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Abstract— Gait rehabilitation is critical for regaining
locomotor independence after neuromotor injuries like
stroke. Rehabilitation literature indicates the need for such
therapy to continue beyond the clinic in order to maintain
motor function and support recovery. However, implement-
ing community-based rehabilitation requires the ability to
monitor gait in the real-world with clinically relevant accura-
cies. Despite advances in machine learning, achieving this
performance with single sensing modalities has been chal-
lenging using wearable sensors like inertial measurement
units (IMUs) and pressure insoles. Here, we investigate
the benefits of multi-modal sensing by integrating IMU
and insole data to develop individualized machine learn-
ing models in people post-stroke that estimate propulsion,
a key biomechanical variable. We show that in the lab,
IMU + Insole models improve performance relative to IMU
only and Insole only models, with an average root-mean-
squared-error (RMSE) of 0.80 %bodyweight (%BW) across
the stance phase. We obtain RMSEs of 0.71 %BW for peak
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paretic propulsion and 0.19 %BW s for paretic propulsion
impulse, which are within corresponding clinical thresh-
olds. We then explore the application of this algorithm to
track propulsion changes in the real-world for two partici-
pants during variable-speed walking and two participants
during active gait interventions, either functional electri-
cal stimulation or exosuit-applied resistance. For these
participants, we observe similar changes in measured
propulsion in the lab and estimated propulsion out of the
lab across speeds and interventions. Overall, this work
aims to address the challenges in applying machine learn-
ing methods for individuals post-stroke and presents an
investigation into the feasibility of developing estimation
methods for real-world propulsion estimation during gait
rehabilitation.

Index Terms— Estimation, gait biomechanics, machine
learning, wearable sensing.

[. INTRODUCTION

OCOMOTION is a critical activity of daily living and

enables independence. Unfortunately, neuromotor and
traumatic injuries often impair walking ability, leading to
reduced physical activity, cardiovascular health, and quality
of life [1]. Stroke is a neuromotor injury and a leading
cause of locomotor disability, with approximately 795,000
incidents in the United States each year [2]. The field of
gait biomechanics has developed numerous methods to quan-
tify gait kinematics and kinetics, and then mathematically
characterize an individual’s movement pattern [3]. As post-
stroke gait is highly variable, such quantification is particularly
important to gain insight into the biomechanical contributors
of specific impairments and to enable more individualized
and targeted rehabilitation. A common deficit found in
post-stroke gait is reduced propulsion generation in the paretic,
or more impaired, leg [4]. Paretic propulsion, the anteriorly-
directed component of the anterior-posterior ground reaction
force (AP GRF), is correlated with high-level rehabilitation
outcomes such as walking speed and clinically-determined
impairment thresholds [5], [6]. In recent years, assessments
based on propulsion [7] have also been frequently used to
evaluate post-stroke gait rehabilitation interventions, such as
robotic training or functional electrical stimulation (FES)
paradigms [8], [9], [10], [11], [12]. However, measuring
propulsion currently relies on force plates embedded in the
floor or instrumented treadmills found in well-equipped lab-
oratories, which limits the ability to monitor gait recovery
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and evaluate the efficacy of rehabilitative interventions in less
controlled real-world environments. With the well-documented
importance of context-relevant and continuous rehabilita-
tion [13], there is a growing interest in enabling gait training
in the community. Thus, there is an imminent need for AP
GREF estimation methods that are practical for use beyond the
lab, particularly for people post-stroke.

Wearable sensors are low-profile and lightweight research
tools that can capture important components of gait biome-
chanics in such unconstrained real-world environments. In lit-
erature, two commonly used wearable sensors for estimating
AP GRF during gait are inertial measurement units (IMUs)
and pressure insoles [14], [15], [16]. IMUs provide three-
dimensional segmental kinematic information while insoles
provide unidirectional kinetic information representing the
normal component of loading. Both sensors have primarily
been individually integrated into algorithms for healthy pop-
ulations during short walking bouts [17], [18], [19], [20]
and more recently for people post-stroke during overground
walking [10], [21], [22]. IMU-based AP GRF estimation meth-
ods are popular given their relatively lower hardware costs,
and have achieved estimation errors as low as 3.4 %body-
weight (%BW) in unimpaired individuals [19] and 2.6 %BW
in people post-stroke [21]. However, these approaches assume
that kinematics are robustly related to kinetics, which may be
less valid for people post-stroke [23], [24]. On the other hand,
high-resolution pressure insoles may be more effective than
IMUs for estimating AP GRF as they provide a direct, local
measure of loading at the foot. Prior work has shown that in
unimpaired individuals, insoles have been able to achieve esti-
mation errors below 3 %BW for AP GRF [25], [26]. However,
insole use for propulsion estimation in people post-stroke
remains limited, with the best reported performance result-
ing in errors of 6.4 %BW [27]. This lack of use may be
because insoles only measure vertical loading, whereas clin-
ically relevant propulsion metrics rely on shear loads along
the anterior-posterior axis that may require extra informa-
tion or more complex methods to accurately estimate [22].
Given that IMUs and insoles provide fundamentally dif-
ferent information, we hypothesized that leveraging both
kinematic and kinetic data may improve estimation perfor-
mance, as previous work has shown benefits of incorporating
data from diverse sources [28]. Combining IMU and insole
data in unimpaired individuals has shown promising results
in improving estimation accuracy of other biomechanical
metrics, such as tibial loading metrics during running [29].
However, such sensor fusion for estimating biomechanical
metrics in people post-stroke, such as propulsion, remains
unexplored.

Estimation approaches for AP GRF, both with IMUs and
insoles, can be broadly categorized into physics model-based
methods and data-driven machine learning methods [16].
In people post-stroke, there is high variability within and
across individuals, and biomechanical relationships between
sensor data and AP GRF may deviate from normative gait
patterns [23], [30]. Thus, recent work has focused on develop-
ing individualized data-driven models instead of physics-based
models to directly map sensor data to ground truth without
physical constraints [21], [22]. Data-driven models can range
in complexity from linear regression, which is lightweight

and suitable for sensors that are correlated with the target
metric, to non-linear deep neural networks, which can capture
abstract relationships between sensor data and the target metric
but require more intensive computation. Indeed, our prior
work using pressure insoles showed the benefit of neural
networks to estimate planar loads, while linear regression was
sufficient to accurately capture vertical loads [22]. Although
data-driven approaches are promising, the limited walking
capacity of people post-stroke poses a significant challenge
for building sufficiently extensive datasets for both individu-
alized and generalized models [31]. As a result, data-driven
methods, including individual-specific models, are often less
generalizable to unseen conditions and datasets [32], [33].

In this work, we posit that incorporating multi-modal sens-
ing can improve the performance of individualized machine
learning-based models across a range of walking conditions
relevant for real-world use by capturing individual-specific
relationships between kinematics and kinetics. Specifically,
post-stroke gait is affected by walking speed and environ-
ment [34], and by rehabilitation interventions [35]. Given their
similarity to community-based walking, overground walking
datasets are widely preferred for model development, train-
ing, and testing. However, due to the challenging nature of
overground biomechanics collection, these datasets are also
limited in size, both in number of strides and in the range of
walking speeds represented [21], [27]. This lack of breadth
in the data can subsequently lead to the diminished ability
of models trained with these smaller overground datasets to
reliably estimate metrics in real-world scenarios. Conversely,
instrumented treadmills simplify data acquisition but are often
set to a constant speed, resulting in datasets with more
strides at the cost of reduced speed variability. Thus, there is
potential for data collected at various speeds and with various
rehabilitation interventions on a treadmill to augment input
datasets and train machine learning models for overground
and out-of-lab environments.

The objective of this work was to investigate the use
of a multi-modal machine learning method to estimate AP
GRF and propulsion metrics in people post-stroke for future
use in assessments of rehabilitation interventions. We first
evaluate the efficacy of combining IMU and insole data
to estimate propulsion during walking at variable speeds,
compared to Insole only and IMU only models, in both
unimpaired individuals and people post-stroke (Section III. A).
We then investigate the performance of the estimator with
reduced training datasets across different input modalities
(Section III. B). Recent work has further suggested the promise
of transfer learning methods to augment individual-specific
training data with group-level data [10] to reduce the burden
of data generation for any one individual. Thus, we also
investigate the potential to augment smaller clinical datasets
with more readily available unimpaired data to improve perfor-
mance of individualized models through transfer learning [36]
(Section III. B). Finally, we conduct a series of proof-of-
concept application-centric demonstrations to evaluate the
performance of these individualized models under mostly
unseen walking conditions such as overground and out-of-
lab walking (Section IIl. C), and during gait training with
wearable systems, such as FES and a soft resistive ankle
exosuit (Section III. D).
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TABLE |
PARTICIPANT INFORMATION ACROSS DATASETS. ' WORE AN
ANKLE-FOOT-ORTHOSIS ON THE PARETIC LIMB DURING THE
EXPERIMENT. 2USED A CANE DURING THE EXPERIMENT. NOTE THAT
SOME PARTICIPANTS ARE REPEATED, BUT ARE LISTED SEPARATELY
DUE TO POTENTIAL CHANGES IN ANATOMICAL PARAMETERS

Subject ID Height | Weight | Age S Paretic | CWS | No. of
Dataset (cm) kg) | (yrs) | O | Side | (m/s) | Trials
S1 (D1c) 188 813 8 | M L 0.8 4
S2 (Dac) 169 110 60 | M L 0.55 3
FE| S3WDs0) 181 100.5 37 | M R 1.00 6
22 | S4(Dao) 175 84.5 50 | M L 0.9 4
& | S5t (Dse) 167 126 58 F R 0.5 6
S2 (Dgc) 169 110 60 | M L 0.55 5
S6%2 (D7¢) 178 87.4 59 M R 0.5 3
S7 (D1p1) 167 58.1 29 F N/A N/A 5
S8 (Dapy) 164 61.69 27 F N/A N/A 5
28| S9(Dsm) 182.9 793 36 | M N/A N/A 5
g% S10 (Dyfr) 183 84 29 M N/A N/A 5
T & | Sl (Dsy) | 1695 613 24 F N/A N/A 3
S12 (Derr) | 1942 | 109.9 24 | M N/A N/A 5
S13 (D7g) 170 495 24 F N/A N/A 5
oo S3 185 96.6 39 [ M R 0.95 7
$E S6L:2 180 713 60 | M R 0.35 4
w= S14 178 74.9 65 | M L 0.65 8
2 S52 167 1238 | 60 F R 0.35 4
EE S14 178 74.9 65 M L 0.65 4
5= S152 174 62.6 67 | M L 0.40 4
II. METHODS
A. Participants
We collected data from a cohort of six individuals

post-stroke in the chronic phase of recovery (> 6 months
post-stroke, 1F, 5M; age: 54+£9yrs (mean=std); height:
176 + 8 cm; weight: 98 + 17kg) and seven unimpaired adults
(4F, 3M; age: 28+4yrs; height: 176 £ 11cm; weight:
72 +21kg) (see Table I for details). In our clinical cohort,
four participants were left paretic and two participants wore a
rigid ankle-foot-orthosis. One participant completed two visits,
leading to a total of seven clinical datasets (Dic, ... D7c).
We aimed to represent a broad range of impairment levels
in the group, and thus, the comfortable treadmill walk-
ing speeds of the participants ranged from 0.5 to 1.0m/s
(0.71 £0.22 m/s). All unimpaired participants reported no pre-
vious history of musculoskeletal injury or disease. The study
was approved by the Harvard Longwood Medical Area Insti-
tutional Review Board and all individuals provided medical
clearance and written informed consent.

B. Experimental Protocol: Main Study

Participants walked on an instrumented treadmill (Bertec,
Columbus, OH, USA; 2000 Hz) at a range of speeds relative
to a comfortable treadmill walking speed (CWS). The CWS for
clinical participants was determined at the start of the session
by slowly ramping up the treadmill speed until the participant
reported the speed to be too fast and then returning to the
previous comfortable speed. For each walking bout, the tread-
mill was programmed using a custom Simulink (Mathworks,
Natick, MA, USA) script to command pre-set speed profiles
to introduce speed variability both within and across walking
bouts. The commanded profiles were held at a constant speed
for an initial period and then ramped up and down through
a predetermined range of speeds for the remainder of the
walking period (see Fig. 1A for treadmill speed profiles).

Clinical participants walked for three to six 4-minute bouts
(t4 = 240s), depending on the individual’s impairment and
endurance levels (Table I), in which the first 2 minutes were
at a constant speed (#; = 120s). Unimpaired participants
walked for six 10-minute bouts (#4 = 6005s), in which the
first 3 minutes were kept constant (1; = 180s). For the clinical
cohort, the speed of each bout was centered around a different
percentage of the CWS (v = 70— 130 %CWS) [in increments
of 10% CWS], and the order of bouts was randomized. For
the unimpaired cohort, the initial speed (v2) of each trial
ranged from 0.6—1.4 m/s [in 0.2 m/s increments] to capture the
range of speeds observed in our clinical cohort and were also
applied in a randomized order. The minimum and maximum
speeds were defined as a function of the initial speed such
that vy = vy —20 %CWS and v3 = vy +20 %CWS for clinical
participants, and v; = v — 0.2m/s and vz = v2 4+ 0.2m/s for
healthy participants. These minimum and maximum speeds
were held for 15s at a time by the clinical cohort and 60s
at a time by the healthy cohort. A seated rest was provided
between bouts if needed. Half of the participants ramped up in
speed first (a; > 0), while the remaining participants ramped
down in speed first (a; < 0) to account for any effects of
acceleration versus deceleration. Specifically, acceleration of
the ramp sections was commanded such that the speed changed
by vy — v; in 30 seconds.

We measured bilateral lower limb kinematic data from
IMUs (MTi-3, XSens, Enschede, Netherlands) placed on the
feet, shank, and thigh segments at 100Hz via Bluetooth.
Specifically, we obtained segmental orientation angles,
3-dimensional angular velocities, and 3-dimensional local
acceleration measurements from each IMU. We also used
an optical motion capture system to track kinematics of
both legs, which were later used for syncing data sources
(Qualisys, Gothenburg, Sweden; 200 Hz). Participants wore
commercial pressure insoles on both feet (XSensor, Calgary,
AB, Canada; 50Hz), which streamed pressure data from
233 individual sensels (sensing cells) per foot and the center
of pressure (CoP) coordinates. We collected AP GRF data at
2000 Hz from force plates embedded in the treadmill through-
out the walking bouts to serve as ground truth measurements.

C. Data Pre-Processing

The insole data were first normalized by identifying a time
point when the foot was off the ground and zeroing all sensels.
Then, both the insole and IMU data were low-pass filtered
using a zero-phase, 2nd order Butterworth filter with a 10Hz
cutoff frequency to remove noise artifacts. The same filter was
also applied to the force plate data. We additionally applied
a spatial Gaussian filter to the insole data using a standard
deviation o of 0.5 to reduce sensitivity to temporary pressure
points. The standard deviation was selected after a grid search
witho € {0,0.1,0.25, 0.5, 1, 2} and to be consistent with prior
literature [37].

After filtering, we time-aligned all data sources. We first
identified heel strike events using force plate and insole
pressure data independently. Then, stride-by-stride insole data
were interpolated to match timestamps obtained from the force
plate data. The IMU data were synchronized with the motion
capture data, and re-interpolated to match the force plate
timestamps. Only signals that were present in all participants’
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A Experimental Setup Treadmill Speed Schedule
A
- Clinical Healthy
IMUs g Vsl----- Y , t 120 240
2 ’ t: £ +30 £1+30
Instrumented k-] 2 ! ] . i L+15 £ +60
Treadmill ?g’- vl T j 0\ E 14 240 600
o [ : : minv: | 07xcws | 0.6m/s
Insoles . ' '
b : | max v: 1.3x CWS 1.4 m/s
tl tz t3 t4 Vi V2—-0.2x CWS| v2-0.2
Time (S) V3 V2+0.2x CWS| v2+0.2
B Estimation Pipeline
Left Foot
CNN Insole Model
o Insole Averaged Timeseries
2 CNN CNN o FC oty FC "
£ (5x5) (3x3) (84) (84)
scale 60
B (28x28) a0
P LSTM CoP + IMU Model 20
FC FC w o
o
% CoP LSTM  LSTM  LSTM (84x2) E (1) ’ G 20
o o (128) * (128) * (128) '] % .
=) (l\\':./:m/./ .
g o xyz,foot,t scale -80 : ;I;::gle
FC FC FC FC MU
xyzfoott (256) > (256) > (83) —° (83) -100 = Insole +IMU
i Stance Phase (%) 100
C . . .
AP GRF Timeseries AP GRF Peak Propulsion
300
‘ 246 Clinical R? Clinical: 0.97 £ 0.01 P R? Clinical: 0.47 + 0.29
35 Health 200] R? Healthy: 0.99 +0.00 © R? Healthy: 0.93 £ 0.02
3 \J o s 20 "
—_— o0
= 100 X
= =15
i 3
1.061.09 2 o 2
E £
5 -100 E
Clinical 5
-200 P (O Healthy .
. ’ == 11 ,
Peak Propulsion ok o L2
2.49 -300 -200 -100 0 100 200 300 0 5 10 15 20 25
4 True (N) True (%BW)
3.5
g3 Other Metrics RMSE | IMU Only |Insole Only | IMU + Insole
@ 25
N = Prop Imp (%BW s) 0.20 0.25 0.19
%]
P vor 2 Pp (%) 2.98 4.03 3.50
& 1 ! 071 G | Pk Prop Time (%stance) | 2.39 2.55 1.76
03 | |_I_-| r] Z | PropImp (%BW ) 0.16 0.59 0.15
0 L
IMU Only Insole Only IMU + Insole '::é Pp (%) 1.86 3.52 1.49
o
Model X | Pk Prop Time (%stance) 1.27 3.50 1.25

Fig. 1.

A. Experimental protocol with treadmill speed schedule. B. (Left) Multi-modal estimation pipeline. (Right) Sample averaged time series

data across the stance phase for all strides from the participant with the median average RMSE in our clinical cohort. Averages are plotted for the

estimates from the three models along with the ground truth values. C.

(Left) Performance of individual-specific models across the stance phase

with different sensor combinations. Bar plots represent mean RMSE and the error bars represent standard deviations. (Right, Top) Correlation plots
for AP GRF time series data and peak propulsion for both clinical and healthy participants. For AP GRF time series data, we sample every 100th
point from the healthy test sets and every 50th point from the clinical test sets to improve the interpretability of visualization. R2 values listed in the
legend represent the mean =+ std across all datasets. (Right, Bottom) Average RMSE performance across individual-specific models for estimating
point metrics with different sensor combinations. Bolded entries represent the best combination for the corresponding metric and cohort. All data
represent performance on the paretic side in people post-stroke and on the left side for the unimpaired cohort.

data were used as input for the models; thus, we discarded
thigh acceleration data. We further discarded yaw orientation
angles from all limb segments given the known challenges
of drift in this signal over time [38]. A total of 21 signals

were used from the IMUs: 3D local acceleration from the foot
and shank; 3D angular acceleration from the foot, shank, and
thigh; and pitch and roll Euler angles from the foot, shank,
and thigh. For the foot and shank segments, the IMUs were
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placed such that the pitch angle corresponded to the sagittal
plane kinematics, while for the thigh segment, the IMUs were
placed such that the roll angle aligned with the sagittal plane.
Finally, all data were resampled to 100 Hz.

We conducted two additional pre-processing steps prior
to using this data as input to the machine learning models.
First, we subtracted the average signal captured during the
swing phase of the first stride in each trial from the insole
data, which we assumed should theoretically be zero in the
absence of noise. We then resized the insole sensel array
into a 28 x 28 square map using pixel area interpolation in
OpenCV [39] to enhance compatibility with machine learn-
ing methods for image processing, i.e., convolutional neural
networks [40].

Trials in which any of the data were missing due to technical
complications (e.g., dropped Bluetooth packets) were excluded
from further analysis. The number of trials used from each
dataset is provided in Table I.

D. Model Development

1) Model Architecture: To fuse the input data while also
learning sensor-specific patterns, we used an architecture with
separate networks for each input mode that are merged at a
later stage (Fig. 1B). In our prior work, we found that a con-
volutional neural network (CNN) is well-suited for pressure
insole data given its image-like structure, and thus, we chose
to use the same network architecture given its demonstrated
efficacy [22]. Briefly, the network used for the insole data
in this work, and described in Bergamo et al. [22], contained
two convolutional layers with kernel sizes of 5 and 3, with
average pooling layers between the convolutional layers. The
convolutional layers were followed by a fully-connected (FC)
layer with 84 neurons. The IMU and CoP data have a
time series structure, with prior data informing future states.
Long Short-Term Memory networks (LSTMs) are a form of
recurrent neural networks that are widely used to predict
information using time series data [41], [42]. Thus, we used
an LSTM architecture to learn the underlying structure of the
IMU and CoP time series data, using sequences of 5 timesteps,
corresponding to approximately 50 ms periods. The sequence
length was determined by considering the tradeoff between
model performance on a validation set (see: I1I-D.2) and the
increase in model complexity. The LSTM comprised three
bidirectional LSTM layers with 128 hidden features each,
followed by two FC layers with 256 neurons each and one FC
layer with 84 neurons. The outputs of the final FC layers from
the insole and IMU networks were then merged as input to an
additional FC layer with 168 neurons. Last, we added an FC
layer with 10 neurons to map to ground truth AP GRF data at
the corresponding frame. We used rectified linear unit (ReL.U)
activation functions for the output of each layer prior to the
final FC layer to capture nonlinearity in the data. In the Insole
only and IMU only models, the last sensor-specific output was
fed into an FC layer with 84 neurons instead of 168 neurons
and all other layers were unmodified. Of note, CoP data was
only used in the Insole only and IMU + Insole models.
Fig. 1B depicts the estimation pipeline for the “Insole only,”
“IMU only,” and “IMU + Insole” configurations.

2) Train-Validation-Test Splits: To train these individual-
specific models, we separated each dataset into training,

validation, and test sets by walking bout. The validation sets
were used to select the final set of model weights. Specifically,
the walking bouts closest to the comfortable walking speed
were used as the validation and test sets, while all remaining
walking bouts were used as training data. Both IMU and
insole data were normalized to the range observed in the
training dataset using min-max normalization. IMU data were
normalized by sensor and signal (e.g., 3D acceleration for
the foot IMU were normalized together). Data corresponding
to the swing phase were removed to prevent overfitting to a
region where AP GRF is consistently zero. Similar to our prior
work, we used the Adam optimizer with a learning rate of 5e-4
and a weight decay of le-5, and the mean squared error loss
to train each model over 500 epochs [22]. All neural network
code was written using Pytorch 2.1.2 [43].

For all clinical datasets, we also explored the training data
requirements for accurate estimation by varying the datasets
used to train the models. We investigated the total time of
walking required to train the models for clinical datasets,
independent of the walking speed. For each clinical dataset,
we combined data from all walking bouts and varied the ratio
of data used in the training set. Specifically, we used the first
15%, 30%, 45% and 60% of each walking bout as the training
set, the next 10% for validation, and the remainder as the
test set. For each trial, 15% is approximately 30 seconds of
walking. We note that in this approach, the constant regions
of all walking bouts are represented in the training set, with
the 60% condition also including some of the varying speed
periods. Then, we investigated using the same ratios, but by
using the last section of the walking trials as training data.
This split then increased the range of speeds in the training
datasets without increasing its size.

3) Transfer Learning: As another approach to tackle
the challenges of small datasets with clinical populations,
we investigated the potential of leveraging unimpaired data
to supplement clinical estimates. We implemented transfer
learning by using all healthy datasets for pre-training and
then fine-tuning to create the final individual-specific mod-
els. Specifically, all training data from healthy individuals
were combined and used to pre-train the same multi-modal
estimation model architecture for 1000 epochs (Fig. S1).
The last weights from pre-training were used to initialize
the individualized model and represent the best performing
weights on the healthy training data. Then, the model was
fine-tuned on the paretic side data from each clinical dataset
for 500 epochs. This fine-tuned model was evaluated on the
same intermediate walking bout as in the main investigation.
We evaluated the relative performance of models with and
without fine-tuning using both, 100% and the last 50%, of the
training and validation data, while the test dataset remained
unchanged.

E. Evaluation Metrics

We evaluated model performance across all sensor input
combinations using root-mean-squared error (RMSE) scaled
to the participant’s bodyweight, and the coefficient of deter-
mination (R?) between the estimated and true AP GRF values
during stance. We additionally computed normalized RMSE
(NRMSE) as the RMSE scaled to the range of the test
data during the stance phase. To test the hypothesis that
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multi-modal models would outperform single-mode models,
we conducted pairwise f-tests between the IMU + Insole
and IMU only models, and between the IMU + Insole
and Insole only models. The r-tests were performed sepa-
rately to evaluate the performance of these models across all
clinical and healthy datasets. Model errors from both legs
were pooled for both cohorts. To determine the practicality
of the approach, we also assessed the model’s performance
in estimating key point metrics of paretic propulsion that
have been linked to impairment levels in people post-stroke:
peak propulsion magnitude, propulsion impulse, and paretic
propulsion symmetry [44]. Peak propulsion was defined as
the maximum AP GRF. Propulsion impulse calculations were
performed by time-integrating the positive region of AP GRF
during stance. Propulsion symmetry was computed as the
ratio between the paretic propulsion impulse and the total
propulsion impulse from both limbs, with 50% representing
perfect symmetry [4]. We compared RMSE values to the min-
imal detectable change (MDC), which represents the expected
variability in a population for a given activity, during treadmill
walking for people post-stroke [45]. Finally, we also evaluated
errors in the timing of peak propulsion as a percentage of
the stance phase. We focused on the left leg for all healthy
participants, assuming bilateral symmetry, and the paretic leg
in people post-stroke given our target application.

F. Experimental Protocols: Proof-of-Concept
Application-Centric Demonstrations

After evaluating the estimation performance of the trained
models, we conducted a series of proof-of-concept exploratory
experiments to assess the feasibility of deployment in real-
world environments. For all experiments, the same measure-
ments were collected and the same post-processing pipelines
were used as in the main study unless otherwise stated.

Given that the model was developed using treadmill data,
we were interested in evaluating its ability to predict data
during walking in unconstrained environments. Three people
post-stroke (> 6 months post-stroke, 3M; age: 55+ 14 yrs;
height: 181 £4cm; weight: 81+ 14kg) were invited for a
separate single-session study. The three individuals (S3, S6,
and S14) presented with varying baseline comfortable walking
speeds, ranging from 0.35m/s to 0.95m/s, to represent a
wide array of impairment levels. Participants completed three
treadmill walking bouts, three overground walking bouts, and
three out-of-lab walking bouts, one each at their self-selected
slow, comfortable, and fast walking speeds. The treadmill
bouts followed the same scheduling as in the main study.
The model was trained on all treadmill bouts and the slow
overground walking bout. The fast overground walking bout
was used for validation, and the last overground walk, at their
comfortable speed, was used for testing. We then estimated
changes in paretic propulsion as participants walked along an
out-of-lab straightaway and were asked to vary their speed
at 10m increments. One participant (S6) was only able to
complete two treadmill trials and one overground trial due to
fatigue. For this individual, we trained and validated the model
using the treadmill data and tested on the overground data.

Then, we aimed to assess the utility of this approach to track
propulsion during active gait training. We brought in three
participants post-stroke for single-session data collections

(> 6 months post-stroke, 1F, 2M; age: 64 +4yrs; height:
173+ 6cm; weight: 87 +32kg). Participants (S5, S14,
and S15) completed two treadmill walking bouts, one over-
ground walking bout, and one out-of-lab walking bout, all
at a constant self-selected comfortable speed. Each bout was
four minutes long and comprised one minute of unperturbed
baseline walking, two minutes of active intervention, and one
minute of unperturbed post-intervention walking performed
in sequence. Treadmill speeds were kept constant to prevent
instability from concurrent changes in speed and intervention
state for the participant, as well as to reduce confounding
factors in propulsion changes during analysis. Two individuals
received resistive exosuit training, which has been shown
to influence propulsion within two minutes of training [12].
One individual received FES, which has also shown propul-
sion benefits in this population [9], [46]. Parameters of the
exosuit-applied resistance and FES were determined prior to
the start of the walking trials using previously established
techniques [12], [47]. The model was trained and validated
on the treadmill bouts and tested with the overground walking
bout. We used the trained model to track paretic propulsion
during the first baseline period (one minute) and the active
intervention period (two minutes).

[1l. RESULTS

A. Effects of Multi-Modal Sensor Input Across
Participants

We first investigated the performance of each sensor input
combination. We find that in both healthy and clinical cohorts,
the average test RMSE across the stance phase is usu-
ally improved through multi-modal sensor inputs (Fig. 1C,
Table S1). In our healthy cohort, the multi-modal model archi-
tecture performed best for six out of seven datasets, typically
followed by the IMU only and Insole only models. Across
datasets, the average RMSE with the IMU + Insole model
was 0.86 +=0.15 %BW, versus 1.09 +0.15 %BW with the IMU
only model and 2.46 + 1.15 %BW with the Insole only model.
The RMSE of the IMU + Insole model was significantly
lower than those of the Insole only (p < 0.001) and IMU
only (p = 0.009) models across both legs. Similarly, the
NRMSE is minimized at 1.984-0.27% and R? is maximized
at 0.99 £0.00 with the IMU + Insole model. We find that
in people post-stroke, the IMU + Insole model performed
best for six out of seven datasets, while performance between
IMU only and Insole only models varied across datasets.
Specifically, the IMU 4 Insole model resulted in an average
RMSE of 0.80+0.16%BW, versus 1.06+0.24 %BW and
1.174+0.40 %BW with IMU only or Insole only models,
respectively. The RMSE of the IMU + Insole model was
significantly lower than those of the Insole only models
(p = 0.034) and trended towards significantly lower than those
of the IMU only models (p = 0.055). On average, correlations
between the estimated and true AP GRF were also strongest
with the IMU + Insole models, followed by the IMU only
and Insole only models. These results are also consistent with
the contralateral non-paretic side in the clinical cohort and the
right side in the healthy cohort (Table S2).

Moreover, this improvement in estimator performance
across the time series translated to increased accuracy
in capturing key clinical point metrics (Fig. 1C), with
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Fig. 2. Average effect of training dataset size and speed variabil-

ity across our clinical datasets ranging from 15% to 60% of all the
walking trials. Solid lines indicate using the start of each walking bout
(“Forward” split), which primarily contains constant speed walking, while
dashed lines indicate using the end of each walking bout for train-
ing (“Reverse”split), which contains both varying and constant speed
walking.

an average RMSE of 0.71 £0.22%BW in peak propulsion
and 0.19 £0.07 %BW s in propulsion impulse during stance,
both of which are within the MDC thresholds for treadmill
walking of 0.80%BW and 0.24 %BW: s, respectively [45].
Propulsion symmetry was also estimated with an RMSE of
3.50 £2.44% with the IMU + Insole models, which is below
the corresponding MDC of 3.92%. We further find that these
models capture the timing of peak propulsion to within 2% of
the stance phase. For the IMU + Insole models, estimated
versus true point metrics are plotted for each dataset in
Fig. S2, and errors for each clinical dataset are provided
in Table S3.

B. Effects of Multi-Modal Sensor Input Across Training
Datasets

We observed that the benefit of using multi-modal input
was also preserved when using smaller proportions of each
walking trial for training (Fig. 2). On average, with the
first 15% (~30s) of each trial, RMSE was 0.90 %BW with
IMU + Insole compared to 1.09 %BW and 1.38 %BW with
IMU only and Insole only, respectively. Similarly, with the
first 60% of each trial, RMSE was 0.71 %BW with IMU +
Insole compared to 0.90 %BW and 1.03 %BW with IMU only
and Insole only, respectively. We also found that for the 15%
training datasets, introducing more speed variability in the
training data improved performance compared to datasets of
equal size with less variability. Specifically, by using the speed
ramp sections at the end of the trial (“Reverse” in Fig. 2)
rather than the constant speed sections at the start of the trial
(“Forward” in Fig. 2), estimation errors were reduced. For
example, with the IMU + Insole model, using the last 15%
of the trials resulted in an RMSE of 0.83 %BW compared

to 0.90 %BW with the first 15%, and this trend is present in
the IMU only and Insole only models as well.

We also found that pre-training the models on our healthy
dataset and then fine-tuning on half the dataset for each
individual reduced average estimator error across the AP GRF
time series data from 0.93 %BW to 0.86 %BW (Table S4).
We observed reductions in error of more than 0.1 %BW
for two out of seven datasets, changes within 0.1 %BW for
four datasets, and an increase of more than 0.1 %BW for
one dataset. Changes in peak propulsion estimation accu-
racy aligned with the time series estimation performance.
Conversely, applying transfer learning to the full dataset led
to negligible changes relative to the base individualized model
(Table S5).

C. Demonstration of Propulsion Estimation Across
Varied Environments

In our exploration of predicting propulsion during walk-
ing in unconstrained environments, we found that propulsion
estimation accuracy was reduced during overground walking
after training the models primarily on treadmill walking.
However, using multi-modal estimation still resulted in slightly
improved transfer to overground walking, with an average
RMSE of 1.95%BW, compared to 2.03%BW with IMU
only and 2.68 %BW with Insole only (Table II). As there is
no ground truth outside of the lab, we compared out-of-lab
estimates of peak propulsion across participants’ self-selected
slow, comfortable, and fast speeds with true peak propulsion
obtained from force plates during overground walking in the
lab, also at participants’ self-selected speeds. Changes in
propulsion estimates during walking in real-world environ-
ments mirrored changes in ground truth propulsion observed
within the lab (Table II, Fig. 3). For example, in the lab,
S3 increased speed by 0.72m/s (slow to fast walking)
with a corresponding increase in peak paretic propulsion
of 10.57 %BW. Similarly, along an outdoor sidewalk, this
participant increased walking speed by approximately 0.54 m/s
with a corresponding estimated increase in peak paretic
propulsion of 7.76 %BW. For S14, we found that an increase in
speed from 0.76 to 0.97 m/s (slow to medium) was associated
with an increase in peak propulsion of 1.57 %BW. In a hallway
outside of the lab, we estimated that an increase in speed
from 0.70 to 0.93m/s (medium to fast) was associated with
an average increase in peak propulsion of 1.52 %BW.

D. Tracking Propulsion During Active Gait Training

Then, we aimed to assess the utility of this approach to track
propulsion during active gait training with either a resistive
exosuit or an FES neuroprosthesis. Consistent with our prior
tests, we found that AP GRF estimation accuracy during
gait training was maximized by the IMU + Insole models
(Table III). This improvement was consistent both with and
without active external intervention via a soft wearable exosuit
(S5 and S14) or FES (S15).

We again compared ground truth changes in peak propulsion
in the lab with out-of-lab estimates. We found that our
estimates of peak propulsion changes from the baseline to the
active periods were similar between in-lab overground walking
and out-of-lab walking for two participants, S14 and S15
(Table S6). Specifically, for S14, peak propulsion during active
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TABLE Il
FEASIBILITY OF USING MOSTLY TREADMILL DATA TO TRAIN MODELS FOR TRACKING PARETIC PROPULSION DURING UNCONSTRAINED
WALKING. RMSE AND R2 VALUES ARE FROM THE TEST SET COMPRISING OVERGROUND WALKING AT A SELF-SELECTED COMFORTABLE
SPEED. S3 IS A HIGH-LEVEL PARTICIPANT, S6 IS A LOW-LEVEL PARTICIPANT, AND S14 IS A MID-LEVEL PARTICIPANT. NO OUTDOOR
DATA WAS COLLECTED FOR S6, SO WE ONLY PRESENT RESULTS FROM S3 AND S14 OUT OF THE LAB

Subject IMU Only Insole Only IMU + Insole

D RMSE (%bw) | R? | RMSE (%bw) | R%? | RMSE (%bw) | RZ
S3 (High) 1.74 0.95 2.49 0.90 2.05 0.95
S6 (Low) 1.62 0.58 2.31 0.72 0.94 0.85
S14 (Mid) 2.72 0.85 3.24 0.81 2.87 0.86

Average peak paretic propulsion across speeds (%bw) /

Estimated walking speed (m/s)
In-lsazbn(nt(?:i):rll i(::teufé;ltes Real-World Estimated

Slow Med Fast Slow Med Fast

s3 Pk Prop 5.88 10.12 16.45 6.72 10.27 14.48
Walking Speed 0.81 1.14 1.53 0.51 0.75 1.05

S14 Pk Prop 3.52 5.09 7.88 4.81 5.90 7.42
Walking Speed 0.76 0.97 1.27 0.61 0.70 0.93

TABLE Il
FEASIBILITY OF TRACKING PROPULSION DURING GAIT
INTERVENTIONS CONDUCTED IN UNCONSTRAINED WALKING.
ALL MODELS WERE TRAINED AND VALIDATED WITH TREADMILL
DATA, AND TESTED DURING OVERGROUND WALKING IN THE LAB.
BASELINE RESULTS INCLUDE THE FULL MINUTE OF PRE-EXPOSURE
WHILE THE ACTIVE RESULTS INCLUDE THE FULL TwO
MINUTES OF ACTIVE INTERVENTION

Subject IMU Only Insole Only IMU + Insole
ID Baseline Active Baseline Active Baseline Active
S5 N/A 1.48 7 0.90 N/A 2.12/0.88 N/A 1.30 / 0.92
S14 261/093 253/090 257/096 3.08/0.83 | 1.56/096 2.02/0.93
S15 1.80/0.90 1.36/094 257/0.74 241/0.70 | 1.48/0.94 1.06/0.97

exosuit resistance was 1.13 %BW larger than during the base-
line period in the lab. During out-of-lab level-ground walking,
estimated peak propulsion during active exosuit resistance was
1.19 %BW larger than during the baseline period. Similarly,
for S15, we found a decrease of 0.15 %BW in peak propulsion
during active FES during in-lab overground walking compared
with an estimated decrease of 0.14 %BW during out-of-lab
walking. S5 did not have any usable data from the force plates
during the in-lab overground section for comparison.

We also observed that the model was sensitive to envi-
ronmental changes during outdoor walking. For example,
S14 walked around an inclined triangular pathway while the
soft exosuit alternated between being transparent and applying
active resistance. We observed changes in propulsion estimates
that corresponded both with the slope of the walkway and
with the exosuit state (Fig. 4). Further investigation is required
to decouple the relative effects of the environment from the
intervention.

IV. DISCUSSION

In this work, we demonstrate clinically relevant propul-
sion estimation for people post-stroke by leveraging kine-
matic and kinetic information from IMUs and pressure

insoles (Section III. A). We show that multi-modal esti-
mation improves generalizability of the learned models to
new walking speeds and environments across individuals
(Section III. C). Moreover, by using a multi-modal model
architecture, we observe improved performance with small
datasets, which suggests its increased utility for populations
with higher fatigability, who may not be able to walk to
generate larger training datasets (Section III. B). We show
that for a subset of our cohort, we can further mitigate the
challenges of smaller datasets by applying transfer learning
techniques between healthy and post-stroke datasets. Finally,
we demonstrate the potential for this multi-modal estimation
approach to enable monitoring of paretic propulsion in uncon-
strained environments and during active gait rehabilitation
(Section III. D).

A. Multi-Modal Models Enable Accurate Estimation
in People Post-Stroke

A unique challenge to developing estimation methods for
individuals post-stroke is the relatively small magnitudes of
propulsion generated on the paretic limb and the corre-
spondingly small changes that are clinically relevant [44].
Consequently, there are limited prior benchmarks for
post-stroke propulsion estimation. To date, the best reported
propulsion estimation accuracy for subject-specific models in
people post-stroke is an error of 1 %BW with an IMU only
model that uses a full stride of kinematics data to predict
AP GRE, including the swing phase, introducing an estimation
delay of one stride [10]. With the multi-modal architecture,
we achieved improved performance with errors below the
corresponding minimal detectable change (MDC) thresholds
for peak propulsion, propulsion impulse, and propulsion
symmetry [45]. The MDC represents a measure of variability
within the population, and thus these results suggest that our
method can capture any change in an individual that is not
just from stride-to-stride variability. Moreover, by estimating
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Fig. 3. Demonstration of estimator performance across different environments for a sample participant. Models were trained using three trials of
treadmill walking (slow: SWS, comfortable: CWS, and fast: FWS) and one overground trial, and validated and tested on overground trials. We then
estimated AP GRF in out-of-lab environments as individuals varied their speed every 10 m. For this participant, we observe that the estimator also
captures a halt in walking around 8 s into the outdoor trial due to a toe cramp.

sample-by-sample data, our approach allows for high accuracy
in estimation with negligible latency in predictions, suggesting
its potential for use in active rehabilitation applications.

B. Multi-Modal Models Improve Estimation Across
Environments in People Post-Stroke

We further showed that multi-modal estimation was best
across varying speeds and environments, both of which often
vary throughout the course of rehabilitation and recovery
as mobility levels evolve [48], [49], [S0]. Given that both
loading and kinematic variables are modified as walking
speed changes, this result may reflect the model’s ability to
encode the various contributors to walking speed [51] and

extrapolate to other unseen conditions. Similarly, we found
that using both sources of information allowed for improved
performance during overground walking. In our out-of-lab
demonstrations, we found that the IMU + Insole model
captured the same magnitude and direction of change in peak
propulsion relative to different self-selected walking speeds in
and out of the lab. While we do not have access to ground
truth outside of the lab, this approach of validation using
correspondence between changes observed in the lab across
different walking conditions and those estimated outside of
the lab has also been used in prior work [10], [52]. IMUs are
commonly used in translation-focused estimation methods as
users are often already in possession of these sensors in the
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Fig. 4. Tracking paretic propulsion with and without active exosuit-applied resistance on an outdoor triangular path. The path was not perfectly flat,
with each side having a slight incline or decline. We observe that the estimated propulsion reflects changes in accordance with the incline of the

path as well as in response to the active section of training.

form of phones and fitness trackers. Indeed, prior work has
shown the ability of a single IMU at the pelvis to capture
multiple kinematic and kinetic features of gait in healthy
individuals [53]. However, in addition to increased stride-
by-stride kinematic variability [23], people post-stroke can
also experience tremors [54] that introduce additional noise
into IMU data. Moreover, IMU calibration and placement
sensitivity are known challenges in the field [55], [56], and the
increased presence of non-sagittal plane motion, such as gait
compensations [57], may further complicate the relationship
between IMU placement and kinetic measurements.

Although we did not directly test over very long durations
(i.e., multiple days), our findings suggest that directly captur-
ing loading measurements in addition to IMU measurements
improves AP GRF estimation, even with the slight shifts in
sensor placement that may occur over the course of a few
hours. While the increased dimensionality of the input data
may contribute to these performance improvements, prior work
has shown that combining multiple sensor types is important
for accurately estimating gait biomechanics in healthy indi-
viduals [58]. Multi-modal estimation has also been shown
to improve model generalizability to new contexts in other
domains, such as running and health monitoring [29], [59], and
thus our work aligns with these principles in the clinical gait
biomechanics domain. An increasing number of studies are
investigating the efficacy of community-based rehabilitation
interventions with and without wearable systems in various
populations [10], [60], [61], [62]. This work suggests that with
a combination of wearable sensors, changes in key metrics
can be reliably estimated and used to continuously evaluate
efficacy of these interventions outside the lab.

C. Multi-Modal Models Improve Propulsion Estimation
With Scarce Datasets

This generalizability to new walking conditions is partic-
ularly important for people post-stroke where obtaining long

periods of walking data presents a challenge but where gait
often changes over time with physical therapy or muscle
atrophy. While most prior literature uses overground walking
datasets to better represent overground walking in the real
world [63], they are limited in size. We aimed to mitigate
this scarcity of data by using treadmill data to train our
model and modulated speed both during and across walking
bouts to introduce more variability into the dataset [64].
Acknowledging the complex relationship between dataset size
and network complexity [65], we also investigated model
performance after training on smaller proportions of the train-
ing datasets and found that multi-modal models consistently
outperformed Insole only and IMU only models. This result
may be due to multi-modal sensing supplementing the lack of
data with richer, higher dimensional information. We further
found that increasing variability in the training set by includ-
ing more of the speed-ramp periods than the constant-speed
periods reduced estimation error with the smallest training
set investigated. We suggest this may be partially due to
the fact that more speeds were included in the training set,
but also due to the learned weights reflecting the trends
between the IMU and insole data, walking speed, and AP GRF
output. These results align with prior work in machine learning
literature that has shown that including small amounts of out-
of-distribution data in the training set improves overall model
performance [66], [67]. Our smallest dataset used approxi-
mately 25% of all the data collected for a given individual for
model training and validation, which corresponds to an average
walking duration of about 4.5 min per individual. This duration
is less than the commonly used 6-minute walk test [68] and
is feasible for most ambulatory people post-stroke.

Although a generalized model would require no data from
an unseen individual and increase accessibility for people
post-stroke, the amount of data required remains a limita-
tion as individuals use a variety of assistive devices and
exhibit a wide range of gait patterns, and may be addressed
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in the future as large biomechanics datasets grow in the
community [69], [70]. Instead, an individualized model that
uses short walking durations to estimate kinetics in a broad
range of contexts may be most clinically appropriate. For
individuals for whom obtaining sufficient data to train a
subject-specific model presents a challenge, we can augment
the training dataset with data from other individuals and speeds
as pre-training and apply transfer learning methods [36] to
improve estimation accuracy. We used the healthy dataset,
with approximately 7 hours of walking data, to pre-train each
individual model, and observed substantial reductions of at
least 0.1 %BW in estimation errors for a subset of individuals.
However, these improvements were only evident when using
half of the individual-specific fine-tuning dataset (~12min
instead of 24 min), suggesting that transfer learning is only
helpful when there is limited data in the target domain,
similar to prior uses of transfer learning for medical applica-
tions [71], [72]. Individuals for whom estimation performance
improved from fine-tuning were independent of impairment
level, paretic side, and dataset size, suggesting that the healthy
data contained relevant information for a wide range of
gait presentations, but that further investigation is required
to understand which individuals benefit most from leverag-
ing transfer learning. This initial characterization provides a
benchmark for future studies to use to decide whether to
collect the necessary data to pre-train a model based on their
accuracy needs. However, we expect that by enabling AP
GREF estimates in the community, new thresholds that indicate
meaningful differences in estimation accuracy will emerge as
more studies are conducted in ecologically relevant contexts.

D. Multi-Modal Models Estimate Propulsion Changes
During Active Gait Rehabilitation

Towards the ultimate goal of enabling gait rehabilitation
in unconstrained environments for people post-stroke [13],
multi-modal estimation outperformed both IMU only and
Insole only estimation in a number of test cases. We found
that multi-modal estimation performed best during active gait
training with a resistive exosuit or an FES neuroprosthesis.
In addition to monitoring biomechanical responses, wearable
sensors have been used to inform parameters of robotic sys-
tems for healthy individuals [73], people post-stroke [5], and
individuals with cerebral palsy [74]. Similarly, FES profiles for
individuals with incomplete SCI have also been defined using
IMU-based measures [75]. Thus, this work opens the possi-
bility of leveraging accurate estimates of propulsion or other
related biomechanical metrics to further inform rehabilitation
parameters with active gait interventions.

E. Limitations and Future Directions

Although these results are promising, there are several
limitations to acknowledge to understand the scope of this
work. We elected to develop individualized models to account
for the high variability in this population, but this requires
individual-level data from any new person. Our investigation
into the use of healthy data to augment smaller datasets
from individuals post-stroke aimed to account for the reduced
dataset sizes from clinical participants, but further study is
required to quantify the implications of data augmentation
for setting minimum data collection requirements. Leveraging

unsupervised learning techniques such as unsupervised domain
adaptation and manifold embeddings may further reduce data
requirements for model development in this population [76].

This work was also conducted through a series of single-
session data collections, and the model’s performance across
days was not evaluated. Sensor positions may significantly
vary on different days, which could adversely affect model
performance. Future work may involve collecting and includ-
ing data with varying sensor placements, or randomly shifting
and rotating the current training data as a form of data aug-
mentation, to further improve model robustness [77]. For the
intended purpose of tracking propulsion throughout the course
of rehabilitation, additional study is required to understand
the sensitivity of these algorithms to day-to-day variability in
individuals. For example, model performance may decline as
a person’s gait pattern changes over time during rehabilita-
tion, and thus may require continuous or frequent updates to
the model parameters. Future work may use data collected
before and after longitudinal gait training to estimate AP GRF
during the training process [10]. Incorporating physics-driven
features or task-specific constraints into the model may also
enhance the generalizability of the model without the need
for additional training data [78], [79]. Moreover, leveraging
open-source datasets that include a large number of individuals
with diverse health conditions could be useful for creating
generalized models [80], [81].

In this work, we used a high-resolution commercial pres-
sure insole. However, insoles can vary in their underlying
sensing mechanism, spatial resolution, mechanical properties,
and accuracy. Thus, directly applying a model trained on
a new insole sensor would likely result in reduced model
performance. In addition to transfer learning, future work
may investigate simulating new sensors either as a subset
of high-resolution sensor data or from force plate data [82].
Another approach may be to apply a teacher-student network
approach, where a teacher model from one sensor guides the
training of a student model for a different sensor [83].

Finally, while we aimed to capture a wide range of impair-
ment levels in our clinical cohort, all our participants were in
the chronic phase of recovery. Motor recovery occurs much
more rapidly during the acute phase of stroke [84], so future
work should determine whether this method is still feasible in
these populations.

V. CONCLUSION

In conclusion, this work aims to develop a method for
propulsion estimation that enables clinically viable monitoring
of paretic limb mechanics. We show that leveraging data
from two fundamentally different measurement sources, rep-
resenting kinematic and kinetic information, enables improved
estimation accuracy and generalizability of key propulsion
metrics. We further demonstrate the feasibility of this approach
for tracking changes in propulsion with different popula-
tions, speeds, environments, and gait training interventions.
We expect this work will provide an analytical tool to support
and enable future community-based rehabilitation programs
for people post-stroke. Altogether, these findings support the
benefit of combining IMUs and insoles for propulsion esti-
mation in real-world applications in the context of post-stroke
gait rehabilitation.
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