

Plan for Centralized Visualization and Analysis of Osteosarcoma Single-Cell Data Using the Broad Single Cell Portal

Overview and Goals

To maximize translational impact from existing and emerging single-cell datasets in osteosarcoma (OS), we propose building a centralized, standardized, and interactive data repository and visualization platform using the Broad Single Cell Portal. This will serve as both a reference atlas and an analysis hub to:

- 1. Enable cross-study comparisons and identification of shared or divergent transcriptional cell states across samples.
- 2. Compute clinically actionable correlations between inferred cellular features and phenotypes.
- 3. Identify underrepresented clinical or molecular subtypes to guide future data generation efforts.

Phase I: Data Aggregation and Standardization

Objective

Create a curated table of existing normal bone and OS single-cell RNA-seq datasets with consistent metadata and processed features.

Dataset	GEO	#	#	Clinical Metadata	Technology	Publication
	Accession	Cells	Patients	5		
Example GSEXXXXX		15,00	5	Diagnosis, site,	10x v3	Author et al.
1		Ο		outcome		2021
Example GSEYYYYY		25,00	8	Age, treatment,	SMART-seq	Another et al.
2		Ο		relapse	2	2022
						

Key Features for Standardization

- Deposition of raw and uniformly processed data (counts, metadata) on GEO or other open-access repositories.
- Harmonized clinical annotation: age, sex, site (primary/metastatic), treatment history, outcome.
- Data dictionary: specific definitions for each clinical attribute

Phase II: Feature Calculation

Each dataset will be preprocessed and annotated with the following computed features, which will be made explorable per cell, per cluster, and per sample.

Per-Cell Features to Store and Visualize

- UMAP coordinates
- Cell cycle phase
- Pathway enrichment scores (e.g., hallmark gene sets, metabolic pathways)
- Transcription factor activity scores
- Top high-variance genes
- Differentiation scores (e.g., archetypes)
- Cluster membership
- Infer copy number variants

Cluster-Level Summaries

- Top 10% of differentially expressed genes per cluster with p-values, any FDR/qval
- Canonical marker gene expression for various cell types
- Pathway enrichment
-

Patient-Level Summaries

- · Relative abundances of cell states
- · Clinical Metadata, including timepoint of collection
- · Experimental/Sequencing Metadata
- ...

Phase III: Interactive Visualization and Analytical Tools on the Portal

We will build interactive visualizations in the Broad Single Cell Portal, supporting:

- 1. Per-sample UMAPs:
 - Colored by clinical metadata
 - Overlayed with computed scores (pathways, TF activity, etc.)
- 2. Cluster Explorer:
 - o Select individual clusters to view cell composition, top genes, and pathway scores.
 - o Compare selected clusters across patients or cohorts.
- 3. Sample-Level Summaries:
 - Archetype composition per sample
 - o Relative abundance of predefined cell states
 - o Clinical and genomic annotations
- 4. Correlation Matrix Table:
 - o Compute correlations between:
 - Cell state abundances
 - Archetype compositions
 - Sample-level clinical features (e.g., response, survival, demographics, subtype, etc.)
 - Computed transcriptional features (e.g., proliferation, inflammation)

This matrix will help prioritize biological features for downstream validation and potential therapeutic targeting.

Phase IV: Gap Analysis and Future Data Generation

Using the centralized data:

- Summarize the clinical and molecular diversity covered by existing datasets.
- Highlight missing categories (e.g., underrepresented metastases, relapse samples, treatment-exposed tumors).
- Guide future sample acquisition and sequencing to maximize coverage and translational relevance.

Limitations and Considerations

- Sample diversity: Current datasets may be biased toward untreated primary tumors or specific patient demographics.
- Batch effects and platform variability: Integration across different sequencing technologies (e.g., 10x vs SMART-seq2) may introduce artifacts.
- Incomplete clinical annotation: Some public datasets lack survival, treatment, or progression information necessary for clinical correlation.
- Resolution of cell state: Cell states inferred from transcriptomic data may differ across datasets and depend on integration fidelity. Report sequencing modalities as correlates.

Conclusion

This plan provides a roadmap for creating a high-value, interactive resource that democratizes access to curated osteosarcoma single-cell data, enables meaningful translational analyses, and informs future data collection. The Broad Single Cell Portal provides the necessary infrastructure to make this vision feasible and impactful.