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Abstract

Objective: Building upon our previous work on predicting treatment retention in medications for opioid use disorder, we aimed to improve
6-month retention prediction in buprenorphine-naloxone (BUP-NAL) therapy by incorporating features derived from large language models
(LLMs) applied to unstructured clinical notes.

Materials and Methods: \We used de-identified electronic health record (EHR) data from Stanford Health Care (STARR) for model development
and internal validation, and the NeuroBlu behavioral health database for external validation. Structured features were supplemented with 13 clin-
ical and psychosocial features extracted from free-text notes using the Clinical Entity Augmented Retrieval pipeline, which combines named
entity recognition with LLM-based classification to provide contextual interpretation. We trained classification (Logistic Regression, Random
Forest, XGBoost) and survival models (CoxPH, Random Survival Forest, Survival XGBoost), evaluated using Receiver Operating Characteristic-
Area Under the Curve (ROC-AUC) and C-index.

Results: XGBoost achieved the highest classification performance (ROC-AUC=0.65). Incorporating LLM-derived features improved model
performance across all architectures, with the largest gains observed in simpler models such as Logistic Regression. In time-to-event analysis, Ran-
dom Survival Forest and Survival XGBoost reached the highest C-index (=~0.65). SHapley Additive exPlanations analysis identified LLM-extracted fea-
tures like Chronic Pain, Liver Disease, and Major Depression as key predictors. We also developed an interactive web tool for real-time clinical use.

Discussion: Features extracted using NLP and LLM-assisted methods improved model accuracy and interpretability, revealing valuable psycho-
social risks not captured in structured EHRs.

Conclusion: Combining structured EHR data with LLM-extracted features moderately improves BUP-NAL retention prediction, enabling per-
sonalized risk stratification and advancing Al-driven care for substance use disorders.

Key words: opioid use disorder; treatment attrition; machine learning; natural language processing; large language models; electronic health records; predic-
tive modeling.

Background demonstrated efficacy in reducing opioid-related morbidity
The opioid epidemic remains a significant public health crisis, and mortality. However, a major challenge in OUD treatment
with opioid use disorder (OUD) affecting millions of individu- is retention, as patients often discontinue MOUD prematurely.
als worldwide and non-medical opioid use linked to a tenfold ~ Retention rates for buprenorphine treatment range widely
increase in mortality." Medications for opioid use disorder from 20% to 82.5%,” with many patients discontinuing treat-

(MOUD), such as buprenorphine-naloxone (BUP-NAL), have ment within the first 6 months.> Among oral forms of MOUD
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in the United States, buprenorphine can have more flexible
prescribing models than methadone (which is generally avail-
able only through federally certified opioid treatment pro-
grams), but buprenorphine demonstrates lower retention rates
than methadone.*® Early discontinuation of buprenorphine
therapy is associated with increased mortality, underscoring
the need for identifying patients at risk for treatment attrition
for targeted interventions and health system assessments.*

Predictive modeling is a powerful tool for identifying patients
at risk of discontinuing MOUD.”~'® Traditional risk prediction
models rely heavily on structured electronic health record
(EHR) data.'” ™" Structured data includes discrete, coded clini-
cal variables that are systematically recorded in the EHR,
including patient demographics (eg, age, sex), medical diagno-
ses (eg, ICD-10 codes), prescribed medications (eg, RxNorm
codes), laboratory test results, and procedural records (eg, CPT
codes). These features are stored in predefined formats, which
are convenient for computational analysis.

Although these structured data elements provide important
insights, they cannot capture the complete clinical context.
Unstructured clinical data includes notes within EHRs written
in free-text (no explicitly defined structure) that can capture
richer contextual information.””*! These free-text notes—
containing physician observations, patient-reported concerns,
and social determinants of health—can offer unique qualita-
tive insights into factors that are more often not captured in
structured diagnosis codes, such as psychiatric comorbidities,
psychosocial stressors, substance use history, and overall
patient engagement, all of which influence MOUD treatment
retention.”*** Utilizing this information for large-scale analy-
ses is challenging due to the complexity and variability of
unstructured clinical note data, necessitating advanced natural
language processing (NLP) techniques to organize and extract
relevant information out of unstructured EHR data. Our prior
work suggested NLP methods using keyword identification
techniques could modestly improve MOUD treatment reten-
tion prediction models, but were limited by their dependence
on predefined keywords and their inability to grasp context.'”
For example, prior methods could look for keywords like
“homelessness” but would completely miss a case where the
documented note describes a patient “living in his car,” given
no overlap in wording. The advent of large language models
(LLMs) has enabled more sophisticated methods for extract-
ing clinically relevant information from unstructured text with
more “reasoning” around the context and semantics of identi-
fied clinical concepts.”*~2°

This study leverages our NLP pipeline called CLinical
Entity Augmented Retrieval (CLEAR), which combines
LLMs and information retrieval methods to extract interpret-
able clinical features relevant to MOUD from clinical notes
often missed by structured data approaches.””*® In this
study, we assess whether key psychosocial risk factors for
MOUD treatment attrition can be extracted using these
advanced LLM and NLP techniques and whether this
improves treatment retention prediction, accessible through
an interactive web risk calculator.

Methods
Study design and data sources

This study utilized de-identified datasets to train and validate
the predictive models that predict BUP-NAL treatment reten-
tion vs attrition, with external validation performed using

data from separate patient cohorts. The study population
consisted of patients aged 16-89 years who had received at
least one prescription for BUP-NAL for more than 1 day.
Treatment duration was defined as the period between the
start and end of consecutive BUP-NAL prescriptions. Contin-
uous treatment was considered to be the case if the gap
between the end date of one prescription and the start date of
the next did not exceed 30 days. Treatment attrition was
defined as a treatment duration of fewer than 180 days, con-
sistent with prior research and established quality-of-care
benchmarks.>”** The Stanford EHR dataset was used for
model development and internal validation, and NeuroBlu, a
longitudinal behavioral health database, was used for exter-
nal validation to assess model generalizability across different
healthcare settings. All data were de-identified following the
Safe Harbor method in accordance with the National Insti-
tute of Standards and Technology guidelines, and clinical text
was further anonymized using the TiDE algorithm.*' This
study was approved by the Stanford University Institutional
Review Board (IRB #67423).

Stanford electronic health record data (STARR)

The STAnford Research Repository (STARR) dataset is an
integrated health system database that includes de-identified
EHR data from an academic hospital (Stanford Health Care),
a community hospital (ValleyCare Hospital), and a commun-
ity practice network (University Healthcare Alliance). It
encompasses both inpatient and outpatient encounters across
various specialties from 1999 to 2022. To enable compari-
sons across institutions, the STARR data were standardized
to the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM).3? The subset of the
STARR dataset utilized for this study included 1800 treat-
ment encounters for 1272 unique patients receiving BUP-
NAL prescriptions, along with 13 922 unique clinical notes.
Of these encounters, 1099 (61%) resulted in treatment attri-
tion within 6 months of initiating BUP-NAL. In the Stanford
dataset, treatment start dates up to 2020 were used for model
training, and treatment start dates from 2021 onwards were
used for validation.

NeuroBlu behavioral health database

NeuroBlu is a real-world behavioral health database that
aggregates de-identified EHR data from all 50 US states from
166 distinct sites of care, including hospitals, emergency
rooms, and community psychiatry clinics spanning over 20
years (2003-2024).%° The portion of the dataset utilized for
this study was standardized to the OMOP CDM format.
After standardizing the data and selecting patients who met
the inclusion criteria with clinical note data available, the
final dataset for analysis included 459 treatment encounters
for 342 unique patients, with 11681 clinical notes. Among
these encounters, 381 (83%) were classified as attrition
within 6 months of BUP-NAL initiation.

Feature extraction
Feature extraction involved 2 main phases: the extraction of
baseline structured EHR data and additional features derived

from unstructured notes using the CLEAR NLP pipeline
described below.>”
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Figure 1. Timeline representation of a patient with feature extraction and treatment tracking for BUP-NAL therapy. A common set of 189 features,
including diagnoses, medications, and procedural records, plus 4 demographic features, is extracted from patient data in the Stanford and NeuroBlu
OMOP datasets. The prediction index time is set at the onset of a BUP-NAL treatment period when continuous prescriptions persist without a treatment
gap of more than 30 days. The treatment duration is illustrated up to the red “X" after a continuous period of 89 days in this example.

Structured data

The datasets contain 17 961 diagnostic markers, 17271 pro-
cedural indicators, and 47476 drug-associated features. To
select features significantly associated with treatment reten-
tion, both sites independently applied association rule mining
with Fisher’s exact test (P < .05) to each dataset. This resulted
in the structured data from the Stanford and NeuroBlu data-
sets, including 578 and 636 candidate features, respectively,
covering domains including demographics, diagnoses, medi-
cations, and procedures. We created a common standardized
feature dictionary by mapping the overlapping features
across both datasets, resulting in 189 shared features plus 4
demographic features used for model development. Figure 1
illustrates the processing of structured EHR data from both
datasets, and a complete list of the structured features is pro-
vided in Table S1.

Patient age was treated as a continuous variable. All other
features were encoded as binary indicators (1= present,
0 = absent), naturally addressing missing values without the
need for imputation.

Unstructured data from clinical notes

A board-certified addiction medicine physician, S.T.,
reviewed previous literature to identify 13 key features
related to treatment attrition from unstructured clinical notes
relevant in clinical practice.”’ These features included indica-
tions of post-traumatic stress disorder, major depression,
homelessness, personality disorders, tobacco dependence,
bipolar disorder, attention deficit hyperactivity disorder, sub-
stance use disorders excluding OUD, chronic pain, suicidal
behavior, unemployment, alcohol dependence, and liver dis-
ease. These features were extracted from the clinical notes
using the CLEAR pipeline, which combines named entity rec-
ognition methods with LLMs to extract information as a
form of Retrieval-Augmented Generation (RAG)*® described
below. While LLMs enhance the interpretability of extracted
mentions, the CLEAR pipeline does not represent a fully gen-
erative or end-to-end LLM-based system.

CLEAR requires 2 inputs: clinical notes and a target entity
(eg, “homelessness™). First, it uses a named-entity recognition
model (Flan-T5-XXL in this case) to scan notes and extract
all clinical entities mentioned (eg, “depression,” “colorectal
cancer,” and “homelessness”). Next, the extracted entities
are filtered to the ones of interest and then augmented with

synonyms and morphological variations from medical ontol-
ogies (eg, UMLS) and LLM-based paraphrasing (using GPT-
4). This augmentation process allows the process to capture
wording variations. For example, the process can find word-
ings relevant to homelessness (eg, “unhoused” or “unstable
housing”), even when there is no direct overlap in words or
phrases. Following this, the system retrieves segments of
notes by extracting text surrounding each mention of the tar-
get entity or its associated terms (“homelessness,”
“unhoused,” “unstable housing”). Finally, these note seg-
ments are provided to an LLM with a tailored prompt (eg,
“Is this patient experiencing homelessness?”) to classify the
presence or absence of the target condition.

A detailed depiction of the CLEAR pipeline workflow can
be found in Figure S1. Output from the CLEAR process pro-
duced binary labels (present vs absent) for each of the 13 fea-
tures identified by our clinical expert. To ensure the accuracy
of the extracted features, the pipeline underwent human vali-
dation, where clinical experts assessed the correctness of
LLM-derived assertions. The agreement between the CLEAR
pipeline and human annotations exceeded 90% on average,
as measured by the F1 score (see Supplementary S2 and
Lopez et al.*” for additional details). As shown in Table S2,
GPT-4 consistently outperformed other LLMs (including
Med42, Llama-3, and Flan-UL2), achieving the highest over-
all average F1 score of 0.97.

Only features documented from clinical notes recorded at
least 1 day before the index BUP-NAL prescription date were
used, and if a feature appeared multiple times across different
notes, it was counted once. The workflow for unstructured
feature extraction and integration is illustrated in Figure 2.

Model development

We developed machine learning models using 2 main model-
ing approaches: classification to predict attrition or retention
at the 6-month mark and time-to-event analysis to model
dynamic treatment.

Classification for attrition prediction

We trained models on Stanford data using 206 features (193
from structured data, including demographics, and 13 from
unstructured data) to predict whether a patient would experi-
ence treatment attrition within 6 months of starting BUP-
NAL therapy. The evaluated classification models include
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Figure 2. Data processing workflow for feature extraction and model training. Clinical notes are processed through the CLEAR pipeline, which extracts
relevant features using LLMs. The output from CLEAR is combined with structured EHR data. This resulted in 206 features in common across all study

sites and was used to train and validate the machine learning models.

Logistic Regression, Random Forest,** and XGBoost*’ classi-
fiers for binary prediction of treatment attrition vs retention.
These methods were chosen for their demonstrated effective-
ness in prior research predicting attrition in OUD
treatment.>®

Each model underwent hyperparameter tuning using grid
search with cross-validation on the Stanford dataset to opti-
mize performance. The models’ performance was internally
validated using the Stanford dataset and externally validated
using the NeuroBlu dataset.

To assess model performance, we used precision, recall,
Fl-score, and Receiver Operating Characteristic—Area
Under the Curve (ROC-AUC) as standard evaluation metrics.
Precision (positive predictive value) measures the proportion
of predicted attrition cases that were correctly identified,
where a higher precision indicates fewer false positives.
Recall (sensitivity) evaluates the proportion of actual attrition
cases that the model correctly identified, with higher recall
reflecting fewer false negatives. Fl-score is the harmonic
mean of precision and recall, providing a balanced measure
of model performance when false positives and false nega-
tives carry similar importance. Lastly, ROC-AUC quantifies
the model’s ability to discriminate between retention and
attrition cases by summarizing the tradeoff between sensitiv-
ity and specificity. A higher ROC-AUC score, approaching
1.0, indicates perfect discrimination and ranking of high vs
low risk cases, whereas an ROC-AUC of 0.5 indicates risk
predictions no better than random guessing.

The robustness of model performance was further assessed
through 50 iterations of testing on resampled test data, with
average values and standard deviations reported. Our
approach to developing and evaluating machine learning
models adheres to established practices,’” and the design and
reporting of this study conform to the TRIPOD reporting
guidelines for risk prediction models.>***

Time-to-event analysis

In addition to binary prediction of treatment attrition, we
conducted a time-to-event survival analysis to focus on
understanding the duration of treatment retention, that is,
how long a patient stays in treatment, estimating the proba-
bility of discontinuation at different times while accounting
for censored data. This analysis provided insights into the
duration of BUP-NAL therapy by allowing us to model the
likelihood and timing of attrition.

For this purpose, we employed Cox proportional hazards
(CoxPH),*® Random Survival Forest (RSF),*' and Survival
XGBoost®® models. Feature selection and the number of fea-
tures to use for these models were identical to those used for
the binary classifier models. Models were trained and inter-
nally validated on the Stanford dataset and externally vali-
dated on the NeuroBlu dataset.

We used the concordance index (C-index)*? to measure the
models’ ability to rank survival times accurately, analogous
to the ROC-AUC for binary classification. A higher C-index
indicates a better ranking of patients by their treatment dura-
tion, with a C-index of 1.0 signifying a perfect ranking.

Each model underwent 5-fold cross-validation, repeated 10
times, totaling 50 evaluations per model. We calculated the
average C-index and standard deviations to assess perform-
ance and consistency. The scikit-survival package was used
for these analyses.*’

Feature importance and sensitivity analysis

We used SHapley Additive exPlanations (SHAP)** to quan-
tify the top 15 most important features influencing model
predictions.

To evaluate the added predictive value of features
extracted from unstructured data, we conducted a sensitivity
analysis using Stanford data. We compared model perform-
ance (ROC-AUC for classification and C-index for time-to-
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event) across 2 configurations: (1) a model with 193 features
from structured data only and (2) a model with a full 206 fea-
tures, including 13 features from unstructured data. To assess
the statistical significance of performance differences, we
applied 3 statistical tests—Wilcoxon signed-rank, Mann—
Whitney U, and paired t-tests—for each model comparison.

To further address redundancy and explore the interplay
between structured and unstructured features, we compared
4 model configurations: a structured-only model, an NLP-
only model using just the 13 LLM-derived features, a com-
bined model appending all features without harmonization,
and a harmonized model where overlapping features were
reconciled into unified binary indicators (eg, “depression
from any source”). All models were trained using Random
Survival Forests with 5-fold cross-validation repeated over
100 runs and evaluated using the C-index.

Finally, we conducted a subgroup analysis stratified by
age, gender, race, and ethnicity. For each subgroup, model
performance was assessed using the C-index from 35-fold
cross-validation RSF.

Web application for interactive use

To enhance the translation of our predictive model into clini-
cal workflows, we created an interactive web application that
enables users to visualize predictions in real time. We utilized
the top 15 important features extracted from SHAP to
develop and deploy this model. The application allows clini-
cians and researchers to enter individual patient clinical vari-
ables interactively to dynamically generate a custom risk
prediction report and personalized “survival” risk curve.

Results
Feature prevalence

Table 1 provides the demographic characteristics of the Stan-
ford and NeuroBlu datasets. Individual patients may have
multiple encounters if they initiated BUP-NAL treatment
more than once after a treatment gap (more than 30 days). In
the Stanford dataset, 28% of patients experienced multiple
encounters, and in the NeuroBlu dataset, this percentage was
34%.

The 2 datasets show notable differences in their demo-
graphics. The Stanford dataset has a higher mean age (49.4

Table 1. The demographic characteristics of the Stanford and NeuroBlu
datasets, which represent encounters rather than unique patients, as
individuals may have multiple encounters of care within the study period.

Feature Stanford dataset ~ NeuroBlu dataset
Age (years)

Mean (SD) 49.4 (16.5) 42.2 (12.4)

Median (IQR) 51(28) 40 (18)
Sex

Male 52.8% 59.3%

Female 47.2 % 40.7%
Race

White 72.1% 43.4%

Black or African American  6.6% 55.6%

Other Race 51% 0.4%

Not reported 16.2% 0.7%
Ethnicity

Hispanic or Latino 12.4% 0%

Not Hispanic or Latino 84.5% 0.4%

Not reported 3.1% 99.6%

years) compared to the NeuroBlu dataset (42.2 years). Most
patients in the Stanford dataset were identified as White
(72.1%), whereas the NeuroBlu dataset has a majority of
Black or African American individuals (55.6%). Addition-
ally, 12.4% of Stanford participants are Hispanic or Latino,
whereas none in NeuroBlu are.

Additionally, Table S3 reports the prevalence of 13 LLM-
derived features across the 2 datasets based on the number of
encounters. Patients in the NeuroBlu dataset showed higher
rates of psychiatric comorbidities, particularly bipolar disor-
der and depression, compared to the Stanford cohort.

A correlation heatmap (Figure S2) visualizes the relation-
ships among the 13 features extracted from unstructured
data using Stanford data. Strong positive correlations were
observed between Chronic Pain and Substance Use Disorder,
as well as between Alcohol Dependence and Substance Use
Disorder.

Model performance

The performance of both classification and time-to-event
models is summarized in Tables 2 and 3. In Table 2, which
presents results for classification models, Random Forest
achieved the highest recall across both datasets, while
XGBoost achieved the highest precision. XGBoost had the
best overall ROC-AUC on the Stanford data. Logistic Regres-
sion had the lowest performance across all metrics but
improved notably when LLM-derived features were included
(detailed in the Sensitivity Analysis section).

In Table 3, which shows the time-to-event (survival) model
results, Random Survival Forest showed the highest perform-
ance across both datasets, with XGBoost showing similar
results on the Stanford dataset.

Sensitivity analysis: Impact of LLM-derived clinical
features and subgroup analysis

Figure 3 illustrates the comparative performance between the
models trained on structured data (193 features) and the
model trained on all features, including those from unstruc-
tured data (206 features). Results demonstrate that adding
LLM-derived features improved model performance across all
architectures, with several models showing statistically signifi-
cant improvements based on Wilcoxon signed-rank tests
(P <.05). Among the classification models (shown in blue),
Logistic Regression showed the most substantial improve-
ment, with performance increasing from ~0.53 to 0.57
(+4%), representing a statistically significant gain. XGBoost
also demonstrated significant improvement with the addition
of LLM features (>+2%), achieving the highest overall classi-
fication performance at ~0.65. Random Forest showed mod-
est, non-significant improvement when incorporating LLM-
derived features. Time-to-event models (shown in red) consis-
tently demonstrated modest but statistically significant
improvements with the addition of LLM-derived features.
CoxPH, Random Survival Forest, and Survival XGBoost all
showed similar C-index values around 0.63-0.65 when aug-
mented with LLM-derived features, compared to 0.61-0.64
with structured data alone. Additional statistical comparisons
using Mann—-Whitney U and paired t-tests were also con-
ducted to confirm the robustness of the observed improve-
ments. The results of these tests are provided in Table S4.
Overall, these results demonstrate that LLM-derived fea-
tures can enhance model performance across different archi-
tectures, though the magnitude of improvement varies by
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Table 2. Classification performance of machine learning models trained on Stanford EHR data in terms of predicting whether a patient starting BUP-NAL

therapy will stop treatment within 180 days.

Source Model Precision Recall F1-score ROC-AUC
Stanford (internal validation) Logistic Regression 0.69 = 0.02 0.52 +0.03 0.57 +0.03 0.57 +0.03
Random Forest 0.70 £ 0.01 0.77 £ 0.02 0.72 £ 0.02 0.64 = 0.03
XGBoost 0.72 = 0.02 0.75 =0.02 0.71 = 0.02 0.65 =0.03
NeuroBlu (external validation) Logistic Regression 0.90 = 1.00 0.20 = 0.07 0.32 = 0.03 0.60 = 0.03
Random Forest 0.83 £0.01 0.78 = 0.02 0.69 = 0.02 0.56 =£0.03
XGBoost 0.86 = 0.01 0.56 =0.03 0.64 = 0.07 0.57 =£0.03

Precision (positive predictive value), recall (sensitivity), F1-score, and ROC-AUC are reported for the Logistic Regression, Random Forest, and XGBoost

models.

Table 3. Time-to-event analysis performance of survival models across
the Stanford and NeuroBlu datasets.

Source Model C-index

Stanford (internal validation) CoxPH 0.63 = 0.02
Random survival forest 0.65 = 0.01
Survival XGBoost 0.65 = 0.02

NeuroBlu (external validation) CoxPH 0.51 +0.01

Random survival forest  0.56 = 0.00
Survival XGBoost 0.55 = 0.00

C-index is reported for CoxPH, Random Survival Forest, and Survival
XGBoost models.

model type and complexity. Simpler models like Logistic
Regression and CoxPH showed the greatest relative improve-
ments, while ensemble-based models such as XGBoost, Ran-
dom Survival Forest, and Survival XGBoost achieved the
highest absolute predictive performance.

To further evaluate the added value of LLM-derived fea-
tures, we compared 4 modeling strategies. The NLP-only
model (13 unstructured features) had substantially lower per-
formance (C-index=0.5364), while both combined models,
whether appending or harmonizing overlapping features, out-
performed the structured-only baseline (C-index=10.6517),
achieving similar top performance (~0.654). These results
confirm the complementary predictive value of features
derived from clinical notes, even when partially redundant
with structured variables (Figure S3 and Table S5).

Subgroup analysis demonstrated consistent model per-
formance across age, gender, race, and ethnicity groups, with
C-index values ranging from 0.60 to 0.67. Slightly lower per-
formance was observed in the “Other race” and “Ethnicity
Not Reported” categories, likely due to small sample sizes
(n=92 and n = 56, respectively) (Figure S4).

Feature importance using SHAP

We used SHAP values to understand each feature’s contribu-
tion, ranked by their impact on the survival XGBoost model’s
output for treatment attrition prediction, as illustrated in Fig-
ure 4 for the top 15 features. The SHAP summary plot
depicts each feature’s impact on the model’s output along the
x-axis, with the y-axis listing the features. The color of each
point represents the value of the corresponding feature: for
binary features, darker shades (red in Figure 4) indicate pres-
ence (coded as 1) and lighter shades (blue in Figure 4) indi-
cate absence (coded as 0); for continuous features such as
age, warmer colors correspond to higher values and cooler
colors to lower values. Horizontal placement shows the
extent to which each feature affects the time to attrition. Fea-
tures contributing to shorter times to attrition appear to the

right (positive SHAP values), while features contributing to
longer times appear to the left (negative SHAP values). For
example, a formally coded Opioid Dependence diagnosis
(ICD-10 F11.2) is denoted by the red points and is to the left
of the dividing indifference line. This means that those
patients were less likely to have treatment attrition and more
likely to have longer treatment retention. In contrast, if the
CLEAR pipeline identified Liver Disease in a patient’s chart,
that was correlated with the patient’s being more likely to
have treatment attrition (and shorter treatment retention
time). For a continuous valued feature (age, in this case), a
higher (red) value (ie, older patient) was more correlated with
treatment retention, although the spread of red and blue cases
indicates that there was heterogeneity in that effect. Among
the features extracted from unstructured data, Chronic Pain,
Liver Disease, and Major Depression showed important con-
tributions to the model’s predictions.

Web application for interactive use

Figure 5 depicts a screenshot of an interactive web application
that allows users to visualize treatment retention predictions
in real time. Figure 5A shows an example for a 34-year-old
patient with liver disease and prescriptions including aspirin
and acetaminophen. The web application dynamically updates
the patient-specific retention probability curve based on these
input features. The tool provides a day-by-day probability esti-
mate of retention up to 180 days, allowing clinicians to track
the likelihood of continued treatment at any given time point.
This prediction is presented together with 3 reference curves:
the high-risk profile (red), which represents the 2.5th percen-
tile of predicted retention probabilities across the population
(indicating patients most likely to discontinue early); the low-
risk profile (green), which represents the 97.5th percentile
(patients predicted to remain in treatment the longest); and the
median retention curve (dotted gray), which reflects the 50th
percentile retention probability across the training sample
(Stanford data). As shown in Figure 5B, the model predicts
that this example patient has a 47% probability of remaining
in treatment on day 7. Their predicted retention pattern
matches the high-risk profile (red curve), showing a high risk
of early treatment attrition. The tool is accessible at [https://
www.healthrexlab.com/resources].

Discussion

Prior research suggests that co-occurring medical and psychi-
atric conditions significantly influence retention in MOUD
and may not be fully captured by structured data.*>*® In this
study, we developed and evaluated multiple machine learning
models to predict treatment attrition in daily oral BUP-NAL
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Figure 3. Performance comparison of classification models (A) and time-to-event models (B) using structured data alone (light colors) vs structured data
augmented with LLM-derived features (dark colors). (A) ROC-AUC for classification models (Logistic Regression, Random Forest, and XGBoost), and (B)
C-index for time-to-event models (CoxPH, Random Survival Forest, and Survival XGBoost) are shown. Error bars represent standard deviations across
repeated experiments (50 iterations). Asterisks (*) indicate statistically significant differences (P < .05) between structured-only and LLM-augmented
approaches, based on Wilcoxon signed-rank tests. Improvements were observed for the Logistic Regression, XGBoost, and all 3 time-to-event models
(CoxPH, Random Survival Forest, and Survival XGBoost) when incorporating LLM-derived features.
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Figure 4. The figure shows the top 15 features ranked by their impact on the survival XGBoost model’s output for treatment attrition prediction. For
example, a formal diagnosis code for Opioid Dependence was associated with a higher chance of treatment retention.
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A Buprenorphine-Naloxone Attrition Prediction
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This section presents the predicted retention probability over time for a patient, along with comparative reference curves:

Predicted Retention Probability Over Tim%‘

Retention Probability

0.2 -

Patient Prediction: The predicted retention probability curve for the patient based on their input features.

High Risk (2.5th Percentile): Represents a reference curve indicating lower retention probabilities associated with patients at higher risk of treatment attrition.
Low Risk (97.5th Percentile): Represents a reference curve showing higher retention probabilities associated with patients expected to stay longer in treatment.
Median: Shows a curve that represents the median retention probability across the sample population for comparison.

=—e— Patient Prediction
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Figure 5. Interactive web-based tool for BUP-NAL treatment retention prediction. (A) This example features a 34-year-old patient with prescriptions for
acetaminophen, aspirin, and docusate (laxative), along with a history of liver disease. (B) The personalized retention probability curve (in blue) shows a
47 % likelihood of continued treatment at day 7, compared to high-risk (red), low-risk (green), and median retention (dotted gray) reference curves.

therapy using both structured EHR data and features
extracted from unstructured clinical notes. We compared
nonlinear machine learning models, such as Random Forest
and XGBoost, with traditional statistical methods like Logis-
tic Regression and CoxPH, given that the former can be bet-
ter at capturing complex patterns in data. While these models
could identify patients at risk of early treatment discontinua-
tion, their overall discriminative power is imperfect. Our
findings align with our previous research, where addiction
medicine clinicians faced challenges in accurately predicting
treatment retention, highlighting the complexity of this task
even for experts.'®

Across various model types, we found moderate predictive
performance, with statistically significant improvements
when including features from unstructured clinical notes.
While it is possible that other clinical note feature extraction
methods might have yielded better performance results, given
the >90% agreement on the extracted features with human
expert review, it is more likely that predictive performance

may already be maximized for this complex biopsychosocial
phenomenon that may need other data sources (or may just
be fundamentally difficult to predict).

A key consideration in predictive modeling is ensuring gen-
eralizability across diverse patient populations. This study
revealed significant demographic differences between the
Stanford and NeuroBlu datasets, particularly in terms of age,
race, and ethnic composition (Table S6). The NeuroBlu data-
set represents behavioral health settings spanning hundreds
of sites across the United States, encompassing a patient pop-
ulation with more complex behavioral health conditions and
social determinants of health. This subset of NeuroBlu data
reflects a higher attrition rate, likely influenced by factors
such as younger age, psychiatric comorbidities, and socioeco-
nomic barriers to treatment retention. The prevalence of fea-
tures extracted from unstructured data also differed across
datasets, with the NeuroBlu cohort showing higher rates of
psychiatric comorbidities and social determinants of health
indicators, such as homelessness, unemployment, and
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substance use disorders. These differences highlight the neces-
sity of considering variations in patient populations when
developing predictive models for OUD treatment retention.
The contrast in attrition rates underscores the need for model
validation in diverse settings to ensure reliability and external
generalizability.

In this context, we made a modeling decision to restrict
structured features to the intersection between Stanford and
NeuroBlu datasets to ensure consistency and comparability
in cross-site evaluations. While this approach may exclude
informative features unique to either site, it enables a fair test
of generalizability. Importantly, our prior research'’
explored a single-site model using all locally available fea-
tures, effectively capturing the predictive value of site-specific
information. Thus, the current study complements that work
by directly addressing the performance trade-offs of harmoni-
zation, highlighting how generalizability may be improved at
the expense of local specificity. We contrast these 2
approaches to frame future directions for optimizing both
performance and portability.

The identification of key clinical and psychosocial risk fac-
tors itself remains valuable, aligning with prior research on
the challenges of sustaining long-term engagement in MOUD
treatment.'®*” Notably, among the 13 features extracted
from clinical notes, Chronic Pain, Liver Disease, and Major
Depression were among the top 15 most significant predic-
tors of treatment attrition out of a total of 206 features. If
they were only randomly correlated, one might expect only
one of the extracted text features to emerge in the top 15.
Liver disease was associated with a higher likelihood of early
attrition, reflecting the challenges of managing MOUD in
patients with complex medical conditions. In contrast,
chronic pain and major depression were associated with lon-
ger treatment retention. This could indicate increased engage-
ment with care or closer monitoring for individuals with
these comorbidities. These observations align with prior
research, which indicates that psychiatric comorbidities can
reduce the likelihood of patient-initiated attrition while
simultaneously increasing the likelihood of treatment termi-
nation by facilities.** For example, Friesen et al. found that
individuals with depression, anxiety, and bipolar disorder
comorbidities were less likely to initiate attrition them-
selves.*® The fact that these 3 psychiatric conditions are
among the top predictors suggests that clinicians treating
patients with OUD using BUP-NAL should routinely screen
for these disorders, as the coexistence of medical and psychi-
atric conditions is critical for patient retention in MOUD.

Early identification and targeted interventions for individu-
als at high risk of attrition could improve long-term engage-
ment in care. For example, high-risk individuals may be
considered for early initiation of long-acting injectable and
implantable formulations of buprenorphine, which have been
shown to improve treatment retention and adherence by
reducing the need for daily medication management.*” The
availability of multiple extended-release versions provides
additional flexibility in optimizing treatment plans based on
individual patient needs.

Lower buprenorphine doses were associated with higher
treatment attrition, a finding demonstrated in other recent
work,’® reinforcing the importance of optimizing dosing in
practice. Two of the features that contributed most to the
attrition prediction were laxatives, which may suggest that
patients already suffering constipation as a side effect of

opioid use are at risk of treatment discontinuation, but it is
also a treatable condition that could be intervened on early
by clinicians.

Predictive modeling efforts should focus not only on
improving accuracy but also on providing actionable insights
that can be integrated into clinical decision support systems.
To facilitate this, we developed an interactive web application
that allows clinicians and researchers to explore model predic-
tions, visualize feature importance, and assess individualized
risk scores. Although machine learning models can identify
patients at risk of treatment attrition, their clinical utility
depends on ease of interpretation and integration into
workflows. By offering an interactive platform that enhances
model transparency and interpretability, the web application
can bridge the gap between research and real-world decision-
making. Future work should focus on validating the applica-
tion in diverse clinical settings, integrating it with EHR
systems, and incorporating real-time patient data to further
improve its utility in guiding personalized interventions.

Several limitations in this study should be considered.
While LLM-derived features were extracted using a system-
atic pipeline with high agreement with human expert
reviewers, they may not fully capture the depth of clinical rea-
soning and patient narratives present in free-text notes.
Aspects such as provider tone or sentiment written “between
the lines,” such as expressions of concern about retention,
could carry predictive value but were not explicitly incorpo-
rated in our analysis. Future research could explore sentiment
analysis and NLP techniques to capture these nuanced indica-
tors of retention risk. While our findings suggest that struc-
tured EHR data alone provides reasonable predictive power,
future investigations should consider whether alternative
data sources (eg, patient-reported outcomes, insurance
claims, medication adherence metrics, and even genetic,
wearable, and digital data trends) could yield stronger predic-
tors of long-term MOUD engagement.

A specific limitation in interpretation is the inability of
EHRs to reliably distinguish between patients prescribed
BUP-NAL specifically for OUD, physiologic opioid depend-
ence without a use disorder, or other indications, such as for
pain management. Although primarily used for OUD treat-
ment, BUP-NAL's use off-label in other situations could com-
plicate analyses. We showed that predictive results were
stable and robust even when requiring that a formal OUD
diagnosis code be in the inclusion criteria, which offers.'®
Those results indicated that BUP-NAL combination therapy
(as opposed to buprenorphine or methadone monotherapy)
was a better proxy for the intended study population.
Another limitation is that patients may fill prescriptions out-
side of the healthcare systems included in this study (eg,
“doctor shopping”). Though we did not find evidence of this
occurring in high prevalence within our study population,
this possibility could result in an underestimation of patients’
actual treatment duration, with predicted risks of attrition
being worse than in reality.

While this study demonstrates the feasibility of clinical
decision-support tools, additional evaluation is needed to
assess the impact of model predictions on actual clinical
decision-making. Prospective studies investigating whether
risk stratification improves retention rates in real-world set-
tings will be essential for refining and validating predictive
approaches in OUD treatment.
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Conclusions

MOUD treatment retention is moderately predictable using
structured EHR data, with some degree of transferability
across clinical settings. Treatment retention is a complex and
heterogeneous phenomenon that can vary due to population
differences. Key risk factors can be extracted from clinical
note text through advanced LLM processing methods to pro-
vide additional contextual insight. For example, mentions of
Liver Disease emerge as a major predictor of treatment attri-
tion, while mentions of Chronic Pain and Major Depression
emerge as predictors of treatment retention. The ability to
distinguish high vs low-risk patients supports the implemen-
tation of individualized management and targeted follow-up
strategies, as well as risk adjustment, including optimization
of buprenorphine dose adjustments across treatment pro-
grams. An interactive web-based tool can enhance clinical
translation by allowing healthcare providers to interpret
model predictions and integrate data-driven insights into
treatment decisions.
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