgen, M. Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being. *Front. Pharmacol.* **2022**, *13*, 956541. [\[CrossRef\]](#) [\[PubMed\]](#)
32. Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. *Antibiotics* **2021**, *10*, 417. [\[CrossRef\]](#)
33. Naja, F.; Hamadeh, R.; Alameddine, M. Regulatory frameworks for a safe and effective use of essential oils: A critical appraisal. *Adv. Biomed. Health Sci.* **2022**, *1*, 7–12.
34. Osaili, T.M.; Dhanasekaran, D.K.; Zeb, F.; Faris, M.E.; Naja, F.; Radwan, H. A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. *Molecules* **2023**, *28*, 1809. [\[CrossRef\]](#)
35. Lu, M.; Dai, T.; Murray, C.K.; Wu, M.X. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates. *Front. Microbiol.* **2018**, *9*, 2329. [\[CrossRef\]](#)
36. Sakkas, H.; Gousia, P.; Economou, V.; Sakkas, V.; Petsios, S.; Papadopoulou, C. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates. *J. Intercult. Ethnopharmacol.* **2016**, *5*, 212–218.
37. Silva, E.; Teixeira, J.A.; Pereira, M.O.; Rocha, C.M.R.; Sousa, A.M. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. *Phytomedicine* **2023**, *119*, 154973. [\[CrossRef\]](#)
38. Trentin, D.S.; Silva, D.B.; Frasson, A.P.; Rzhepishevska, O.; Silva, M.V. LPE Natural Green coating inhibits adhesion of clinically important bacteria. *Sci. Rep.* **2015**, *5*, 8287.
39. Zouirech, O.; Alyousef, A.A.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Ouahmane, L.; Giesy, J.P.; Aboul-Soud, M.A.M.; Lyoussi, B.; et al. Phytochemical analysis and antioxidant, antibacterial, and antifungal effects of essential oil of black caraway (*Nigella sativa* L.) seeds against drug-resistant clinically pathogenic microorganisms. *BioMed. Res. Int.* **2022**, *2022*, 5218950. [\[CrossRef\]](#)
40. Kafa, A.H.T.; Aslan, R.; Celik, C.; Hasbek, M. Antimicrobial synergism and antibiofilm activities of *Pelargonium graveolens*, *Rosemary officinalis*, and *Mentha piperita* essential oils against extreme drug-resistant *Acinetobacter baumannii* clinical isolates. *Z. Für Naturforschung C* **2022**, *77*, 95–104.
41. Vasireddy, L.; Bingle, L.E.H.; Davies, M.S. Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. *PLoS ONE* **2018**, *13*, e0201835.
42. Mahmoudi, H.; Shokohizadeh, L.; Zare Fahim, N.; Mohamadi Bardebari, A.; Moradkhani, S.; Alikhani, M.Y. Detection of adeABC efflux pump encoding genes and antimicrobial effect of *Mentha longifolia* and Menthol on MICs of imipenem and ciprofloxacin in clinical isolates of *Acinetobacter baumannii*. *BMC Complement. Med. Ther.* **2020**, *20*, 92. [\[CrossRef\]](#)
43. Magi, G.; Marini, E.; Facinelli, B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. *Front. Microbiol.* **2015**, *6*, 165. [\[CrossRef\]](#)
44. Alibi, S.; Ben Selma, W.; Ramos-Vivas, J.; Smach, M.A.; Touati, R.; Boukadida, J. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. *Curr. Res. Transl. Med.* **2020**, *68*, 59–66. [\[CrossRef\]](#)
45. Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. *Microb. Pathog.* **2019**, *134*, 103580. [\[CrossRef\]](#)
46. Hentzer, M.; Wu, H.; Andersen, J.B.; Riedel, K.; Rasmussen, T.B.; Bagge, N. Attenuation of *Pseudomonas aeruginosa* virulence by quorum sensing inhibitors. *EMBO J.* **2003**, *22*, 3803–3815. [\[CrossRef\]](#)
47. Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of *Pseudomonas aeruginosa* biofilms to antimicrobial agents—How *P. aeruginosa* can escape antibiotics. *Front. Microbiol.* **2019**, *3*, 913. [\[CrossRef\]](#)

48. Reichling, J. Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. *Planta. Med.* **2020**, *86*, 520–537. [\[CrossRef\]](#)
49. Zeng, W.C.; Zhu, R.X.; Jia, L.R.; Gao, H.; Zheng, Y.; Sun, Q. Chemical composition, antimicrobial and antioxidant activities of essential oil from *Gnaphlrium affine*. *Food Chem. Toxicol.* **2011**, *49*, 1322–1328. [\[CrossRef\]](#)
50. Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial effects and mode of action of selected essential oils components against *Escherichia coli* and *Staphylococcus aureus*. *Evid. Based Complement. Altern. Med.* **2015**, *2015*, 795435. [\[CrossRef\]](#)
51. Gill, A.O.; Holley, R.A. Inhibition of membrane bound ATPases of *Escherichia coli* and *Listeria monocytogenes* by plant oil aromatics. *Int. J. Food Microbiol.* **2006**, *111*, 170–174. [\[CrossRef\]](#)
52. Kang, J.; Liu, L.; Wu, X.; Sun, Y.; Liu, Z. Effect of thyme essential oil against *Bacillus cereus* planktonic growth and biofilm formation. *Appl. Microbiol. Biotechnol.* **2018**, *102*, 10209–10218. [\[CrossRef\]](#)
53. Lee, C.K.; Anda Jd Baker, A.E.; Bennett, R.R.; Luo, Y.; Lee, E.Y. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. *Proc. Natl. Acad. Sci. USA* **2018**, *115*, 4471–4476. [\[CrossRef\]](#)
54. Armbruster, C.R.; Parsek, M.R. New insight into the early stages of biofilm formation. *Proc. Natl. Acad. Sci. USA* **2018**, *115*, 4317–4319. [\[CrossRef\]](#) [\[PubMed\]](#)
55. Rasmussen, T.B.; Givskov, M. Quorum sensing inhibitors: A bargain of effects. *Microbiology* **2006**, *152*, 895–904. [\[CrossRef\]](#) [\[PubMed\]](#)
56. Cáceres, M.; Hidalgo, W.; Stashenko, E.E.; Torres, R.; Ortiz, C. Metabolomic Analysis of the Effect of *Lippia origanoides* Essential Oil on the Inhibition of Quorum Sensing in *Chromobacterium violaceum*. *Antibiotics* **2023**, *12*, 814. [\[CrossRef\]](#)
57. Andersen, J.B.; Kragh, K.N.; Hultqvist, L.D.; Rybtke, M.; Nilsson, M.; Jakobsen, T.H. Induction of native c-di-GMP phosphodiesterases leads to dispersal of *Pseudomonas aeruginosa* biofilms. *Antimicrob. Agents Chemother.* **2021**, *65*, e02431-20. [\[CrossRef\]](#)
58. Alva, P.P.; Suresh, S.; Nanjappa, D.P.; James, J.P.; Kaverikana, R.; Chakraborty, A. Isolation and identification of quorum sensing antagonist from *Cinnamomum verum* leaves against *Pseudomonas aeruginosa*. *Life Sci.* **2021**, *267*, 118878. [\[CrossRef\]](#)
59. Sambyal, S.S.; Sharma, P.; Shrivastava, D. Anti-biofilm Activity of Selected Plant Essential Oils against *Pseudomonas aeruginosa* and *Staphylococcus aureus*. *Int. J. Curr. Microbiol. Appl. Sci.* **2017**, *6*, 444–450. [\[CrossRef\]](#)
60. Noumi, E.; Merghni, A.; Alreshidi, M.; Haddad, O.; Akmadar, G.; De Martino, L.; Mastouri, M.; Ceylan, O.; Snoussi, M.; Al-Sieni, A.; et al. Chromobacterium violaceum and *Pseudomonas aeruginosa* PAO1: Models for Evaluating Anti-Quorum Sensing Activity of *Melaleuca alternifolia* Essential Oil and Its Main Component Terpinen-4-ol. *Molecules* **2018**, *23*, 2672. [\[CrossRef\]](#)
61. Wang, B.; Wei, P.W.; Wan, S.; Yao, Y.; Song, C.R.; Song, P.P. Ginkgo biloba exocarp extracts inhibit *S. aureus* and MRSA by disrupting biofilms and affecting gene expression. *J. Ethnopharmacol.* **2021**, *271*, 113895. [\[CrossRef\]](#)
62. Maisuria, V.B.; Hosseiniidoust, Z.; Tufenkji, N. Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. *Appl. Environ. Microbiol.* **2015**, *81*, 3782–3792. [\[CrossRef\]](#)
63. Jafri, H.; Husain, F.M.; Ahmad, I. Antibacterial and antibiofilm activity of some essential oils and compounds against clinical strains of *Staphylococcus aureus*. *J. Biomed. Ther. Sci.* **2014**, *1*, 65–71.
64. Tullio, V.; Roana, J.; Cavallo, L.; Mandras, N. Immune defences: A view from the side of the essential oils. *Molecules* **2023**, *28*, 435. [\[CrossRef\]](#)
65. Sandner, G.; Heckmann, M.; Weghuber, J. Immunomodulatory activities of selected essential oils. *Biomolecules* **2020**, *10*, 1139. [\[CrossRef\]](#) [\[PubMed\]](#)
66. Grazul, M.; Kwiatkowski, P.; Hartman, K.; Kilanowicz, A.; Sienkiewicz, M. How to naturally support the immune system in inflammation—Essential oils as immune boosters. *Biomedicines* **2023**, *11*, 2381. [\[CrossRef\]](#)
67. Serafino, A.; Vallebona, P.S.; Andreola, F.; Zonfrillo, M.; Mercuri, L.; Federici, M.; Rasi, G.; Garaci, E.; Pierimarchi, P. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response. *BMC Immunol.* **2008**, *9*, 17. [\[CrossRef\]](#) [\[PubMed\]](#)
68. Peterfalvi, A.; Miko, E.; Nagy, T.; Reger, B.; Simon, D.; Miseta, A.; Czéh, B.; Szeregy, L. Much more than a pleasant scent: A review on essential oils supporting the immune system. *Molecules* **2019**, *24*, 4530. [\[CrossRef\]](#)
69. Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential oils of *Origanum compactum* increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. *J. Pharm. Anal.* **2019**, *9*, 301–311. [\[CrossRef\]](#)
70. Bouyahya, A.; Chamkhi, I.; Balahbib, A.; Rebezov, M.; Shariati, M.A.; Wilairatana, P.; Mubarak, M.S.; Benali, T.; El Omari, N. Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: A comprehensive review. *Molecules* **2022**, *27*, 1484. [\[CrossRef\]](#)
71. Wang, W.; Huang, X.; Yang, H.; Niu, X.; Li, D.; Yang, C. Antibacterial activity and anti-quorum sensing mediated phenotype in response to essential oil from *Melaleuca bracteata* leaves. *Int. J. Mol. Sci.* **2019**, *20*, 5696. [\[CrossRef\]](#)
72. Choi, N.Y.; Kang, S.Y.; Kim, K.J. Artemisia princeps inhibits biofilm formation and virulence-factor expression of antibiotic-resistant bacteria. *BioMed. Res. Int.* **2015**, *2015*, 239519. [\[CrossRef\]](#)
73. Khan, M.S.A.; Zahin, M.; Hasan, S.; Husain, F.M.; Ahmad, I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. *Lett. Appl. Microbiol.* **2009**, *49*, 354–360. [\[CrossRef\]](#)

74. Husain, F.M.; Ahmad, I.; Asif, M.; Tahseen, Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of *Pseudomonas aeruginosa* and *Aeromonas hydrophila*. *J. Biosci.* **2013**, *38*, 835–844. [\[CrossRef\]](#)
75. Husain, F.M.; Ahmad, I.; Khan, M.S.; Ahmad, E.; Tahseen, Q.; Khan, M.S.; Alshabib, N. Sub-MICs of *Mentha piperita* essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. *Front. Microbiol.* **2015**, *6*, 420. [\[CrossRef\]](#)
76. Ahmad, A.; Viljoen, A.M.; Chenia, H.Y. The impact of plant volatiles on bacterial quorum sensing. *Lett. Appl. Microbiol.* **2014**, *60*, 8–19. [\[CrossRef\]](#)
77. Schelz, Z.; Molnar, J.; Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. *Fitoterapia* **2006**, *77*, 279–285. [\[CrossRef\]](#) [\[PubMed\]](#)
78. Hemaiswarya, S.; Soudamini, R.; Narasumani, M.L.; Doble, M. Phenylpropanoids inhibit protofilament formation of *Escherichia coli* cell division protein FtsZ. *J. Med. Microbiol.* **2011**, *60*, 1317–1325. [\[CrossRef\]](#) [\[PubMed\]](#)
79. Horváth, P.; Koščová, J. In vitro antibacterial activity of *Mentha* essential oils against *Staphylococcus aureus*. *Folia. Vet.* **2017**, *61*, 71–77. [\[CrossRef\]](#)
80. Wang, L.H.; Wang, M.S.; Zeng, X.A.; Gong, D.-M.; Huang, Y.-B. An in vitro investigation of the inhibitory mechanism of β -galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol. *Biochim. Biophys. Acta* **2017**, *1861*, 3189–3198. [\[CrossRef\]](#)
81. Luqman, S.; Dwivedi, G.R.; Darokar, M.P.; Kalra, A.; Khanuja, S.P. Potential of rosemary oil to be used in drug-resistant infections. *Altern. Ther. Health Med.* **2007**, *13*, 54–59.
82. Nikolić, M.; Jovanović, K.K.; Marković, T.; Marković, D.; Gligorijević, N.; Radulović, S.; Soković, M. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. *Ind. Crops Prod.* **2014**, *61*, 225–232. [\[CrossRef\]](#)
83. D'Aquila, P.; Paparazzo, E.; Crudo, M.; Bonacci, S.; Procopio, A.; Passarino, G.; Bellizzi, D. Antibacterial activity and epigenetic remodeling of essential oils from calabrian aromatic plants. *Nutrients* **2022**, *14*, 391. [\[CrossRef\]](#)
84. Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Diaz, J.; Gil, A. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. *Nutrients* **2019**, *11*, 2786. [\[CrossRef\]](#)
85. Yang, S.K.; Yap, P.S.X.; Krishnan, T.; Yusoff, K.; Chan, K.G.; Yap, W.S.; Lai, K.-S.; Lim, S.-H.E. Mode of action: Synergistic interaction of peppermint [*Mentha × piperita* L. Carl] essential oil and meropenem against plasmid-mediated resistant *E. coli*. *Rec. Nat. Prod.* **2018**, *12*, 582–594. [\[CrossRef\]](#)
86. Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. *Sci. Rep.* **2017**, *7*, 8211. [\[CrossRef\]](#) [\[PubMed\]](#)
87. Zani, F.; Massimo, G.; Benvenuti, S.; Bianchi, A.; Albasini, A.; Melegari, M.; Vampa, G.; Bellotti, A.; Mazza, P. Studies on the genotoxic properties of essential oils with *Bacillus subtilis* rec-assay and *Salmonella*/microsome reversion assay. *Planta Medica* **1991**, *57*, 237–241. [\[CrossRef\]](#) [\[PubMed\]](#)
88. Kong, A.S.Y.; Maran, S.; Yap, P.S.X.; Lim, S.H.E.; Yang, S.K.; Cheng, W.H.; Tan, Y.-H.; Lai, K.-S. Anti-and pro-oxidant properties of essential oils against antimicrobial resistance. *Antioxidants* **2022**, *11*, 1819. [\[CrossRef\]](#)
89. Yang, S.K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Akseer, R. Disruption of KPC-producing *Klebsiella pneumoniae* membrane via induction of oxidative stress by cinnamon bark [*Cinnamomum verum* J. Presl] essential oil. *PLoS ONE* **2019**, *14*, e0214326. [\[CrossRef\]](#)
90. Bowbe, K.H.; Salah, K.B.H.; Moumni, S.; Ashkan, M.F.; Merghni, A. Anti-staphylococcal activities of *rosmarinus officinalis* and *myrtus communis* essential oils through ROS-mediated oxidative stress. *Antibiotics* **2023**, *12*, 266. [\[CrossRef\]](#)
91. Borges-Walmsley, M.I.; McKeegan, K.S.; Walmsley, A.R. Structure and function of efflux pumps that confer resistance to drugs. *Biochem. J.* **2003**, *376*, 313–338. [\[CrossRef\]](#)
92. Coșeriu, R.L.; Vintilă, C.; Pribac, M.; Mare, A.D.; Ciurea, C.N.; Togănel, R.O.; Simion, A.; Man, A. Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant *Pseudomonas aeruginosa* Clinical Isolates: Is Cinnamon a Good Fighter? *Antibiotics* **2023**, *12*, 163. [\[CrossRef\]](#)
93. Alenazy, R. Identification of Potential Therapeutics of *Mentha* Essential Oil Content as Antibacterial MDR Agents against AcrAB-TolC Multidrug Efflux Pump from *Escherichia coli*: An In Silico Exploration. *Life* **2024**, *14*, 610. [\[CrossRef\]](#)
94. Costa, S.S.; Sobkowiak, B.; Parreira, R.; Edgeworth, J.D.; Viveiros, M.; Clark, T.G.; Couto, I. Genetic diversity of norA, coding for a main efflux pump of *Staphylococcus aureus*. *Front. Genet.* **2018**, *9*, 710. [\[CrossRef\]](#)
95. Salehzadeh, A.; Doulabi, M.S.H.; Sohrabnia, B.; Jalali, A. The effect of thyme (*Thymus vulgaris*) extract on the expression of norA efflux pump gene in clinical strains of *Staphylococcus aureus*. *J. Genet. Resour.* **2018**, *4*, 26–36. [\[CrossRef\]](#)
96. Ghafari, O.; Sharifi, A.; Ahmadi, A.; Nayeri Fasaei, B. Antibacterial and anti-PmrA activity of plant essential oils against fluoroquinolone-resistant *Streptococcus pneumoniae* clinical isolates. *Lett. Appl. Microbiol.* **2018**, *67*, 564–569. [\[CrossRef\]](#)
97. El-Baky, R.M.A.; Hashem, Z.S. Eugenol and linalool: Comparison of their antibacterial and antifungal activities. *Afr. J. Microbiol. Res.* **2016**, *10*, 1860–1872. [\[CrossRef\]](#)

98. Scherf, J.R.; Dos Santos, C.R.B.; Freitas, T.S.; Rocha, J.E.; Macêdo, N.S.; Lima, J.N.M.; Coutinho, H.D.M.; da Cunha, F.A.B. Effect of terpinolene against the resistant *Staphylococcus aureus* strain, carrier of the efflux pump QacC and β -lactamase gene, and its toxicity in the *Drosophila melanogaster* model. *Microb. Pathog.* **2020**, *149*, 104528. [\[CrossRef\]](#) [\[PubMed\]](#)
99. Khalil, Y.J.; Saadedin, S.M.K. Pharmaceutical Design Using a Combination of Cephalosporin Antibiotic and Ginger Essential Oil as Beta-Lactamase Inhibitors Against UTI *Escherichia coli*. *Revis. Bionatura* **2021**, *7*, 19.
100. Souza, G.H.D.A.; Santos Radai, J.A.; Mattos Vaz, M.S.; Silva, K.; Fraga, T.L.; Barbosa, L.S.; Simionatto, S. In vitro and in vivo antibacterial activity assays of carvacrol: A candidate for development of innovative treatments against KPC-producing *Klebsiella pneumoniae*. *PLoS ONE* **2021**, *16*, e0246003. [\[CrossRef\]](#) [\[PubMed\]](#)
101. Sheng, L.; Rasco, B.; Zhu, M.J. Cinnamon oil inhibits Shiga toxin type 2 phage induction and Shiga toxin type 2 production in *Escherichia coli* O157:H7. *Appl. Environ. Microbiol.* **2016**, *82*, 6531–6540. [\[CrossRef\]](#)
102. Qaralleh, H. Thymol rich *Thymbra capitata* essential oil inhibits quorum sensing, virulence and biofilm formation of beta lactamase producing *Pseudomonas aeruginosa*. *Nat. Prod. Sci.* **2019**, *25*, 172–180. [\[CrossRef\]](#)
103. Upadhyay, A.; Arsi, K.; Wagle, B.R.; Upadhyaya, I.; Shrestha, S.; Donoghue, A.M.; Donoghue, D.J. Trans-cinnamaldehyde, carvacrol, and eugenol reduce *Campylobacter jejuni* colonization factors and expression of virulence genes in vitro. *Front. Microbiol.* **2017**, *8*, 713. [\[CrossRef\]](#) [\[PubMed\]](#)
104. Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J.A. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in *Escherichia coli* O157:H7. *Appl. Environ. Microbiol.* **2007**, *73*, 4484–4490. [\[CrossRef\]](#)
105. Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. *Molecules* **2019**, *24*, 2471. [\[CrossRef\]](#)
106. Selmi, S.; Rtibi, K.; Hosni, K.; Sebai, H. Essential Oil, Chemical Compositions, and Therapeutic Potential. In *Essential Oils-Advances in Extractions and Biological Applications*; IntechOpen: London, UK, 2022.
107. de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. *Biomolecules* **2023**, *13*, 1144. [\[CrossRef\]](#) [\[PubMed\]](#)
108. Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Lim, S.E.; Lai, K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. *Molecules* **2019**, *24*, 2631. [\[CrossRef\]](#)
109. Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils. *Evid. Based Complement. Altern. Med.* **2016**, *2016*, 2547169.
110. Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Al-Sadi, A.M. Biosynthesis of essential oils in aromatic plants: A review. *Food Rev. Int.* **2016**, *32*, 117–160. [\[CrossRef\]](#)
111. Kosari, F.; Taheri, M.; Moradi, A.; Hakimi Alni, R.; Alikhani, M.Y. Evaluation of cinnamon extract effects on *clbB* gene expression and biofilm formation in *Escherichia coli* strains isolated from colon cancer patients. *BMC Cancer* **2020**, *20*, 267. [\[CrossRef\]](#)
112. Abdelatti, M.A.I.; Abd El-Aziz, N.K.; El-Naenaeey, E.Y.M.; Ammar, A.M.; Alharbi, N.K.; Alharthi, A. Antibacterial and Anti-Efflux Activities of Cinnamon Essential Oil against Pan and Extensive Drug-Resistant *Pseudomonas aeruginosa* Isolated from Human and Animal Sources. *Antibiotics* **2023**, *12*, 1514.
113. Foda, A.M.; Kalaba, M.H.; El-Sherbiny, G.M.; Moghannem, S.A.; El-Fakharany, E.M. Antibacterial activity of essential oils for combating colistin-resistant bacteria. *Expert. Rev. Anti. Infect. Ther.* **2022**, *20*, 1351–1364.
114. Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant *Pseudomonas aeruginosa* and the synergistic effects in combination with other antimicrobial agents. *BMC Complement. Altern. Med.* **2016**, *16*, 158. [\[CrossRef\]](#) [\[PubMed\]](#)
115. Vasconcelos, N.G.; Queiroz, J.H.F.d.S.; da Silva, K.E.; Vasconcelos, P.C.d.P.; Croda, J.; Simionatto, S. Synergistic effects of *Cinnamomum cassia* L. essential oil in combination with polymyxin B against carbapenemase-producing *Klebsiella pneumoniae* and *Serratia marcescens*. *PLoS ONE* **2020**, *15*, e0236505.
116. Vasconcelos, N.G.; Silva, K.E.; Croda, J.; Simionatto, S. Antibacterial activity of *Cinnamomum cassia* L. essential oil in a carbapenem- and polymyxin-resistant *Klebsiella aerogenes* strain. *Rev. Soc. Bras. Med. Trop.* **2020**, *53*, e20200032. [\[CrossRef\]](#)
117. Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant *Helicobacter pylori*. *Molecules* **2023**, *28*, 2448. [\[CrossRef\]](#)
118. Kovács, J.K.; Felső, P.; Makszin, L.; Pápai, Z.; Horváth, G.; Ábrahám, H. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen *Campylobacter jejuni*. *Appl. Environ. Microbiol.* **2016**, *82*, 6158–6166. [\[CrossRef\]](#)
119. Rinaldi, F.; Oliva, A.; Sabatino, M.; Imbriano, A.; Hanieh, P.N.; Garzoli, S.; Mastroianni, C.M.; De Angelis, M.; Miele, M.C.; Arnaut, M.; et al. Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery. *Pharmaceutics* **2020**, *12*, 678. [\[CrossRef\]](#)
120. Emeka, L.B.; Emeka, P.M.; Khan, T.M. Antimicrobial activity of *Nigella sativa* L. seed oil against multi-drug resistant *Staphylococcus aureus* isolated from diabetic wounds. *Pak. J. Pharm. Sci.* **2015**, *28*, 1985–1990.

121. Ugur, A.R.; Dagi, H.T.; Ozturk, B.; Tekin, G.; Findik, D. Assessment of in vitro antibacterial activity and cytotoxicity effect of *Nigella sativa* oil. *Pharmacogn. Mag.* **2016**, *12*, S471–S474. [\[CrossRef\]](#)
122. Scazzocchio, F.; Mondì, L.; Ammendolia, M.G.; Goldoni, P.; Comanducci, A.; Marazzato, M. Coriander [*Coriandrum sativum*]. Essential Oil: Effect on Multidrug Resistant Uropathogenic *Escherichia coli*. *Nat. Prod. Commun.* **2017**, *12*, 623–626. [\[CrossRef\]](#) [\[PubMed\]](#)
123. Zenati, F.; Benbelaid, F.; Khadir, A.; Bellahsene, C.; Bendahou, M. Antimicrobial effects of three essential oils on multidrug resistant bacteria responsible for urinary infections. *J. Appl. Pharm. Sci.* **2014**, *4*, 015–018. [\[CrossRef\]](#)
124. Sienkiewicz, M.; Poznańska-Kurowska, K.; Kaszuba, A.; Kowalczyk, E. The antibacterial activity of geranium oil against Gram-negative bacteria isolated from difficult-to-heal wounds. *Burns* **2014**, *40*, 1046–1051.
125. El-Shouny, W.A.; Ali, S.S.; Sun, J.; Samy, S.M.; Ali, A. Drug resistance profile and molecular characterization of extended spectrum beta-lactamase (ES β L)-producing *Pseudomonas aeruginosa* isolated from burn wound infections. Essential oils and their potential for utilization. *Microb. Pathog.* **2018**, *116*, 301–312. [\[CrossRef\]](#)
126. Khosakueng, M.; Taweechaisupapong, S.; Boonyanugomol, W.; Prapatpong, P.; Wongkaewkhiaw, S.; Kanthawong, S. *Cymbopogon citratus* L. essential oil as a potential anti-biofilm agent active against antibiotic-resistant bacteria isolated from chronic rhinosinusitis patients. *Biofouling* **2024**, *40*, 26–39.
127. Schweitzer, B.; Balázs, V.L.; Molnár, S.; Szögi-Tatár, B.; Böszörményi, A.; Palkovics, T.; Horváth, G.; Schneider, G. Antibacterial Effect of Lemongrass (*Cymbopogon citratus*) against the Aetiological Agents of Pitted Keratolyis. *Molecules* **2022**, *27*, 1423. [\[CrossRef\]](#) [\[PubMed\]](#)
128. Muntean, D.; Licker, M.; Alexa, E.; Popescu, I.; Jianu, C.; Buda, V.; Dehelean, C.A.; Ghiulai, R.; Horhat, F.; Horhat, D.; et al. Evaluation of essential oil obtained from *Mentha × piperita* L. against multidrug-resistant strains. *Infect. Drug Resist.* **2019**, *12*, 2905–2914.
129. Vasconcelos, N.G.; Croda, J.; Silva, K.E.; Motta, M.L.L.; Maciel, W.G.; Limiere, L.C.; Simionatto, S. *Origanum vulgare* L. essential oil inhibits the growth of carbapenem-resistant gram-negative bacteria. *Rev. Soc. Bras. Med. Trop.* **2019**, *52*, e20180502. [\[CrossRef\]](#) [\[PubMed\]](#)
130. Amaral, S.C.; Pruski, B.B.; De Freitas, S.B.; Allend, S.O.; Ferreira, M.R.A.; Moreira, C.; Pereira, D.I.B.; Junior, A.S.V.; Hartwig, D.D. *Origanum vulgare* essential oil: Antibacterial activities and synergistic effect with polymyxin B against multidrug-resistant *Acinetobacter baumannii*. *Mol. Biol. Rep.* **2020**, *47*, 9615–9625. [\[CrossRef\]](#)
131. Lee, J.-H.; Kim, Y.-G.; Lee, J. Carvacrol-rich oregano oil and thymol-rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic *Escherichia coli*. *J. Appl. Microbiol.* **2017**, *123*, 1420–1428. [\[CrossRef\]](#)
132. Kaskatepe, B.; Yıldız, S.S.; Kiyimci, M.E.; Yazgan, A.N.; Cesur, S.; Erdem, S.A. Chemical composition and antimicrobial activity of the commercial *Origanum onites* L. oil against nosocomial carbapenem resistant extended spectrum beta lactamase producer *Escherichia coli* isolates. *Acta Biol. Hung.* **2017**, *68*, 466–476. [\[CrossRef\]](#) [\[PubMed\]](#)
133. Aleksić, A.; Stojanović-Radić, Z.; Harmanus, C.; Kuijper, E.J.; Stojanović, P. In vitro anti-clostridial action and potential of the spice herbs essential oils to prevent biofilm formation of hypervirulent *Clostridioides difficile* strains isolated from hospitalized patients with CDI. *Anaerobe* **2022**, *76*, 102604. [\[CrossRef\]](#)
134. Al Zuhairi, J.J.M.J.; Kashi, F.J.; Rahimi-Moghaddam, A.; Yazdani, M. Antioxidant, cytotoxic and antibacterial activity of *Rosmarinus officinalis* L. essential oil against bacteria isolated from urinary tract infection. *Eur. J. Integr. Med.* **2020**, *38*, 101192. [\[CrossRef\]](#)
135. Lagha, R.; Ben Abdallah, F.; Al-Sarhan, B.O.; Al-Sodany, Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against *Escherichia coli* isolated from UTI patients. *Molecules* **2019**, *24*, 1161. [\[CrossRef\]](#)
136. Haines, R.R.; Putsathit, P.; Tai, A.S.; Hammer, K.A. Antimicrobial effects of *Melaleuca alternifolia* (tea tree) essential oil against biofilm-forming multidrug-resistant cystic fibrosis-associated *Pseudomonas aeruginosa* as a single agent and in combination with commonly nebulized antibiotics. *Lett. Appl. Microbiol.* **2022**, *75*, 578–587. [\[CrossRef\]](#) [\[PubMed\]](#)
137. Das, S.; Vishakha, K.; Banerjee, S.; Nag, D.; Ganguli, A. Exploring the antibacterial, antibiofilm, and antivirulence activities of tea tree oil-containing nanoemulsion against carbapenem-resistant *Serratia marcescens* associated infections. *Biofouling* **2022**, *38*, 100–117. [\[CrossRef\]](#) [\[PubMed\]](#)
138. Bouguenoun, W.; Benbelaid, F.; Mebarki, S.; Bouguenoun, I.; Boulmaiz, S.; Khadir, A.; Benziane, M.Y.; Bendahou, M.; Muselli, A. Selected antimicrobial essential oils to eradicate multi-drug resistant bacterial biofilms involved in human nosocomial infections. *Biofouling* **2023**, *39*, 816–829. [\[CrossRef\]](#) [\[PubMed\]](#)
139. Sharifi, A.; Mohammadzadeh, A.; Zahraei Salehi, T.; Mahmoodi, P. Antibacterial, antibiofilm and antiquorum sensing effects of *Thymus daenensis* and *Satureja hortensis* essential oils against *Staphylococcus aureus* isolates. *J. Appl. Microbiol.* **2018**, *124*, 379–388. [\[CrossRef\]](#)
140. Maida, I.; Lo Nstro, A.; Pesavento, G.; Barnabei, M.; Calonico, C.; Perrin, E. Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis. *Evid. Based Complement. Altern. Med.* **2014**, *2014*, 573518. [\[CrossRef\]](#)

141. Vasconcelos, N.G.; Mallmann, V.; Costa, É.R.; Simionatto, E.; Coutinho, E.J.; Silva, R.C. Antibacterial activity and synergism of the essential oil of *Nectandra megapotamica* [L.] flowers against OXA-23-producing *Acinetobacter baumannii*. *J. Essent. Oil Res.* **2020**, *32*, 260–268. [\[CrossRef\]](#)
142. Chovanová, R.; Mezovská, J.; Vaverková, Š.; Mikulášová, M. The inhibition the Tet(K) efflux pump of tetracycline resistant *Staphylococcus epidermidis* by essential oils from three *Salvia* species. *Lett. Appl. Microbiol.* **2015**, *61*, 58–62. [\[CrossRef\]](#)
143. Pejčić, M.; Stojanović-Radić, Z.; Genčić, M.; Dimitrijević, M.; Radulović, N. Anti-virulence potential of basil and sage essential oils: Inhibition of biofilm formation, motility and pyocyanin production of *Pseudomonas aeruginosa* isolates. *Food Chem. Toxicol.* **2020**, *141*, 111431. [\[CrossRef\]](#)
144. Fernandes, P.A.d.S.; Pereira, R.L.S.; dos Santos, A.T.L.; Coutinho, H.D.M.; Moraes-Braga, M.F.B.; da Silva, V.B.; Costa, A.R.; Generino, M.E.M.; de Oliveira, M.G.; de Menezes, S.A.; et al. Phytochemical Analysis, Antibacterial Activity and Modulating Effect of Essential Oil from *Syzygium cumini* (L.) Skeels. *Molecules* **2022**, *27*, 3281. [\[CrossRef\]](#)
145. Bekka-Hadji, F.; Bombarda, I.; Djoudi, F.; Bakour, S.; Touati, A. Chemical composition and synergistic potential of *Mentha pulegium* L. and *Artemisia herba alba* Asso. essential oils and antibiotic against multi-drug resistant bacteria. *Molecules* **2022**, *27*, 1095. [\[CrossRef\]](#)
146. Iseppi, R.; Di Cerbo, A.; Aloisi, P.; Manelli, M.; Pellesi, V.; Provenzano, C.; Camellini, S.; Messi, P.; Sabia, C. In Vitro Activity of Essential Oils Against Planktonic and Biofilm Cells of Extended-Spectrum β -Lactamase (ESBL)/Carbapenamase-Producing Gram-Negative Bacteria Involved in Human Nosocomial Infections. *Antibiotics* **2020**, *9*, 272. [\[CrossRef\]](#)
147. Yang, S.K.; Yusoff, K.; Mai, C.W.; Lim, W.M.; Yap, W.S.; Lim, S.H.E.; Lai, K.-S. Additivity vs. synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. *Molecules* **2017**, *22*, 1733. [\[CrossRef\]](#)
148. Kalia, M.; Yadav, V.K.; Singh, P.K.; Sharma, D.; Pandey, H.; Narvi, S.S. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in *Pseudomonas aeruginosa*. *PLoS ONE* **2015**, *10*, e0135495. [\[CrossRef\]](#) [\[PubMed\]](#)
149. Kim, Y.G.; Lee, J.H.; Kim, S.I.; Baek, K.H.; Lee, J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. *Int. J. Food Microbiol.* **2015**, *195*, 30–39. [\[CrossRef\]](#)
150. Wijesinghe, G.K.; Feiria, S.B.; Maia, F.C.; Oliveira, T.R.; Joia, F.; Barbosa, J.P. In-vitro Antibacterial and Antibiofilm Activity of *Cinnamomum verum* Leaf Oil against *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Klebsiella pneumoniae*. *Acad. Bras. Cienc.* **2021**, *93*, e20201507. [\[CrossRef\]](#) [\[PubMed\]](#)
151. El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. *J. Adv. Pharm. Technol. Res.* **2019**, *10*, 63–67. [\[CrossRef\]](#)
152. Yap, P.S.; Krishnan, T.; Chan, K.G.; Lim, S.H. Antibacterial Mode of Action of *Cinnamomum verum* Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant *Escherichia coli* Strain. *J. Microbiol. Biotechnol.* **2015**, *25*, 1299–1306. Available online: <https://pubmed.ncbi.nlm.nih.gov/25381741/> (accessed on 23 September 2024). [\[PubMed\]](#)
153. Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. *Pathogens* **2019**, *8*, 15.
154. Al-Sayed, E.; Gad, H.A.; El-Kersh, D.M. Characterization of Four Piper Essential Oils [GC/MS and ATR-IR] Coupled to Chemometrics and Their anti-Helicobacter pylori Activity. *ACS Omega* **2021**, *6*, 25652–25663. [\[CrossRef\]](#)
155. Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F. Elucidation of the synergistic action of *Mentha piperita* essential oil with common antimicrobials. *PLoS ONE* **2018**, *13*, e0200902. [\[CrossRef\]](#)
156. Kwiatkowski, P.; Pruss, A.; Grygorcewicz, B.; Wojciuk, B.; Dołęgowska, B.; Giedrys-Kalemba, S. Preliminary Study on the Antibacterial Activity of Essential Oils Alone and in Combination with Gentamicin Against Extended-Spectrum β -Lactamase-Producing and New Delhi Metallo- β -Lactamase-1-Producing *Klebsiella pneumoniae* Isolates. *Microb. Drug Resist.* **2018**, *24*, 1368–1375. [\[CrossRef\]](#) [\[PubMed\]](#)
157. Liu, T.; Wang, J.; Gong, X.; Wu, X.; Liu, L.; Chi, F. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro against *Staphylococcus aureus* and *Escherichia coli*. *J. Food Prot.* **2020**, *83*, 1261–1267. [\[CrossRef\]](#)
158. Lokhande, K.B.; Tiwari, A.; Gaikwad, S.; Kore, S.; Nawani, N.; Wani, M.; Swamy, K.V.; Pawar, S.V. Computational docking investigation of phytocompounds from bergamot essential oil against *Serratia marcescens* protease and FabI: Alternative pharmacological strategy. *Comput. Biol. Chem.* **2023**, *104*, 107829. [\[CrossRef\]](#) [\[PubMed\]](#)
159. Leja, K.; Szudera-Kończal, K.; Światała, E.; Juzwa, W.; Kowalczewski, P.Ł.; Czaczzyk, K. The influence of selected plant essential oils on morphological and physiological characteristics in *Pseudomonas orientalis*. *Foods* **2019**, *8*, 277. [\[CrossRef\]](#)
160. Nieto-Velázquez, N.G.; Gomez-Valdez, A.A.; González-Ávila, M.; Sánchez-Navarrete, J.; Toscano-Garibay, J.D.; Ruiz-Pérez, N.J. Preliminary study on citrus oils antibacterial activity measured by flow cytometry: A step-by-step development. *Antibiotics* **2021**, *10*, 1218. [\[CrossRef\]](#) [\[PubMed\]](#)
161. González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile compounds in citrus essential oils: A comprehensive review. *Front. Plant. Sci.* **2019**, *10*, 12. [\[CrossRef\]](#)
162. Alvand, Z.M.; Parseghian, L.; Aliahmadi, A.; Rahimi, M.; Rafati, H. Nanoencapsulated *Thymus daenensis* and *Mentha piperita* essential oil for bacterial and biofilm eradication using microfluidic technology. *Int. J. Pharm.* **2024**, *651*, 123751. [\[CrossRef\]](#)

163. Tisserand, R. *Essential Oil Safety: A Guide for Health Care Professionals*, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014.
164. Alvand, Z.M.; Rahimi, M.; Rafati, H. A microfluidic chip for visual investigation of the interaction of nanoemulsion of Satureja Khuzistanica essential oil and a model gram-negative bacteria. *Int. J. Pharm.* **2021**, *607*, 121032. [\[CrossRef\]](#)
165. Rojas-Armas, J.; Arroyo-Acevedo, J.; Ortiz-Sánchez, M.; Palomino-Pacheco, M.; Castro-Luna, A.; Ramos-Cevallos, N. Acute and Repeated 28-Day Oral Dose Toxicity Studies of Thymus vulgaris L. Essent. Oil Rats. *Toxicol. Res.* **2019**, *35*, 225–232. [\[CrossRef\]](#)
166. Seth, S.D.; Sharma, B. Medicinal plants in India. *Indian J. Med. Res.* **2004**, *120*, 9–11.
167. Raptis, V.; Karatasos, K. Molecular dynamics simulations of essential oil ingredients associated with hyperbranched polymer drug carriers. *Polymers* **2022**, *14*, 1762. [\[CrossRef\]](#)
168. Kabbashi, A.S.; Garbi, M.I.; Osman, E.E.; Dahab, M.M.; Koko, W.S.; Abuzeid, N. In vitro antimicrobial activity of ethanolic seeds extract of *Nigella sativa* (Linn) in Sudan. *AJMR* **2015**, *9*, 788–792.
169. Manju, S.; Malaikozhundan, B.; Vijayakumar, S.; Shanthi, S.; Jaishabu, A.; Ekambaram, P. Antibacterial, antibiofilm and cytotoxic effects of *Nigella sativa* essential oil coated gold nanoparticles. *Microb. Pathog.* **2016**, *91*, 129–135. [\[CrossRef\]](#) [\[PubMed\]](#)
170. Lafhal, S.; Vanloot, P.; Bombarda, I.; Valls, R.; Kister, J.; Dupuy, N. Raman spectroscopy for identification and quantification analysis of essential oil varieties: A multivariate approach applied to lavender and lavandin essential oils. *J. Raman. Spectrosc.* **2015**, *46*, 577–585. [\[CrossRef\]](#)
171. Marjanović-Balaban, Ž.; Stanojević, L.; Kalaba, V.; Stanojević, J.; Cvetković, D.; Cakić, M. Chemical Composition and Antibacterial Activity of the Essential Oil of *Menthae piperita* L. *Life* **2018**, *9*, 5–12.
172. Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? *Molecules* **2019**, *24*, 2130. [\[CrossRef\]](#)
173. Facanali, R.; Marques, M.O.M.; Hantao, L.W. Metabolic Profiling of *Varroonia curassavica* Jacq. Terpenoids by Flow Modulated Two-Dimensional Gas Chromatography Coupled to Mass Spectrometry. *Separations* **2020**, *7*, 18. [\[CrossRef\]](#)
174. Lai, P.J.; Ng, E.V.; Yang, S.K.; Moo, C.L.; Low, W.Y.; Yap, P.S.X. Transcriptomic analysis of multi-drug resistant *Escherichia coli* K-12 strain in response to *Lavandula angustifolia* essential oil. *3 Biotech* **2020**, *10*, 313. [\[CrossRef\]](#)
175. Rocha, R.P.; de Castro Melo, E.; Barbosa, L.C.A.; dos Santos, H.S.; Cecon, P.R.; Dallacort, R. Influence of plant age on the content and composition of essential oil of *Cymbopogon citratus* [DC.] Stapf. *JMPR* **2014**, *8*, 1121–1126.
176. Mohammadi, S.; Ebrahimzadeh, H.; Niknam, V.; Zahed, Z. Age-dependent responses in cellular mechanisms and essential oil production in sweet *Ferula assafoetida* under prolonged drought stress. *J. Plant Interact.* **2019**, *14*, 324–333. [\[CrossRef\]](#)
177. Hammer, K.A.; Carson, C.F.; Riley, T.V. Effects of *Melaleuca alternifolia* [Tea Tree] Essential Oil and the Major Monoterpene Component Terpinen-4-ol on the Development of Single- and Multistep Antibiotic Resistance and Antimicrobial Susceptibility. *Antimicrob. Agents Chemother.* **2012**, *56*, 909–915. [\[CrossRef\]](#) [\[PubMed\]](#)
178. Houdkova, M. New broth microdilution volatilization method for antibacterial susceptibility testing of volatile agents and evaluation of their toxicity using modified MTT assay in vitro. *Molecules* **2021**, *26*, 4179. [\[CrossRef\]](#)
179. Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Tradic, A.; Ranin, L.; Opavski, N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. *Antibiotics* **2022**, *11*, 427. [\[CrossRef\]](#)
180. Song, X.; Sun, Y.; Zhang, Q.; Yang, X.; Zheng, F.; He, S. Failure of *Staphylococcus aureus* to Acquire Direct and Cross Tolerance after Habituation to Cinnamon Essential Oil. *Microorganisms* **2019**, *7*, 18. [\[CrossRef\]](#)
181. Yang, S.K.; Yusoff, K.; Thomas, W.; Akseer, R.; Alhosani, M.S.; Abushelaibi, A.; Lim, S.-H.-E.; Lai, K.-S. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing *Klebsiella pneumoniae*. *Sci. Rep.* **2020**, *10*, 819. [\[CrossRef\]](#) [\[PubMed\]](#)
182. Hajdari, A.; Mustafa, B.; Nebija, D.; Kashtanjeva, A.; Widelski, J.; Glowniak, K.; Guettou, B.; Rahal, K.; Gruľová, D.; Dugo, G.; et al. Essential oil composition and variability of *Hypericum perforatum* L. from wild population in Kosovo. *Curr. Issues Pharm. Med. Sci.* **2014**, *27*, 51–54. [\[CrossRef\]](#)
183. El Asbahani, A.; Jilale, A.; Voisin, S.N.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa Region (Morocco). *J. Essent. Oil Res.* **2015**, *27*, 34–44. [\[CrossRef\]](#)
184. Lee, K.; Lee, J.H.; Kim, S.I.; Cho, M.H.; Lee, J. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against *Staphylococcus aureus*. *Appl. Microbiol. Biotechnol.* **2014**, *98*, 9447–9457. [\[CrossRef\]](#)
185. Fokou, J.B.H.; Dongmo, P.M.J.; Boyom, F.F. Essential oil's chemical composition and pharmacological properties. In *Essential Oils-Oils of Nature*; IntechOpen: London, UK, 2020.
186. Benkova, M.; Soukup, O.; Marek, J. Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice. *J. Appl. Microbiol.* **2020**, *129*, 806–822. [\[CrossRef\]](#) [\[PubMed\]](#)
187. Hulankova, R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. *Plants* **2024**, *13*, 2784. [\[CrossRef\]](#)
188. Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and qualitative assessment methods for biofilm growth: A mini-review. *Res. Rev. J. Eng. Technol.* **2017**, *6*.

189. Gao, H.; Xu, D.; Zhang, H.; Qian, J.; Yang, Q. Transcriptomics and metabolomics analyses reveal the differential accumulation of phenylpropanoids between *Cinnamomum cassia* Presl and *Cinnamomum cassia* Presl var. *macrophyllum* Chu. *Ind. Crops Prod.* **2020**, *148*, 112282. [\[CrossRef\]](#)
190. Yuan, Y.; Huang, M.; Pang, Y.X.; Yu, F.L.; Chen, C.; Liu, L.W. Variations in Essential Oil Yield, Composition, and Antioxidant Activity of Different Plant Organs from *Blumea balsamifera* [L.] DC Differ Growth Times. *Molecules* **2016**, *21*, 1024. [\[CrossRef\]](#)
191. Nurzyńska-Wierdak, R.; Bogucka-Kocka, A.; Szymczak, G. Volatile constituents of *Melissa officinalis* leaves determined by plant age. *Nat. Prod. Commun.* **2014**, *9*, 703–706. [\[CrossRef\]](#)
192. Ramachandran, G.; Rajivgandhi, G.N.; Murugan, S.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Almanaa, T.N.; Manoharan, N.; Li, W.-J. Anti-carbapenamase activity of *Camellia japonica* essential oil against isolated carbapenem resistant klebsiella pneumoniae (MN396685). *Saudi. J. Biol. Sci.* **2020**, *27*, 2269–2279. [\[CrossRef\]](#)
193. Kampasakali, E.; Nakas, A.; Mertzanidis, D.; Kokkini, S.; Assimopoulou, A.N.; Christofilos, D. μ -Raman Determination of Essential Oils' Constituents from Distillates and Leaf Glands of *Origanum* Plants. *Molecules* **2023**, *28*, 1221. [\[CrossRef\]](#) [\[PubMed\]](#)
194. Azad, R.K.; Shulaev, V. Metabolomics technology and bioinformatics for precision medicine. *Brief. Bioinform.* **2019**, *20*, 1957–1971. [\[CrossRef\]](#)
195. Barbosa, L.N.; Alves, F.C.B.; Andrade, B.F.M.T.; Albano, M.; Rall, V.L.M.; Fernandes, A.A.H.; Buzalaf, M.A.R.; Leite, A.d.L.; de Pontes, L.G.; dos Santos, L.D.; et al. Proteomic analysis and antibacterial resistance mechanisms of *Salmonella Enteritidis* submitted to the inhibitory effect of *Origanum vulgare* essential oil, thymol and carvacrol. *J. Proteom.* **2020**, *214*, 103625. [\[CrossRef\]](#)
196. Sarwar, W.; Ali, Q.; Ahmed, S. Microscopic visualization of the antibiofilm potential of essential oils against *Staphylococcus aureus* and *Klebsiella pneumoniae*. *Microsc. Res. Tech.* **2022**, *85*, 3921–3931. [\[CrossRef\]](#) [\[PubMed\]](#)
197. Kim, Y.G.; Lee, J.H.; Gwon, G.; Kim, S.I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of *Escherichia coli* O157:H7. *Sci. Rep.* **2016**, *6*, 36377. [\[CrossRef\]](#)
198. Shaaban, H.A.; Sadek, Z.; Edris, A.E.; Saad-Hussein, A. Analysis and antibacterial activity of *Nigella sativa* essential oil formulated in microemulsion system. *J. Oleo. Sci.* **2015**, *64*, 223–232. [\[CrossRef\]](#)
199. Lofa, A. Antibiotic-resistant *Staphylococcus aureus* strains of swine origin: Molecular typing and susceptibility to oregano (*Origanum vulgare* L.) essential oil and maqui (*Aristotelia chilensis* (Molina) Stuntz) extract. *J. Appl. Microbiol.* **2019**, *127*, 1048–1056. [\[CrossRef\]](#)
200. Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D. Essential Oils: Extraction Techniques. *Pharm. Ther. Potential.-Rev. Curr. Drug Metab.* **2018**, *19*, 1100–1110. [\[CrossRef\]](#)
201. Sharifi, A.; Ahmadi, A.; Mohammadzadeh, A. Streptococcus pneumoniae quorum sensing and biofilm formation are affected by *Thymus daenensis*, *Satureja hortensis*, and *Origanum vulgare* essential oils. *Acta. Microbiol. Immunol. Hung.* **2018**, *65*, 345–359. [\[CrossRef\]](#)
202. Oliva, A.; Costantini, S.; Angelis, M.; Garzoli, S.; Božović, M.; Mascellino, M.T.; Vullo, V.; Ragni, R. High potency of *Melaleuca alternifolia* essential oil against multi-drug resistant gram-negative bacteria and methicillin-resistant *Staphylococcus aureus*. *Molecules* **2018**, *23*, 2584. [\[CrossRef\]](#)
203. Abers, M.; Schroeder, S.; Goelz, L.; Sulser, A.; Rose, T.; Puchalski, K.; Langland, J. Antimicrobial activity of the volatile substances from essential oils. *BMC Complement. Med. Ther.* **2021**, *21*, 124. [\[CrossRef\]](#) [\[PubMed\]](#)
204. Seow, Y.X. Plant essential oils as active antimicrobial agents. *Crit. Rev. Food Sci. Nutr.* **2014**, *54*, 625–644. [\[CrossRef\]](#) [\[PubMed\]](#)
205. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. *J. Pharm. Anal.* **2016**, *6*, 71–79. [\[CrossRef\]](#) [\[PubMed\]](#)
206. Ahmad, A. Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. *Phytochemistry* **2021**, *190*, 112864. [\[CrossRef\]](#)
207. Salam, M.A.; Al-Amin, M.Y.; Pawar, J.S.; Akhter, N.; Lucy, I.B. Conventional methods and future trends in antimicrobial susceptibility testing. *Saudi. J. Biol. Sci.* **2023**, *30*, 103582. [\[CrossRef\]](#)
208. Hossain, T.J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. *Eur. J. Microbiol. Immunol.* **2024**, *14*, 97–115. [\[CrossRef\]](#)
209. Almatroudi, A. Investigating Biofilms: Advanced Methods for Comprehending Microbial Behavior and Antibiotic Resistance. *Front. Biosci.-Landmark* **2024**, *29*, 133. [\[CrossRef\]](#)
210. Yap, P.S.X.; Krishnan, T.; Yiap, B.C.; Hu, C.P.; Chan, K.G.; Lim, S.H.E. Membrane disruption and anti-quorum sensing effects of synergistic interaction between *Lavandula angustifolia* [lavender oil] in combination with antibiotic against plasmid-conferred multi-drug-resistant *Escherichia coli*. *J. Appl. Microbiol.* **2014**, *116*, 1119–1128. [\[CrossRef\]](#)
211. Mouwakeh, A.; Kincses, A.; Nové, M.; Mosolygó, T.; Mohácsi-Farkas, C.; Kiskó, G. *Nigella sativa* essential oil and its bioactive compounds as resistance modifiers against *Staphylococcus aureus*. *Phytother. Res.* **2019**, *33*, 1010–1018. [\[CrossRef\]](#)
212. Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In Vitro Antimicrobial Activities of Commercially Available Tea Tree [*Melaleuca alternifolia*] Essential Oils. *Curr. Microbiol.* **2019**, *76*, 108–116. [\[CrossRef\]](#)

213. Duarte, A.; Luís, Â.; Oleastro, M.; Domingues, F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control *Campylobacter* spp. *Food Control* **2016**, *61*, 115–122. [\[CrossRef\]](#)
214. Alvand, Z.M.; Rahimi, M.; Rafati, H. Chitosan decorated essential oil nanoemulsions for enhanced antibacterial activity using a microfluidic device and response surface methodology. *Int. J. Biol. Macromol.* **2023**, *239*, 124257. [\[CrossRef\]](#) [\[PubMed\]](#)
215. Araujo, T.D.S.; Costa, J.M.A.R.; Ribeiro, F.D.O.S.; Jesus Oliveira, A.C.; Nascimento Dias, J.; Araujo, A.R.; Barros, A.B.; Brito, M.d.P.; de Oliveira, T.M.; de Almeida, M.P.; et al. Nanoemulsion of cashew gum and clove essential oil (*Ocimum gratissimum* Linn) potentiating antioxidant and antimicrobial activity. *Int. J. Biol. Macromol.* **2021**, *193*, 100–108. [\[CrossRef\]](#) [\[PubMed\]](#)
216. Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. *J. Pharm. Biomed. Anal.* **2020**, *177*, 112849. [\[CrossRef\]](#)
217. Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Caudullo, G.; Carrara, M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phylogenomic Approach. *Molecules* **2020**, *25*, 1833. [\[CrossRef\]](#)
218. Vitali, F.; Frascella, A.; Semenzato, G.; Del Duca, S.; Palumbo Piccionello, A.; Mocali, S. Employing Genome Mining to Unveil a Potential Contribution of Endophytic Bacteria to Antimicrobial Compounds in the *Origanum vulgare* L. *Essent. Oil Antibiot. Basel* **2023**, *12*, 1179.
219. Chen, L.; Zhao, X.; Li, R.; Yang, H. Integrated metabolomics and transcriptomics reveal the adaptive responses of *Salmonella enterica* serovar Typhimurium to thyme and cinnamon oils. *Food Res. Int.* **2022**, *157*, 111241. [\[CrossRef\]](#) [\[PubMed\]](#)
220. Yang, S.K.; Tan, N.P.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. The Missing Piece: Recent Approaches Investigating the Antimicrobial Mode of Action of Essential Oils. *Evol. Bioinforma. Online Internet* **2021**, *17*, 1176934320938391. Available online: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114247/> (accessed on 7 November 2025). [\[CrossRef\]](#)
221. Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. *PLoS Comput. Biol.* **2017**, *13*, e1005457. [\[CrossRef\]](#) [\[PubMed\]](#)
222. Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. *Nat. Prod. Commun.* **2009**, *4*, 1147–1154. [\[CrossRef\]](#)
223. Benomari, F.Z.; Sarazin, M.; Chaib, D.; Pichette, A.; Boumghar, H.; Boumghar, Y. Chemical Variability and Chemotype Concept of Essential Oils from Algerian Wild Plants. *Molecules* **2023**, *28*, 4439. [\[CrossRef\]](#)
224. Hudaib, M.; Speroni, E.; Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme [*Thymus vulgaris* L.] oil composition and variations during the vegetative cycle. *J. Pharm. Biomed. Anal.* **2002**, *29*, 691–700. [\[CrossRef\]](#) [\[PubMed\]](#)
225. Koshima, F.A.T.; Ming, L.C.; Marques, M.O.M. Produção de biomassa, rendimento de óleo essencial e de citral em capim-limão, *Cymbopogon citratus* [DC.] Stapf, com cobertura morta nas estações do ano. *Rev. Bras. Plantas. Med.* **2006**, *8*, 112–116.
226. Leal, T.C.; Freitas, S.D.P.; Silva, J.F.D.; Carvalho, A.C. Production of Biomass and Essential Oil in Plants of Lemongrass [*Cymbopogon citratus* [Dc] Stapf] of Various Ages. Available online: <https://www.semanticscholar.org/paper/Production-of-biomass-and-essential-oil-in-plants-Leal-Freitas/344f9408368e45bb2cfe5fc61913da2b62fec10b> (accessed on 7 November 2025).
227. Padalia, R.C.; Verma, R.S.; Chauhan, A.; Tiwari, A.; Joshi, N. Variability in essential oil composition of different plant parts of *Heracleum candidans* Wall. Ex DC North India. *J. Essent. Oil Res.* **2018**, *30*, 293–301.
228. Benameur, Q.; Gervasi, T.; Pellizzeri, V.; Pl'uchtová, M.; Tali-Maama, H.; Assaous, F.; Guettou, B.; Rahal, K.; Gru'l'ová, D.; Dugo, G.; et al. Antibacterial activity of *Thymus vulgaris* essential oil alone and in combination with cefotaxime against bla ESBL producing multidrug resistant Enterobacteriaceae isolates. *Nat. Prod. Res.* **2019**, *33*, 2647–2654. [\[CrossRef\]](#)
229. Rathore, S.; Mukhia, S.; Kumar, R.; Kumar, R. Essential oil composition and antimicrobial potential of aromatic plants grown in the mid-hill conditions of the Western Himalayas. *Sci. Rep.* **2023**, *13*, 4878. [\[CrossRef\]](#)
230. Li, Y.; Zidorn, C. Seasonal variations of natural products in European herbs. *Phytochem. Rev.* **2022**, *21*, 1549–1575. [\[CrossRef\]](#)
231. Al-Kharousi, Z.S.; Mothershaw, A.S.; Nzeako, B. Antimicrobial Activity of Frankincense [*Boswellia sacra*] Oil and Smoke against Pathogenic and Airborne Microbes. *Foods* **2023**, *12*, 3442. [\[CrossRef\]](#) [\[PubMed\]](#)
232. Machado, T.F.; Pereira, R.D.C.A.; Batista, V.C.V. Seasonal variability of the antimicrobial activity of the essential oil of *Lippia alba*. *Rev. Ciênc. Agron.* **2014**, *45*, 515–519.
233. Bhandari, D.P.; Poudel, D.K.; Satyal, P.; Khadayat, K.; Dhami, S.; Aryal, D.; Chaudhary, P.; Ghimire, A.; Parajuli, N. Volatile compounds and antioxidant and antimicrobial activities of selected citrus essential oils originated from Nepal. *Molecules* **2021**, *26*, 6683. [\[CrossRef\]](#) [\[PubMed\]](#)
234. Hamdan, D.; El-Readi, M.Z.; Tahrani, A.; Herrmann, F.; Kaufmann, D.; Farrag, N.; El-Shazly, A.; Wink, M. Chemical composition and biological activity of Citrus jambhiri Lush. *Food Chem.* **2011**, *127*, 394–403. [\[CrossRef\]](#)
235. Luciardi, M.C.; Blázquez, M.A.; Alberto, M.R.; Cartagena, E.; Arena, M.E. Grapefruit essential oils inhibit quorum sensing of *Pseudomonas aeruginosa*. *Food Sci. Technol. Int.* **2020**, *26*, 231–241.
236. Motsa, N.M. Plant shoot age and temperature effects on essential oil yield and oil composition of rose-scented geranium (*Pelargonium* sp.) growth in South Africa. *J. Essent. Oil Res.* **2006**, *18*, 106–110. [\[CrossRef\]](#)

237. Dalli, M.; Azizi, S.E.; Benouda, H.; Azghar, A.; Tahri, M.; Bouammali, B. Molecular Composition and Antibacterial Effect of Five Essential Oils Extracted from *Nigella sativa* L. Seeds against Multidrug-Resistant Bacteria: A Comparative Study. *Evid. Based Complement. Altern. Med.* **2021**, *2021*, 6643765.
238. Farias, J.P.; Barros, A.L.A.N.; Araújo-Nobre, A.R.; Sobrinho-Júnior, E.P.C.; Alves, M.M.D.M.; Carvalho, F.A.D.A.; Rodrigues, K.A.d.F.; de Andrade, I.M.; e Silva-Filho, F.A.; Moreira, D.C.; et al. Influence of plant age on chemical composition, antimicrobial activity and cytotoxicity of *Varrovia curassavica* Jacq. essential oil produced on an industrial scale. *Agriculture* **2023**, *13*, 373. [\[CrossRef\]](#)
239. Guidotti-Takeuchi, M.; Morais Ribeiro, L.N.; Dos Santos, F.A.L.; Rossi, D.A.; Lucia, F.D.; Melo, R.T. Essential Oil-Based Nanoparticles as Antimicrobial Agents in the Food Industry. *Microorganisms* **2022**, *10*, 1504. [\[CrossRef\]](#)
240. Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. *Sustain. Chem. Pharm.* **2022**, *30*, 100829.
241. Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daghia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. *TrAC Trends Anal. Chem.* **2018**, *100*, 82–102. [\[CrossRef\]](#)
242. Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. *Food Eng. Rev.* **2015**, *7*, 275–297. [\[CrossRef\]](#)
243. Sethunga, M.; Ranaweera, K.; Munaweera, I.; Gunathilake, K.D.P. Recent advances in the extraction methods of essential oils and oleoresins from plant materials and its potential applications: A comprehensive review. *J. Food Bioprocess. Eng.* **2022**, *5*, 151–167.
244. Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. *Plants* **2022**, *11*, 789. [\[CrossRef\]](#)
245. Rodríguez-Maecker, R.; Vyhmeister, E.; Meisen, S.; Rosales Martinez, A.; Kuklya, A.; Telgheder, U. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. *Anal. Bioanal. Chem.* **2017**, *409*, 6595–6603. [\[CrossRef\]](#) [\[PubMed\]](#)
246. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Available online: <https://www.ich.org/page/ich-guidelines> (accessed on 7 November 2025).
247. Code of Federal Regulations Title 21, Chapter 1, Subchapter B, Part 182.20. Available online: <https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-182/subpart-A/section-182.20> (accessed on 7 November 2025).
248. Code of Federal Regulations Title 21, Chapter 1, Subchapter B, Part 182.21(b)(1). Available online: <https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-182> (accessed on 7 November 2025).
249. Lanzerstorfer, P.; Sandner, G.; Pitsch, J.; Mascher, B.; Aumiller, T.; Weghuber, J. Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems. *Arch. Toxicol.* **2021**, *95*, 673–691. [\[PubMed\]](#)
250. Dosoky, N.S.; Setzer, W.N. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. *Int. J. Mol. Sci.* **2021**, *22*, 2380. [\[CrossRef\]](#)
251. Fournier, G.; Pages, N.; Cosperec, I. Contribution to the study of *Salvia lavandulifolia* essential oil: Potential toxicity attributable to sabinyl acetate. *Planta. Med.* **1993**, *59*, 96–97. [\[PubMed\]](#)
252. Angel, G.R.; Menon, N.; Vimala, B.; Nambisan, B. Essential oil composition of eight starchy *Curcuma* species. *Ind. Crops Prod.* **2014**, *60*, 233–238.
253. Judzentiene, A.; Garjonyte, R. Compositional Variability and Toxic Activity of Mugwort [*Artemisia vulgaris*] Essential Oils. *Nat. Prod. Commun.* **2016**, *11*, 1353–1356. [\[CrossRef\]](#)
254. Malekmohammad, K.; Rafieian-Kopaei, M.; Sardari, S.; Sewell, R.D.E. Toxicological effects of *Mentha × piperita* (peppermint): A review. *Toxin Rev.* **2021**, *40*, 445–459.
255. Vostinaru, O.; Hedges, S.C.; Filip, L. *Safety Profile of Essential Oils*; IntechOpen: London, UK, 2020; Volume 1.
256. Albuquerque, P.; Azevedo, S.; Andrade, C.; D’Ambros, N.; Perez, M.T.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils. *Rev. Polym.* **2022**, *14*, 5495.
257. Lautié, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. *Front. Pharmacol.* **2020**, *11*, 397. [\[CrossRef\]](#)
258. Slifman, N.R.; Obermeyer, W.R.; Aloi, B.K.; Musser, S.M.; Correll, W.A.; Cichowicz, S.M. Contamination of botanical dietary supplements by *Digitalis lanata*. *N. Engl. J. Med.* **1998**, *339*, 806–811.
259. Ng, C.X.; Affendi, M.M.; Chong, P.P.; Lee, S.H. The potential of plant-derived extracts and compounds to augment anticancer effects of chemotherapeutic drugs. *Nutr. Cancer* **2022**, *74*, 3058–3076. [\[CrossRef\]](#) [\[PubMed\]](#)
260. Keener, L. Chapter 14-Food safety and regulatory survey of food additives and other substances in human food. In *Ensuring Global Food Safety*, 2nd ed.; Martinović, A., Oh, S., Lelieveld, H., Eds.; Academic Press: Oxford, UK, 2022; pp. 259–273. Available online: <https://www.sciencedirect.com/science/article/pii/B9780128160114000057> (accessed on 7 November 2025).
261. Sahoo, N.; Manchikanti, P.; Dey, S. Herbal drugs: Standards and regulation. *Fitoterapia* **2010**, *81*, 462–471. [\[CrossRef\]](#)

262. Fürst, R.; Zündorf, I. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the Translation of Preclinical Knowledge into Clinical Progress. *Mediat. Inflamm.* **2014**, *2014*, 146832. [CrossRef] [PubMed]
263. WHO Headquarters (HQ). WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants. Available online: <https://www.who.int/publications/i/item/9241546271> (accessed on 2 October 2024).
264. WHO. TRS 929-Annex 4: WHO Guidelines for Sampling of Pharmaceutical Products and Related Materials. Available online: <https://www.who.int/publications/m/item/annex-4-trs-929> (accessed on 2 October 2024).
265. European Medicines Agency. Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products—Scientific Guideline | European Medicines Agency (EMA). 2022. Available online: <https://www.ema.europa.eu/en/quality-herbal-medicinal-products-traditional-herbal-medicinal-products-scientific-guideline> (accessed on 2 October 2024).
266. Clarke, S. Chapter 7—Composition of essential oils and other materials. In *Essential Chemistry for Aromatherapy Second Edition*; Clarke, S., Ed.; Internet; Churchill Livingstone: Edinburgh, UK, 2008; pp. 123–229. Available online: <https://www.sciencedirect.com/science/article/pii/B9780443104039000078> (accessed on 7 November 2025).
267. Al-Harrasi, A.; Bhatia, S.; Behl, T.; Kaushik, D.; Anwer, M.K.; Ahmed, M.M. *Role of Essential Oils in the Management of COVID-19*; CRC Press: Boca Raton, FL, USA, 2022; 416p.
268. Romo-Castillo, M.; Flores-Bautista, V.A.; Guzmán-Gutiérrez, S.L.; Reyes-Chilpa, R.; León-Santiago, M.; Luna-Pineda, V.M. Synergy of plant essential oils in antibiotic therapy to combat *Klebsiella pneumoniae* infections. *Pharmaceuticals* **2023**, *16*, 839. [CrossRef] [PubMed]
269. Venkataraman, R.; Komoroski, B.; Strom, S. In vitro and in vivo assessment of herb drug interactions. *Life Sci.* **2006**, *78*, 2105–2115. [CrossRef] [PubMed]
270. Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. *Pharm. Internet* **2021**, *13*, 327. Available online: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001530/> (accessed on 7 November 2025). [CrossRef]
271. Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. *Microbiol. Mol. Biol. Rev.* **2014**, *78*, 510–543. [CrossRef]
272. Van Vuuren, S.F.; Suliman, S.; Viljoen, A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. *Lett. Appl. Microbiol.* **2009**, *48*, 440–446. [CrossRef]
273. Ronzheimer, A.; Schreiner, T.; Morlock, G.E. Multiplex planar bioassay detecting estrogens, antiestrogens, false-positives and synergists as sharp zones on normal phase. *Phytomedicine* **2022**, *103*, 154230. [CrossRef]
274. Becerril, R.; Nerín, C.; Gómez-Lus, R. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. *Foodborne Pathog. Dis.* **2012**, *9*, 699–705. [CrossRef]
275. Berdejo, D.; Pagán, E.; Merino, N.; García-Gonzalo, D.; Pagán, R. Emerging mutant populations of *Listeria monocytogenes* EGD-e under selective pressure of *Thymbra capitata* essential oil question its use in food preservation. *Food Res. Int.* **2021**, *145*, 110403. [CrossRef]
276. Marotta, S.M.; Giarratana, F.; Parco, A.; Neri, D.; Ziino, G.; Giuffrida, A. Evaluation of the Antibacterial Activity of Bergamot Essential Oils on Different *Listeria monocytogenes* Strains. *Ital. J. Food Saf.* **2016**, *5*, 6176. [CrossRef]
277. Pagan, E.; Merino, N.; Berdejo, D.; Campillo, R.; Gayan, E.; García-Gonzalo, D. Adaptive evolution of *Salmonella Typhimurium* LT2 exposed to carvacrol lacks a uniform pattern. *Appl. Microbiol. Biotechnol.* **2024**, *108*, 38. [CrossRef] [PubMed]
278. Moken, M.C.; McMurry, L.M.; Levy, S.B. Selection of multiple-antibiotic-resistant [mar] mutants of *Escherichia coli* by using the disinfectant pine oil: Roles of the mar and acrAB loci. *Antimicrob. Agents Chemother.* **1997**, *41*, 2770–2772. [CrossRef]
279. Alekshun, M.N.; Levy, S.B. The mar regulon: Multiple resistance to antibiotics and other toxic chemicals. *Trends Microbiol.* **1999**, *7*, 410–413. [CrossRef]
280. Li, Z.; Demple, B. SoxS, an activator of superoxide stress genes in *Escherichia coli*. *Purif. Interact. DNA J. Biol. Chem.* **1994**, *269*, 18371–18377.
281. Agreles, M.A.A.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. The Role of Essential Oils in the Inhibition of Efflux Pumps and Reversion of Bacterial Resistance to Antimicrobials. *Curr. Microbiol.* **2021**, *78*, 3609–3619. [CrossRef] [PubMed]
282. Nova, B.G.V.; Santos Silva, L.; Silva Andrade, M.; Santana, A.V.S.; Silva, L.C.T.; Sá, G.C.; Zafred, I.F.; Moreira, P.H.d.A.; Monteiro, C.A.; da Silva, L.C.N.; et al. The essential oil of *Melaleuca alternifolia* incorporated into hydrogel induces antimicrobial and anti-inflammatory effects on infected wounds by *Staphylococcus aureus*. *Biomed. Pharmacother.* **2024**, *173*, 116389. [CrossRef] [PubMed]
283. Aelenei, P.; Rimbu, C.M.; Gugianu, E.; Dimitriu, G.; Aprotosoaie, A.C.; Brebu, M. Coriander essential oil and linalool—Interactions with antibiotics against Gram-positive and Gram-negative bacteria. *Lett. Appl. Microbiol.* **2019**, *68*, 156–164. [CrossRef]
284. Sieniawska, E.; Trifan, A.; Greige-Gerges, H. Isolation and Utilization of Essential Oils: As Antimicrobials and Boosters of Antimicrobial Drug Activity. *Processes* **2022**, *10*, 309. [CrossRef]

285. Özel, Y.; Yılmaz, U.; Ünlü, M. Antibacterial activity and synergistic interaction of various essential oil components and antibiotics. *Mikrobiol. Bul.* **2022**, *56*, 95–102. [\[CrossRef\]](#)
286. Balázs, V.L.; Filep, R.; Répás, F.; Kerekes, E.; Szabó, P.; Kocsis, B. Immortelle [*Helichrysum italicum* [Roth] G. Don] Essential Oil Showed Antibacterial and Biofilm Inhibitory Activity against Respiratory Tract Pathogens. *Molecules* **2022**, *27*, 5518. [\[CrossRef\]](#)
287. Soliman, S.S.; Alsaadi, A.I.; Youssef, E.G.; Khitrov, G.; Noreddin, A.M.; Husseiny, M.I.; Ibrahim, A.S. Calli essential oils synergize with lawsone against multidrug resistant pathogens. *Molecules* **2017**, *22*, 2223. [\[CrossRef\]](#)
288. Keskin, D.; Zu, G.; Forson, A.M.; Tromp, L.; Sjollema, J.; Rijn, P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. *Bioact. Mater.* **2021**, *6*, 3634–3657. [\[CrossRef\]](#)
289. Dupuis, V.; Cerbu, C.; Witkowski, L.; Potarniche, A.V.; Timar, M.C.; Źychska, M. Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. *Drug Deliv.* **2022**, *29*, 1007–1024. [\[CrossRef\]](#)
290. Aldawsari, M.F.; Foudah, A.I.; Rawat, P.; Alam, A.; Salkini, M.A. Nanogel-Based Delivery System for Lemongrass Essential Oil: A Promising Approach to Overcome Antibiotic Resistance in *Pseudomonas aeruginosa* Infections. *Gels* **2023**, *9*, 741. [\[CrossRef\]](#)
291. Romero-Montero, A.; Melgoza-Ramírez, L.J.; Ruíz-Aguirre, J.A.; Chávez-Santoscoy, A.; Magaña, J.J.; Cortés, H. Essential-Oils-Loaded Biopolymeric Nanoparticles as Strategies for Microbial and Biofilm Control: A Current Status. *Int. J. Mol. Sci.* **2023**, *25*, 82. [\[CrossRef\]](#) [\[PubMed\]](#)
292. Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. *Int. J. Pharm.* **2019**, *561*, 161–170. [\[CrossRef\]](#)
293. Sebaaly, C.; Jraij, A.; Fessi, H.; Charcosset, C.; Greige-Gerges, H. Preparation and characterization of clove essential oil-loaded liposomes. *Food Chem.* **2015**, *178*, 52–62. [\[CrossRef\]](#) [\[PubMed\]](#)
294. Turek, C.; Stintzing, F.C. Impact of different storage conditions on the quality of selected essential oils. *Food Res. Int.* **2012**, *46*, 341–353. [\[CrossRef\]](#)
295. Yoncheva, K.; Benbassat, N.; Zaharieva, M.M.; Dimitrova, L.; Kroumov, A.; Spassova, I. Improvement of the Antimicrobial Activity of Oregano Oil by Encapsulation in Chitosan—Alginate Nanoparticles. *Molecules* **2021**, *26*, 7017. [\[CrossRef\]](#)
296. Alabraham, O.A.A.; Alwahibi, S.; Azzazy, H.M.E.S. Improved antimicrobial activities of *Boswellia sacra* essential oils nanoencapsulated into hydroxypropyl-beta-cyclodextrins. *Nanoscale Adv.* **2024**, *6*, 910–924. [\[CrossRef\]](#)
297. Jamil, B.; Abbasi, R.; Abbasi, S.; Imran, M.; Khan, S.U.; Ihsan, A.; Javed, S.; Bokhari, H. Encapsulation of cardamom essential oil in chitosan nano-composites: In-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. *Front. Microbiol.* **2016**, *7*, 1580. [\[CrossRef\]](#)
298. Bazana, M.T.; Codevilla, C.F.; Menezes, C.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives. *Curr. Opin. Food Sci.* **2019**, *26*, 47–56. [\[CrossRef\]](#)
299. Nazzaro, F.; Fratianni, F.; Martino, L.; Coppola, R.; Feo, V. Effect of essential oils on pathogenic bacteria. *Pharmaceuticals* **2013**, *6*, 1451–1474. [\[CrossRef\]](#) [\[PubMed\]](#)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.