/* * A speed-improved simplex noise algorithm for 2D, 3D and 4D in JavaScript. * * Based on example code by Stefan Gustavson (stegu@itn.liu.se). * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). * Better rank ordering method by Stefan Gustavson in 2012. * * This code was placed in the public domain by its original author, * Stefan Gustavson. You may use it as you see fit, but * attribution is appreciated. */ function FastSimplexNoise(options) { if (!options) options = {}; this.amplitude = options.amplitude || 1.0; this.frequency = options.frequency || 1.0; this.octaves = parseInt(options.octaves || 1); this.persistence = options.persistence || 0.5; this.random = options.random || Math.random; var i; var p = new Uint8Array(256); for (i = 0; i < 256; i++) { p[i] = i; } var n, q; for (i = 255; i > 0; i--) { n = Math.floor((i + 1) * this.random()); q = p[i]; p[i] = p[n]; p[n] = q; } // To remove the need for index wrapping, double the permutation table length this.perm = new Uint8Array(512); this.permMod12 = new Uint8Array(512); for (i = 0; i < 512; i++) { this.perm[i] = p[i & 255]; this.permMod12[i] = this.perm[i] % 12; } } FastSimplexNoise.G2 = (3.0 - Math.sqrt(3.0)) / 6.0; FastSimplexNoise.G3 = 1.0 / 6.0; FastSimplexNoise.G4 = (5.0 - Math.sqrt(5.0)) / 20.0; FastSimplexNoise.GRADIENTS_3D = [ [ 1, 1, 0], [-1, 1, 0], [ 1,-1, 0], [-1,-1, 0], [ 1, 0, 1], [-1, 0, 1], [ 1, 0,-1], [-1, 0,-1], [ 0, 1, 1], [ 0,-1,-1], [ 0, 1,-1], [ 0,-1,-1] ]; FastSimplexNoise.GRADIENTS_4D = [ [ 0, 1, 1, 1], [ 0, 1, 1,-1], [ 0, 1,-1, 1], [ 0, 1,-1,-1], [ 0,-1, 1, 1], [ 0,-1, 1,-1], [ 0,-1,-1, 1], [ 0,-1,-1,-1], [ 1, 0, 1, 1], [ 1, 0, 1,-1], [ 1, 0,-1, 1], [ 1, 0,-1,-1], [-1, 0, 1, 1], [-1, 0, 1,-1], [-1, 0,-1, 1], [-1, 0,-1,-1], [ 1, 1, 0, 1], [ 1, 1, 0,-1], [ 1,-1, 0, 1], [ 1,-1, 0,-1], [-1, 1, 0, 1], [-1, 1, 0,-1], [-1,-1, 0, 1], [-1,-1, 0,-1], [ 1, 1, 1, 0], [ 1, 1,-1, 0], [ 1,-1, 1, 0], [ 1,-1,-1, 0], [-1, 1, 1, 0], [-1, 1,-1, 0], [-1,-1, 1, 0], [-1,-1,-1, 0] ]; FastSimplexNoise.dot2D = function (g, x, y) { return g[0] * x + g[1] * y; }; FastSimplexNoise.dot3D = function (g, x, y, z) { return g[0] * x + g[1] * y + g[2] * z; }; FastSimplexNoise.dot4D = function (g, x, y, z, w) { return g[0] * x + g[1] * y + g[2] * z + g[3] * w; }; FastSimplexNoise.prototype.get2DNoise = function (x, y) { var amplitude = this.amplitude; var frequency = this.frequency; var maxAmplitude = 0; var noise = 0; var persistence = this.persistence; for (var i = 0; i < this.octaves; i++) { noise += this.getRaw2DNoise(x * frequency, y * frequency) * amplitude; maxAmplitude += amplitude; amplitude *= persistence; frequency *= 2; } return noise / maxAmplitude; }; FastSimplexNoise.prototype.get3DNoise = function (x, y, z) { var amplitude = this.amplitude; var frequency = this.frequency; var maxAmplitude = 0; var noise = 0; var persistence = this.persistence; for (var i = 0; i < this.octaves; i++) { noise += this.getRaw3DNoise(x * frequency, y * frequency, z * frequency) * amplitude; maxAmplitude += amplitude; amplitude *= persistence; frequency *= 2; } return noise / maxAmplitude; }; FastSimplexNoise.prototype.get4DNoise = function (x, y, z, w) { var amplitude = this.amplitude; var frequency = this.frequency; var maxAmplitude = 0; var noise = 0; var persistence = this.persistence; for (var i = 0; i < this.octaves; i++) { noise += this.getRaw4DNoise(x * frequency, y * frequency, z * frequency, w * frequency) * amplitude; maxAmplitude += amplitude; amplitude *= persistence; frequency *= 2; } return noise / maxAmplitude; }; FastSimplexNoise.prototype.getRaw2DNoise = function (x, y) { var G2 = FastSimplexNoise.G2; var dot2 = FastSimplexNoise.dot2D; var grad3 = FastSimplexNoise.GRADIENTS_3D; var perm = this.perm; var permMod12 = this.permMod12; var n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in var s = (x + y) * 0.5 * (Math.sqrt(3.0) - 1.0); // Hairy factor for 2D var i = Math.floor(x + s); var j = Math.floor(y + s); var t = (i + j) * G2; var X0 = i - t; // Unskew the cell origin back to (x,y) space var Y0 = j - t; var x0 = x - X0; // The x,y distances from the cell origin var y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { // Lower triangle, XY order: (0,0)->(1,0)->(1,1) i1 = 1; j1 = 0; } else { // Upper triangle, YX order: (0,0)->(0,1)->(1,1) i1 = 0; j1 = 1; } // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3 - sqrt(3)) / 6 var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords var y1 = y0 - j1 + G2; var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords var y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners var ii = i & 255; var jj = j & 255; var gi0 = permMod12[ii + perm[jj]]; var gi1 = permMod12[ii + i1 + perm[jj + j1]]; var gi2 = permMod12[ii + 1 + perm[jj + 1]]; // Calculate the contribution from the three corners var t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; // (x,y) of 3D gradient used for 2D gradient n0 = t0 * t0 * dot2(grad3[gi0], x0, y0); } var t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot2(grad3[gi1], x1, y1); } var t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot2(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1, 1]; return 70.1 * (n0 + n1 + n2); }; FastSimplexNoise.prototype.getRaw3DNoise = function (x, y, z) { var dot3 = FastSimplexNoise.dot3D; var grad3 = FastSimplexNoise.GRADIENTS_3D; var G3 = FastSimplexNoise.G3; var perm = this.perm; var permMod12 = this.permMod12; var n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in var s = (x + y + z) / 3.0; // Very nice and simple skew factor for 3D var i = Math.floor(x + s); var j = Math.floor(y + s); var k = Math.floor(z + s); var t = (i + j + k) * G3; var X0 = i - t; // Unskew the cell origin back to (x,y,z) space var Y0 = j - t; var Z0 = k - t; var x0 = x - X0; // The x,y,z distances from the cell origin var y0 = y - Y0; var z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if( y0 >= z0) { // X Y Z order i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } else if (x0 >= z0) { // X Z Y order i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } else { // Z X Y order i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } } else { // x0 < y0 if (y0 < z0) { // Z Y X order i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } else if (x0 < z0) { // Y Z X order i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } else { // Y X Z order i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords var y1 = y0 - j1 + G3; var z1 = z0 - k1 + G3; var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords var y2 = y0 - j2 + 2.0 * G3; var z2 = z0 - k2 + 2.0 * G3; var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords var y3 = y0 - 1.0 + 3.0 * G3; var z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners var ii = i & 255; var jj = j & 255; var kk = k & 255; var gi0 = permMod12[ii + perm[jj + perm[kk]]]; var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]]; var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]]; var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]]; // Calculate the contribution from the four corners var t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot3(grad3[gi0], x0, y0, z0); } var t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot3(grad3[gi1], x1, y1, z1); } var t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot3(grad3[gi2], x2, y2, z2); } var t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot3(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 76.8 * (n0 + n1 + n2 + n3); }; FastSimplexNoise.prototype.getRaw4DNoise = function (x, y, z, w) { var dot4 = FastSimplexNoise.dot4D; var grad4 = FastSimplexNoise.GRADIENTS_4D; var G4 = FastSimplexNoise.G4; var perm = this.perm; var permMod12 = this.permMod12; var n0, n1, n2, n3, n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in var s = (x + y + z + w) * (Math.sqrt(5.0) - 1.0) / 4.0; // Factor for 4D skewing var i = Math.floor(x + s); var j = Math.floor(y + s); var k = Math.floor(z + s); var l = Math.floor(w + s); var t = (i + j + k + l) * G4; // Factor for 4D unskewing var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space var Y0 = j - t; var Z0 = k - t; var W0 = l - t; var x0 = x - X0; // The x,y,z,w distances from the cell origin var y0 = y - Y0; var z0 = z - Z0; var w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // Six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to rank the numbers. var rankx = 0; var ranky = 0; var rankz = 0; var rankw = 0; if (x0 > y0) { rankx++; } else { ranky++; } if (x0 > z0) { rankx++; } else { rankz++; } if (x0 > w0) { rankx++; } else { rankw++; } if (y0 > z0) { ranky++; } else { rankz++; } if (y0 > w0) { ranky++; } else { rankw++; } if (z0 > w0) { rankz++; } else { rankw++; } var i1, j1, k1, l1; // The integer offsets for the second simplex corner var i2, j2, k2, l2; // The integer offsets for the third simplex corner var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0; // Rank 2 denotes the second largest coordinate. i2 = rankx >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0; // Rank 1 denotes the second smallest coordinate. i3 = rankx >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to compute that. var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords var y1 = y0 - j1 + G4; var z1 = z0 - k1 + G4; var w1 = w0 - l1 + G4; var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords var y2 = y0 - j2 + 2.0 * G4; var z2 = z0 - k2 + 2.0 * G4; var w2 = w0 - l2 + 2.0 * G4; var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords var y3 = y0 - j3 + 3.0 * G4; var z3 = z0 - k3 + 3.0 * G4; var w3 = w0 - l3 + 3.0 * G4; var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords var y4 = y0 - 1.0 + 4.0 * G4; var z4 = z0 - 1.0 + 4.0 * G4; var w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners var ii = i & 255; var jj = j & 255; var kk = k & 255; var ll = l & 255; var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; // Calculate the contribution from the five corners var t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot4(grad4[gi0], x0, y0, z0, w0); } var t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot4(grad4[gi1], x1, y1, z1, w1); } var t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot4(grad4[gi2], x2, y2, z2, w2); } var t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot4(grad4[gi3], x3, y3, z3, w3); } var t4 = 0.5 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) { n4 = 0.0; } else { t4 *= t4; n4 = t4 * t4 * dot4(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 72.3 * (n0 + n1 + n2 + n3 + n4); };