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ABSTRACT 

The presence of oxidized copper species (CuOx ) on metallic Cu surfaces is widely acknowledged as a 
critical factor for promoting C–C coupling during the CO2 reduction reactions (CO2 RR). However, the 
inherent instability of CuOx under negative potentials, where it is prone to reduction to metallic Cu, 
remains a formidable challenge. In this study, we developed a CeOx -modified CuO catalyst for the CO2 RR, 
featuring CeOx uniformly distributed as isolated nano-islands on CuO nanoparticles. Upon reduction of the 
CuO matrix to metallic Cu, the CeOx layer effectively stabilizes the interfacial CuOx , preventing its further 
reduction. Operando characterization verified the sustained presence of Cu2 + and Cu+ species at highly 
reductive potentials, underscoring the role of CeOx in preserving CuOx stability. Theoretical calculations 
revealed that Ce3 + enhances the formation energy of oxygen vacancies, stabilizing the CuOx interface and 
*OC–CO intermediates, which are crucial for C–C coupling. With this surface modification strategy, the 
catalyst achieved a remarkable C2 + 

faradaic efficiency of 78% at −700 mA cm−2 , while demonstrating 
persistent performance with a faradaic efficiency exceeding 70% for C2 + 

products at −100 mA cm−2 for 
over 110 h. These findings present an effective strategy for stabilizing metal oxides and advancing durable 
CO2 RR catalysts. 

Keywords: CO2 reduction reaction, C2 + 

products, oxidized copper stabilization, CeOx nano-islands, 
C–C coupling efficiency 
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precise manipulation of the reaction pathways and 
catalyst properties. 

The efficiency of C2 + 

production is closely linked 
to the C–C coupling, where *CO and *CO (or 
*CHO) intermediates interact to form *C2 species 
[7 ]. One effective strategy to improve C–C coupling 
is to increase the surface coverage of *CO and other 
key intermediates [8 –14 ]. It has been observed that 
Cu in higher oxidation states, such as Cu+ /Cu2 + , 
exhibits stronger CO adsorption and lower activa- 
tion barriers for C–C coupling than metallic Cu 
does, making it a promising candidate for promot- 
ing higher-order carbon product formation [15 –20 ]. 
As such, stabilizing CuOx species on Cu surfaces is 
essential for improving C2 + 

faradaic efficiency (FE) 
[21 ,22 ]. However, maintaining CuOx at the reduc- 
tive potential during the CO2 RR is challenging, as 
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NTRODUCTION 

he rising concentration of CO2 in the atmosphere
as led to the search for effective strategies to utilize
his abundant greenhouse gas [1 ]. The CO2 reduc-
ion reaction (CO2 RR), driven by renewable energy,
ffers a promising pathway for converting CO2 into
aluable chemical products, enabling a closed-loop
arbon economy [2 ]. Among the diverse products,
2 + 

compounds such as ethylene, ethanol and
cetate are particularly attractive due to their higher
conomic value compared to C1 products [3 –5 ].
opper (Cu)-based catalysts are widely regarded
s the most effective for facilitating C2 + 

product
ormation in the CO2 RR, which is attributed to
heir moderate adsorption of key intermediates [6 ].
owever, achieving high selectivity and activity

or C2 + 

products remains challenging and requires 
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uOx is prone to reduction to metallic Cu under re-
ucing conditions [23 –25 ]. 
Efforts to stabilize CuOx species have led to the

evelopment of several strategies [26 ,27 ]. One ap-
roach involves the synthesis of copper salts, such as
u3 (PO4 )2 , which are relatively stable and resistant
o reduction [28 ]. While this method has yielded
 high C2 + 

FE of ∼90%, the stability remains lim-
ted due to the gradual reduction of Cu2 + to Cu0 ,
ith operational lifetimes of less than 20 h. Another
romising strategy is the modification of Cu with
ransition metal oxides (MOx ), which can effectively
reserve CuOx species and promote efficient C–C
oupling at the CuOx /Cu interface [29 –33 ]. Studies
ave explored the dispersion of Cu onto bulk MOx 
upports or the uniform mixing of Cu and MOx 
anoparticles to maximize the interface density [34 –
9 ]. However, these configurations often compro-
ise conductivity due to the spatial separation of
u particles, which hinders electron transport and
educes catalytic efficiency. Therefore, achieving an
ptimal Cu–MOx configuration requires delicate de-
ign to balance conductivity and stability, thereby in-
reasing C2 + 

efficiency [40 –42 ]. 
Here, we present a CeOx -modified Cu catalyst

CeOx /CuO), where CeOx was dispersed as nano-
slands on the Cu surface, enabling efficient CO2 re-
uction to C2 + 

products. Operando studies revealed
hat under a negative potential, bulk CuO was com-
letely reduced to metallic Cu, whereas Cu modi-
ed with CeOx nano-islands retained its oxidation
tate. The CeOx /CuO catalyst, with its optimized
uOx /Cu interface, exhibited a high C2 + 

FE of 78%
t a partial current density of −545 mA cm−2 . Addi-
ionally, the CeOx /CuO catalyst demonstrated high
tability, maintaining over 70% C2 + 

FE at a cur-
ent density of −100 mA cm−2 for 110 h. Theo-
etical calculations supported the proposed mecha-
ism, showing that CeOx facilitates the preservation
f CuOx species, which in turn stabilize *OC–CO in-
ermediates and enhance C–C coupling by lowering
he reaction barriers. 

ESULTS AND DISCUSSION 

tabilizing CuOx under reductive conditions of the
O2 RR is difficult because of the thermodynamic
endency of oxidized copper species to reduce to
etallic Cu. As shown in Fig. 1 a, the standard reduc-
ion potentials of Cu(OH)2 to Cu [ + 0.61 V vs the
eversible hydrogen electrode (RHE)] and Cu2 O to
u ( + 0.47 V vs RHE) reveal their strong propensity
or reduction at typical CO2 RR operating potentials
 ∼−0.9 V vs RHE). This reduction undermines the
tability of high-valence-state Cu, which is critical for
acilitating C2 + 

product formation. To address this
Page 2 of 9
limitation, efforts have been directed toward stabiliz- 
ing CuOx species by incorporating MOx during the 
CO2 RR. Figure 1 b i l lustrates that CuOx forms at the
interface between bulk Cu and bulk MOx , but the 
interfacial area between Cu and MOx is limited. One 
approach to increase the interfacial area, as shown 
in Fig. 1 c, involves dispersing Cu particles onto bulk 
MOx supports. However, this configuration often 
suffers from poor conductivity due to the insulating 
nature of bulk MOx . An alternative strategy, depicted 
in Fig. 1 d, employs a uniform mixture of Cu and 
MOx nanoparticles to maximize the interface den- 
sity. While this design enhances the interfacial area, 
it compromises the conductivity because of the spa- 
tial separation of the Cu particles. To overcome the 
trade-off between the interface density and conduc- 
tivity, a more effective strategy is proposed in Fig. 1 e, 
where ultra-small MOx nanoparticles are uniformly 
dispersed onto bulk Cu. This configuration ensures 
a high density of active interfaces while maintaining 
good conductivity, ultimately enhancing both the 
catalytic activity and stability. In addition to op- 
timizing the Cu–MOx interface, selecting a metal 
oxide with low solubility and reduced reducibility is 
essential for achieving long-term stability under the 
reductive conditions of the CO2 RR. Ce oxides were 
chosen for this study because of their inherently low 

solubility and reduced reducibility compared with 
those of other MOx , making them ideal candidates 
for stabilizing CuOx species. 

Following the identification of the optimal con- 
figuration, we explored the synthesis of Cu cata- 
lysts modified with CeOx species. The CeOx /CuO 

catalyst was synthesized using a strong electro- 
static adsorption method (Fig. 2 a) [43 ]. First, CuO 

nanoparticles were synthesized via the calcination of 
CuC2 O4 at 623 K in air, and then 20–50 nm CuO 

nanoparticles were obtained ( Fig. S1). For the de- 
position of CeOx , Ce(NO3 )3 was dissolved in a sus- 
pension of CuO nanoparticles, and the pH of the 
solution was adjusted by adding KOH to exceed 
the point of zero charge (pzc ∼7.6) of CuO while 
remaining below the critical pH where Ce3 + pre- 
cipitates as Ce(OH)3 (solubility product constant 
Ksp = 1.6 × 10−20 ). This resulted in the formation 
of Ce(OH)x + clusters, which were adsorbed onto 
the negatively charged CuO surface. Instead of aggre- 
gating, these clusters formed separated nano-islands 
due to electrostatic repulsion. The loading of CeOx 
nano-islands could be controlled by adjusting the 
amount of KOH added. After calcination in air at 
623 K, the CeOx /CuO catalyst was successf ully sy n- 
thesized. 

We then characterized the as-synthesized cata- 
lysts using various techniques. Inductively coupled 
plasma optical emission spectrometry (ICP-OES) 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf351#supplementary-data
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Figure 1. (a) CuOx (purple area) promotes the formation of C2 + products, but it is easily reduced to metallic Cu and thus 
decreases C2 + production. (b) CuOx forms at the interface of Cu and MOx . However, the interface between bulk MOx and bulk 
Cu is restricted. When Cu is dispersed on (c) bulk MOx and (d) dispersed MOx , the interface is extensive, but these assemblies 
suffer from the poor conductivity of bulk MOx . (e) MOx is reversely dispersed on Cu, which optimizes the balance between 
the interface density and conductivity. 
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nalysis revealed a Ce/Cu mass ratio of 0.02
 Table S1). X-ray diffraction (XRD) patterns
 Fig. S2) revealed predominant peaks for mono-
linic CuO (space group C 2/ c ) in both CeOx /CuO
nd CuO, along with minor peaks for cubic CeO2 
space group Fm -3 m ) in the CeOx /CuO catalysts.
igh-angle annular dark-field scanning transmission
lectron microscopy (HAADF-STEM) images
Fig. 2 b) revealed the presence of numerous nano-
slands with an average diameter of 4.2 nm uniformly
istributed on the CuO surface. These nano-islands
xhibited a consistent morphology across a range
Page 3 of 9
of transmission electron microscopy (TEM) im- 
ages ( Fig. S3). Energy dispersive spectroscopy 
(EDS) elemental mapping (Fig. 2 c) confirmed that 
the nano-islands consisted of Ce (green) and O 

(red). High-resolution TEM (HRTEM) images 
of CeOx /CuO revealed distinct lattice fringes for 
CeO2 and CuO, with spacings of 0.32 and 0.28 nm 

for the CeO2 (111) and (200) planes, respectively, 
and 0.18 nm for the CuO (112) plane ( Fig. S4). The
Ce 3 d X-ray photoelectron spectroscopy (XPS) re- 
vealed 26.1% Ce3 + species in CeOx /CuO ( x = 1.87, 
Fig. S5a), indicating the existence of oxygen 
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Figure 2. (a) Schematic illustration of the electrostatic absorption method and the CuOx -rich region introduced by CeO2 nano- 
islands after in situ electrochemical reduction. (b) HAADF-STEM image of CeOx /CuO. (c) The corresponding EDS mappings. 
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acancies in the ceria phase. The Cu LM 2 Auger
pectra of CeOx /CuO suggested that Cu was pre-
ominantly in the oxidation state of + 2 ( Fig. S5b).
hese results confirmed the presence of approx-
mately 4 nm CeOx particles dispersed on CuO.
o investigate the adaptability of the electrostatic
dsorption method, we varied the Ce loading by
djusting the amount of KOH added during syn-
hesis. As shown in Fig. S6, increasing the KOH
eyond the optimal point ( ∼2% Ce) did not lead to
dditional Ce incorporation onto the CuO surface.
nstead, it resulted in the formation of discrete
e-containing precipitates, indicating saturation of
vailable adsorption sites. Conversely, reducing the
e precursor led to catalysts with lower Ce loadings,
hich were systematically characterized by ICP-
ES ( Table S1), and electron microscopy ( Fig. S7).
To evaluate the C–C coupling efficiencies of the

eOx /CuO and CuO catalysts, the CO2 RR was con-
ucted in a flow-cell configuration. Across all applied
otentials, the CeOx /CuO catalyst consistently ex-
ibited a higher C2 + 

FE than CuO did (Fig. 3 a and
; detailed product distribution in Fig. S8a and b,
Page 4 of 9
with error bars of at least four independent tests). 
Notably, the CeOx /CuO catalyst achieved a maxi- 
mum C2 + 

FE of 78% with a partial current density 
of −545 mA cm−2 at −1.6 V vs RHE, with ethylene 
(C2 H4 ) as the primary product (48% FE, Fig. S8a). 
In contrast, the CuO catalyst without CeOx modifi- 
cation produced CO as the main product ( Fig. S8b). 
As can be seen, the deposition of CeOx on the CuO 

catalyst significantly enhanced both the C2 + 

FEs and 
partial current densities of the C2 + 

products (Fig. 3 a 
and b). To investigate whether the increased cur- 
rent density resulted from a greater active surface 
area, we measured the double-layer capacitance to 
determine the electrochemically active surface area 
(ECSA). Surprisingly, the ECSA of CeOx /CuO was 
smaller than that of CuO ( Fig. S9), despite the sim- 
ilar CuO morphologies of both catalysts. This re- 
duction in the ECSA is likely due to the increased 
hydrophobicity introduced by surface modification 
with CeOx nano-islands [44 ]. The water contact 
angle of CuO is 19.4° ( Fig. S10a), while the con- 
tact angle increased to 66.6° after CeOx nano-islands 
were introduced ( Fig. S10b). Based on the ECSA 
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easurements, the ECSA-normalized partial current
ensity for the C2 + 

products was calculated against
he applied potential for both catalysts (Fig. 3 c).
he results revealed significantly higher normalized
2 + 

current densities for CeOx /CuO, confirming its
uperior intrinsic activity in the CO2 RR. We also
onducted the CO2 RR under both acidic and alka-
ine conditions ( Fig. S11). At a current density of
600 mA cm−2 , the CeOx /CuO catalyst consis-

ently exhibited over 70% C2 + 

FE, indicating that
eOx nano-islands effectively promote C2 + 

gener-
tion across diverse environments, and also demon-
trating the broad applicability of this catalyst. 
To further examine the C–C coupling efficiency,

he C2 + 

/C1 product FE ratio was calculated for
oth catalysts (Fig. 3 d). Compared with the CuO
atalyst, the CeOx /CuO catalyst presented a signif-
cantly higher C2 + 

/C1 ratio. At −1.4 V vs RHE,
he CeOx /CuO catalyst had a C2 + 

/C1 ratio of 4.2,
hich was seven times greater than that of the CuO
atalyst (a C2 + 

/C1 ratio of 0.5). At −1.6 V vs
HE, the C2 + 

/C1 ratio of the CeOx /CuO catalyst
eached as high as 7.2, whereas that of the CuO cat-
lyst remained at 1.2, indicating that CeOx nano-
sland modification enhanced the C–C coupling ef-
ciency. The CeOx /CuO catalyst also demonstrated
igh stability in the CO2 RR. In a flow cell config-
ration, the CeOx /CuO catalyst exhibited > 40%
2 H4 FE at a high current density of −400 mA
m−2 for more than 15 h ( Fig. S12a). The perfor-
ance dropped after 15 h due to salt precipitate
nd flooding ( Fig. S12b and c). To evaluate the in-
Page 5 of 9
trinsic stability of the CeOx /CuO catalyst under in- 
dustrially relevant conditions, a duration test was 
also conducted in a membrane electrode assembly 
(MEA) configuration (Fig. 3 e). The CeOx /CuO 

catalyst maintained a C2 + 

FE exceeding 70% at a 
current density of −100 mA cm−2 for over 110 h. 
Post-catalysis analysis confirmed the retention of the 
CeOx structure. High-resolution TEM images veri- 
fied the dispersion of CeOx nano-islands across the 
Cu surface ( Fig. S13). The quasi-in situ Ce 3 d XPS
spectra revealed 35.0% Ce3 + species on CeOx /CuO 

( x = 1.83), which indicated that the CeOx /CuO cat-
alyst was stable because of its low solubility and re-
duced reducibility of CeOx ( Fig. S5c). The XRD pat- 
tern of CeOx /CuO after reaction showed a higher 
Cu2 O(111)/Cu(111) peak ratio than that of CuO 

( Fig. S14). These results demonstrated the struc- 
tural stability of the catalysts throughout the CO2 RR 

process. Compared with other CeCu-based catalysts 
reported in previous studies [29 –31 ,34 ,39 –42 ,45 –
55 ] (Fig. 3 f and Fig. S15), the CeOx /CuO catalyst
outperformed these materials, demonstrating both a 
high partial current density for C2 + 

products and ro- 
bust stability. The improved performance was pre- 
sumably attributed to the inertness of CeOx and 
the hydrophobicity introduced by the nano-islands, 
which together enhance the stability and activity of 
the catalyst. Unexpectedly, the productivity of CO, 
a representative C1 product, was not suppressed in 
the presence of CeOx nano-islands, as demonstrated 
by operando differential electrochemical mass spec- 
trometry (DEMS, Fig. 4 a). Both the CeOx /CuO 
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nd CuO catalysts exhibited similar onset potentials
 −0.63 V vs RHE) for CO production. However,
he onset potential for C2 H4 on CeOx /CuO was
0.52 V vs RHE, which is significantly more posi-
ive than that on CuO ( −0.66 V vs RHE), indicat-
ng that the *CO coverage required for effective C–C
oupling on CeOx /CuO was lower. This observa-
ion suggested that the CeOx nano-islands enhanced
he C–C coupling process without inhibiting C1 
roduction. 
To investigate the impact of CeOx nano-islands

n the electronic structure of Cu during the CO2 RR,
perando X-ray absorption near edge structure
XANES) and extended X-ray absorption fine struc-
ure (EXAFS) analyses were performed. The first
erivatives of the XANES data (Fig. 4 b) revealed
hat CuO was quickly reduced to metallic Cu un-
er negative potentials. In contrast, CeOx /CuO
xhibited features of both metallic Cu and Cu2 + ,
ndicating partial reduction. The Cu2 + content
ecreased progressively with increasing negative
otential, but did not fully disappear, suggesting that
he CeOx nano-islands effectively stabilized Cu2 + .
he white-line peaks of CeOx /CuO ( Fig. S16a) dis-
layed characteristics of both Cu2 + and metallic Cu,
hereas CuO ( Fig. S16b) showed only metallic Cu
eatures after reduction. These results highlight that
eOx nano-islands impede the full reduction of Cu,
reserving a fraction of Cu in its higher oxidation
tate. The EXAFS spectra fur ther suppor ted these
ndings. For CuO (Fig. 4 c), the Cu–O bonds disap-
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peared at modestly negative potentials, whereas the 
Cu–Cu bonds formed immediately upon the appli- 
cation of a negative potential, indicating that CuO 

was highly susceptible to reduction. In contrast, for 
CeOx /CuO, the number of Cu–O bonds gradually 
decreased as the potential became more negative, 
persisting even under highly reductive conditions. 
Cu–Cu bonds only became dominant at −0.8 V vs 
RHE or at more negative potentials, confirming that 
the presence of CeOx nano-islands hindered the 
reduction of CuO. 

Operando Raman spectroscopy provided further 
evidence supporting the stabilizing effect of CeOx 
nano-islands on Cu–O species ( Fig. S17). Peaks at 
approximately 600 cm−1 , attributed to surface Cu–
O species, disappeared on the CuO catalyst under 
negative potentials but remained detectable on the 
CeOx /CuO catalyst, confirming the ability of CeOx 
nano-islands to preserve surface Cu–O species 
under reducing conditions. Peaks at 800 cm−1 were 
attributed to peroxide vibration on CeOx (111) [56 ]. 
This peak is absent in the CuO sample, confirming 
the successful deposition of CeOx in the CeOx /CuO 

composite. To directly probe the presence of sur- 
face Cu oxidized species on CeOx /CuO, operando 
attenuated total reflection surface-enhanced in- 
frared absorption spectroscopy (ATR-SEIRAS) 
was conducted using SCN− as a probe molecule 
[57 ]. As shown in Fig. 4 d, the peak at approximately
2073 cm−1 was attributed to Cu+ -SCN− bonding. 
On the CuO surface, Cu+ initially formed as the 
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf351#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf351#supplementary-data


Natl Sci Rev, 2025, Vol. 12, nwaf351

p  

b  

t  

v  

t  

i  

m  

r  

c  

w  

t
n  

c  

A  

r  

t  

s  

t  

i  

e
 

m  

l  

t  

T  

e  

o  

t  

s  

i  

t  

i  

t  

s  

c  

i
n  

C
 

h  

c  

C  

p  

t  

i  

C
s  

r  

i  

f  

b  

f  

a  

C  

s  

t  

a  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/11/nw

af351/8240268 by guest on 17 D
ecem

ber 2025
otential became negative, increasing in intensity
efore diminishing and disappearing below the de-
ection limit at potentials more negative than −0.7 V
s RHE. In contrast, on the CeOx /CuO surface,
he Cu+ –SCN− peaks followed a similar trend of
nitial increase and subsequent decrease but re-
ained detectable throughout the entire test. These
esults indicate that Cu+ species formed on both
atalysts; however, the Cu+ on the CuO catalyst
as more readily reduced to metallic Cu, whereas
he Cu+ on CeOx /CuO was stabilized by the CeOx 
ano-islands, persisting even under highly reductive
onditions. Furthermore, the quasi-in situ Cu LM 2
uger spectra of CeOx /CuO after the duration test
evealed a mixture of metallic Cu, Cu+ and Cu2 + fea-
ures ( Fig. S5d), indicating that the higher oxidation
tate of Cu was stabilized by CeOx . This highlights
he critical role of CeOx nano-islands in maintain-
ng the active Cu+ species, which are essential for
fficient CO2 RR and enhanced C–C coupling. 
Based on these characterizations, we propose a
odel in which CeOx nano-islands create and stabi-

ize CuOx regions on the CeOx /CuO catalyst during
he CO2 RR (Fig. 2 a, highlighted in purple circles).
he CeOx nano-islands effectively modulate the
lectronic structure of Cu, allowing the retention
f Cu in oxidized states under reducing condi-
ions. These CuOx regions serve as critical active
ites, facilitating C–C coupling and thereby signif-
cantly enhancing the C2 + 

efficiency. In addition,
he inert nature of CeOx and the hydrophobicity
ntroduced by the nano-islands also contributed
o the stabilization of the catalyst system, enabling
ustained performance during long-term tests. This
ombination of activity enhancement and stability
mprovement highlights the effectiveness of CeOx 
ano-islands in optimizing the performance of the
eOx /CuO catalyst. 
To delve into the origin of CeOx nano-islands en-

ancing C–C coupling activity on Cu, we further
onducted theoretical calculations. We constructed
u6 O6 and Ce3 Cu3 O9 clusters on Cu (100) to com-
are the differences in oxygen vacancy (Ov ) forma-
ion energy and the energy barriers of CO dimer-
zation among the Cu (100), CuOx –Cu (100) and
eCuOx –Cu (100) surfaces or interfaces. For CuOx 
pecies on a Cu surface, the Cu–O–Cu structure
eadily forms oxygen vacancies, indicating that Cu
s prone to reduction (Fig. 4 e). The free energies
or forming vacancies at oxygen sites coordinated
y three Cu atoms ( Fig. S18a, yellow circle) and
our Cu atoms ( Fig. S18a, green circle) are −0.71
nd −0.39 eV, respectively. In contrast, introducing
eOx clusters results in the formation of Ce–O–Cu
tructures, where oxygen atoms are less susceptible
o reduction. The vacancy formation free energies at
nalogous sites are + 0.20 ( Fig. S18b, yellow circle)
Page 7 of 9
and + 0.69 eV ( Fig. S18b, green circle). This suggests 
that CeOx clusters help retain more oxygen on the 
Cu surface, thereby increasing the surface Cu valence 
state, which, as previously discussed, promotes C–
C coupling. We further investigated the mechanism 

by which CuOx species enhance C–C coupling. In 
the Cu-based CO2 RR, multiple intermediates are in- 
volved in C–C coupling. To explore this process, we 
selected *CO dimerization as a model to compare 
the CeOx /CuO catalyst with metallic Cu. On the 
Cu (100) surface, the coupling of bridge-adsorbed 
*CO + *CO involves four Cu atoms ( Fig. S19a) 
and requires a high activation energy of 1.06 eV 

(Fig. 4 f), indicating that C–C coupling is challeng- 
ing on a metallic Cu surface. However, in the pres-
ence of CuOx , the oxidized Cu stabilizes the *OC–
CO intermediate through interactions with the oxy- 
gen atom in *CO ( Fig. S19b), lowering the activa- 
tion energy to 0.76 eV (Fig. 4 f). Furthermore, Ce3 + 

ions in CeOx clusters also stabilize the *OC–CO 

intermediate ( Fig. S19c), further reducing the en- 
ergy barrier for *CO + *CO coupling to 0.61 eV
on the CeCuOx @Cu (100) surface (Fig. 4 f). This 
significant reduction in the energy barrier demon- 
strated that CeOx nano-islands and CuOx species 
synergistical ly faci litated C–C coupling. These find- 
ings explain how the synergistic interaction between 
CeOx nano-islands and CuOx species enhances C–
C coupling activity during the CO2 RR. The Ce–O–
Cu structures at the CeOx –CuOx interface enhance 
the oxygen stability and maintain higher Cu valence 
states, whereas the stabilization of *OC–CO inter- 
mediates by CeOx and CuOx promotes efficient C2 + 

product formation in the CO2 RR. 
Enhancing the FE of the target product holds 

significant importance for reducing the cost of 
electrochemical production. We analyzed the dif- 
ferences between CeOx /CuO and CuO catalysts 
for ethylene production from these three perspec- 
tives ( Fig. S20, Supplementary Note 1). Follow- 
ing the substitution of CuO with CeOx /CuO for 
ethylene generation, carbon capture costs decreased 
by 70.2%, electrolysis energy costs decreased by 
29.2% and ethylene separation costs decreased by 
62.7%. These results demonstrate the promising 
potential of the CeOx /CuO catalyst for industrial 
applications. 

CONCLUSION 

In summary, we demonstrated an effective strategy 
for constructing CeOx nano-islands on Cu particles 
to promote C–C coupling efficiency in the CO2 RR. 
Operando XAFS and ATR-SEIRAS combined with 
quasi-in situ XPS revealed that CeOx nano-islands 
effectively stabilize Cu+ and Cu2 + species under 
reductive conditions, preserving the active oxidation 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf351#supplementary-data
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tates necessary for sustained catalytic performance.
he catalyst achieved a remarkable FE of 78% for
2 + 

products at −700 mA cm−2 , with durability
aintaining over 70% FE at −100 mA cm−2 for
ore than 110 h. Theoretical calculations revealed
hat CeOx promotes CuOx formation, which is
rucial for C2 + 

production, lowering the energy
arrier for C–C coupling by stabilizing *OC–CO in-
ermediates. This study underscores the dual role of
eOx as both a stabilizer of CuOx and a promoter of
2 + 

production. Importantly, this study highlights
he potential for further optimization of activity,
electivity and stability by exploring alternative
lements as modifiers, paving the way for scalable
nd economically viable CO2 RR technologies. 
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