

Evaluating tumor evolution and mechanisms of resistance in osteosarcoma

Chelsey M Burke, MD
Clinical Assistant Professor
Stanford University Children's Health

Genomic Instability and Heterogeneity in Osteosarcoma

Clonal evolution in resistant osteosarcoma

A – Doxorubicin 75 mg/m²/course P – Cisplatin 120 mg/m²/course M – Methotrexate 12 g/m²/course

Michael Kinnaman

Single-cell RNAseq

Identify and target Master Regulators of Therapy Resistant States

Single cell RNA-seq of pre- vs. post-treatment tumors identifies cell state-specific depletion

'Bottle-neck' analysis

Tumor Bottleneck Hypothesis

OncoTarget[™] and OncoTreat[™]

Evaluating tumor evolution in osteosarcoma PDX models

Replicating MAP therapy in PDX models

★ Subcutaneous fluid support Leucovorin rescue

Mouse-equivalent dosing of MAP

Doxorubicin: $37.5 \text{ mg/m}^2 \text{ IV} = 6 \text{ mg/kg IP (Day 1, 2)}$ Cisplatin: $60 \text{ mg/m}^2 \text{ IV} = 3 \text{ mg/kg IP (Day 1,2)}$ HD-Methotrexate: $12000 \text{ mg/m}^2 \text{ IV} = 225 \text{ mg/kg IP}$

Gene expression analysis of treated OS PDX snRNA-seq

snRNA-seq for 264,401 high-quality tumor nuclei across 12 samples (n = 4 / treatment arm)

 Subpopulation proportions vary between replicates, emphasizing the need for multiple biological replicates to capture true treatment effects

Gene expression analysis of treated OS PDX snRNA-seq

- Chemotherapy treatment alters cell state composition
- Depletion of ECM-active mesenchymal (osteoblast-primed) C0 cells and expansion of Hypoxiaadapted chondroblast-like C1 cells post MAP chemotherapy
- Stressed/apoptotic cells most enriched after Cisplatin/Doxorubicin, consistent with predominant cell death occurring with these drugs

VIPER-inferred protein activity analysis of treated OS PDX snRNA-seq

Transform gene expression profiles to activity profiles for ~3,000 transcriptional regulators

Patient heterogeneity recapitulated in the PDX

OncoTarget of treated versus vehicle tumor cells can identify cell state-specific therapeutic vulnerabilities activated post chemotherapy for therapeutic translation

Ongoing research and future directions

- Complete MAP treatment of PDX models (n=5 discrete models)
- Analyze single cell data to characterize cell state-specific evolution in response to chemotherapy treatment
- Utilize regulatory network analysis to identify and target MRs of chemotherapy-resistant disease
- Perform in vivo validation of MR predictions

A special thank you to #BecauseOfAva, the Levin family, and all of the OsteoWarriors and OsteoAngels!

Dela Cruz/Kung Lab MSKCC

Filemon Dela Cruz Andrew Kung

Tamar Feinberg

Daoqi You

Glorymar Ibanez

Samantha Brosius

Kristina Guillan

Armaan Siddiquee

Kristen Victor

Ali Cihan

Felix Che

Jaime Alvarez Perez

Glorife Ibanez Sanchez

Paul Calder

Andoyo Ndengu

Nestor Rosales

Raven Rose

Xinyi Wang

MSKCC

Jovana Pavisic Damon Reed **Emily Slotkin** Julia Glade Bender Asmin Tulpule

CUMC Systems Biology

Prab Mundi

Jovana Pavisic

The Dela Cruz/Kung Lab

Thank You!

