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Abstract
Objective: Building upon our previous work on predicting treatment retention in medications for opioid use disorder, we aimed to improve 
6-month retention prediction in buprenorphine-naloxone (BUP-NAL) therapy by incorporating features derived from large language models 
(LLMs) applied to unstructured clinical notes.
Materials and Methods: We used de-identified electronic health record (EHR) data from Stanford Health Care (STARR) for model development 
and internal validation, and the NeuroBlu behavioral health database for external validation. Structured features were supplemented with 13 clin
ical and psychosocial features extracted from free-text notes using the CLinical Entity Augmented Retrieval pipeline, which combines named 
entity recognition with LLM-based classification to provide contextual interpretation. We trained classification (Logistic Regression, Random 
Forest, XGBoost) and survival models (CoxPH, Random Survival Forest, Survival XGBoost), evaluated using Receiver Operating Characteristic- 
Area Under the Curve (ROC-AUC) and C-index.
Results: XGBoost achieved the highest classification performance (ROC-AUC¼ 0.65). Incorporating LLM-derived features improved model 
performance across all architectures, with the largest gains observed in simpler models such as Logistic Regression. In time-to-event analysis, Ran
dom Survival Forest and Survival XGBoost reached the highest C-index (�0.65). SHapley Additive exPlanations analysis identified LLM-extracted fea
tures like Chronic Pain, Liver Disease, and Major Depression as key predictors. We also developed an interactive web tool for real-time clinical use.
Discussion: Features extracted using NLP and LLM-assisted methods improved model accuracy and interpretability, revealing valuable psycho
social risks not captured in structured EHRs.
Conclusion: Combining structured EHR data with LLM-extracted features moderately improves BUP-NAL retention prediction, enabling per
sonalized risk stratification and advancing AI-driven care for substance use disorders.
Key words: opioid use disorder; treatment attrition; machine learning; natural language processing; large language models; electronic health records; predic
tive modeling. 

Background
The opioid epidemic remains a significant public health crisis, 
with opioid use disorder (OUD) affecting millions of individu
als worldwide and non-medical opioid use linked to a tenfold 
increase in mortality.1 Medications for opioid use disorder 
(MOUD), such as buprenorphine-naloxone (BUP-NAL), have 

demonstrated efficacy in reducing opioid-related morbidity 
and mortality. However, a major challenge in OUD treatment 
is retention, as patients often discontinue MOUD prematurely. 
Retention rates for buprenorphine treatment range widely 
from 20% to 82.5%,2 with many patients discontinuing treat
ment within the first 6 months.3 Among oral forms of MOUD 
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in the United States, buprenorphine can have more flexible 
prescribing models than methadone (which is generally avail
able only through federally certified opioid treatment pro
grams), but buprenorphine demonstrates lower retention rates 
than methadone.4–6 Early discontinuation of buprenorphine 
therapy is associated with increased mortality, underscoring 
the need for identifying patients at risk for treatment attrition 
for targeted interventions and health system assessments.4

Predictive modeling is a powerful tool for identifying patients 
at risk of discontinuing MOUD.7–16 Traditional risk prediction 
models rely heavily on structured electronic health record 
(EHR) data.17–19 Structured data includes discrete, coded clini
cal variables that are systematically recorded in the EHR, 
including patient demographics (eg, age, sex), medical diagno
ses (eg, ICD-10 codes), prescribed medications (eg, RxNorm 
codes), laboratory test results, and procedural records (eg, CPT 
codes). These features are stored in predefined formats, which 
are convenient for computational analysis.

Although these structured data elements provide important 
insights, they cannot capture the complete clinical context. 
Unstructured clinical data includes notes within EHRs written 
in free-text (no explicitly defined structure) that can capture 
richer contextual information.20,21 These free-text notes— 
containing physician observations, patient-reported concerns, 
and social determinants of health—can offer unique qualita
tive insights into factors that are more often not captured in 
structured diagnosis codes, such as psychiatric comorbidities, 
psychosocial stressors, substance use history, and overall 
patient engagement, all of which influence MOUD treatment 
retention.22,23 Utilizing this information for large-scale analy
ses is challenging due to the complexity and variability of 
unstructured clinical note data, necessitating advanced natural 
language processing (NLP) techniques to organize and extract 
relevant information out of unstructured EHR data. Our prior 
work suggested NLP methods using keyword identification 
techniques could modestly improve MOUD treatment reten
tion prediction models, but were limited by their dependence 
on predefined keywords and their inability to grasp context.19

For example, prior methods could look for keywords like 
“homelessness” but would completely miss a case where the 
documented note describes a patient “living in his car,” given 
no overlap in wording. The advent of large language models 
(LLMs) has enabled more sophisticated methods for extract
ing clinically relevant information from unstructured text with 
more “reasoning” around the context and semantics of identi
fied clinical concepts.24–26

This study leverages our NLP pipeline called CLinical 
Entity Augmented Retrieval (CLEAR), which combines 
LLMs and information retrieval methods to extract interpret
able clinical features relevant to MOUD from clinical notes 
often missed by structured data approaches.27,28 In this 
study, we assess whether key psychosocial risk factors for 
MOUD treatment attrition can be extracted using these 
advanced LLM and NLP techniques and whether this 
improves treatment retention prediction, accessible through 
an interactive web risk calculator.

Methods
Study design and data sources
This study utilized de-identified datasets to train and validate 
the predictive models that predict BUP-NAL treatment reten
tion vs attrition, with external validation performed using 

data from separate patient cohorts. The study population 
consisted of patients aged 16-89 years who had received at 
least one prescription for BUP-NAL for more than 1 day. 
Treatment duration was defined as the period between the 
start and end of consecutive BUP-NAL prescriptions. Contin
uous treatment was considered to be the case if the gap 
between the end date of one prescription and the start date of 
the next did not exceed 30 days. Treatment attrition was 
defined as a treatment duration of fewer than 180 days, con
sistent with prior research and established quality-of-care 
benchmarks.29,30 The Stanford EHR dataset was used for 
model development and internal validation, and NeuroBlu, a 
longitudinal behavioral health database, was used for exter
nal validation to assess model generalizability across different 
healthcare settings. All data were de-identified following the 
Safe Harbor method in accordance with the National Insti
tute of Standards and Technology guidelines, and clinical text 
was further anonymized using the TiDE algorithm.31 This 
study was approved by the Stanford University Institutional 
Review Board (IRB #67423).

Stanford electronic health record data (STARR)
The STAnford Research Repository (STARR) dataset is an 
integrated health system database that includes de-identified 
EHR data from an academic hospital (Stanford Health Care), 
a community hospital (ValleyCare Hospital), and a commun
ity practice network (University Healthcare Alliance). It 
encompasses both inpatient and outpatient encounters across 
various specialties from 1999 to 2022. To enable compari
sons across institutions, the STARR data were standardized 
to the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model (CDM).32 The subset of the 
STARR dataset utilized for this study included 1800 treat
ment encounters for 1272 unique patients receiving BUP- 
NAL prescriptions, along with 13 922 unique clinical notes. 
Of these encounters, 1099 (61%) resulted in treatment attri
tion within 6 months of initiating BUP-NAL. In the Stanford 
dataset, treatment start dates up to 2020 were used for model 
training, and treatment start dates from 2021 onwards were 
used for validation.

NeuroBlu behavioral health database
NeuroBlu is a real-world behavioral health database that 
aggregates de-identified EHR data from all 50 US states from 
166 distinct sites of care, including hospitals, emergency 
rooms, and community psychiatry clinics spanning over 20 
years (2003-2024).33 The portion of the dataset utilized for 
this study was standardized to the OMOP CDM format. 
After standardizing the data and selecting patients who met 
the inclusion criteria with clinical note data available, the 
final dataset for analysis included 459 treatment encounters 
for 342 unique patients, with 11 681 clinical notes. Among 
these encounters, 381 (83%) were classified as attrition 
within 6 months of BUP-NAL initiation.

Feature extraction
Feature extraction involved 2 main phases: the extraction of 
baseline structured EHR data and additional features derived 
from unstructured notes using the CLEAR NLP pipeline 
described below.27
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Structured data
The datasets contain 17 961 diagnostic markers, 17 271 pro
cedural indicators, and 47 476 drug-associated features. To 
select features significantly associated with treatment reten
tion, both sites independently applied association rule mining 
with Fisher’s exact test (P< .05) to each dataset. This resulted 
in the structured data from the Stanford and NeuroBlu data
sets, including 578 and 636 candidate features, respectively, 
covering domains including demographics, diagnoses, medi
cations, and procedures. We created a common standardized 
feature dictionary by mapping the overlapping features 
across both datasets, resulting in 189 shared features plus 4 
demographic features used for model development. Figure 1
illustrates the processing of structured EHR data from both 
datasets, and a complete list of the structured features is pro
vided in Table S1.

Patient age was treated as a continuous variable. All other 
features were encoded as binary indicators (1¼present, 
0¼ absent), naturally addressing missing values without the 
need for imputation.

Unstructured data from clinical notes
A board-certified addiction medicine physician, S.T., 
reviewed previous literature to identify 13 key features 
related to treatment attrition from unstructured clinical notes 
relevant in clinical practice.20 These features included indica
tions of post-traumatic stress disorder, major depression, 
homelessness, personality disorders, tobacco dependence, 
bipolar disorder, attention deficit hyperactivity disorder, sub
stance use disorders excluding OUD, chronic pain, suicidal 
behavior, unemployment, alcohol dependence, and liver dis
ease. These features were extracted from the clinical notes 
using the CLEAR pipeline, which combines named entity rec
ognition methods with LLMs to extract information as a 
form of Retrieval-Augmented Generation (RAG)28 described 
below. While LLMs enhance the interpretability of extracted 
mentions, the CLEAR pipeline does not represent a fully gen
erative or end-to-end LLM-based system.

CLEAR requires 2 inputs: clinical notes and a target entity 
(eg, “homelessness”). First, it uses a named-entity recognition 
model (Flan-T5-XXL in this case) to scan notes and extract 
all clinical entities mentioned (eg, “depression,” “colorectal 
cancer,” and “homelessness”). Next, the extracted entities 
are filtered to the ones of interest and then augmented with 

synonyms and morphological variations from medical ontol
ogies (eg, UMLS) and LLM-based paraphrasing (using GPT- 
4). This augmentation process allows the process to capture 
wording variations. For example, the process can find word
ings relevant to homelessness (eg, “unhoused” or “unstable 
housing”), even when there is no direct overlap in words or 
phrases. Following this, the system retrieves segments of 
notes by extracting text surrounding each mention of the tar
get entity or its associated terms (“homelessness,” 
“unhoused,” “unstable housing”). Finally, these note seg
ments are provided to an LLM with a tailored prompt (eg, 
“Is this patient experiencing homelessness?”) to classify the 
presence or absence of the target condition.

A detailed depiction of the CLEAR pipeline workflow can 
be found in Figure S1. Output from the CLEAR process pro
duced binary labels (present vs absent) for each of the 13 fea
tures identified by our clinical expert. To ensure the accuracy 
of the extracted features, the pipeline underwent human vali
dation, where clinical experts assessed the correctness of 
LLM-derived assertions. The agreement between the CLEAR 
pipeline and human annotations exceeded 90% on average, 
as measured by the F1 score (see Supplementary S2 and 
Lopez et al.27 for additional details). As shown in Table S2, 
GPT-4 consistently outperformed other LLMs (including 
Med42, Llama-3, and Flan-UL2), achieving the highest over
all average F1 score of 0.97.

Only features documented from clinical notes recorded at 
least 1 day before the index BUP-NAL prescription date were 
used, and if a feature appeared multiple times across different 
notes, it was counted once. The workflow for unstructured 
feature extraction and integration is illustrated in Figure 2.

Model development
We developed machine learning models using 2 main model
ing approaches: classification to predict attrition or retention 
at the 6-month mark and time-to-event analysis to model 
dynamic treatment.

Classification for attrition prediction
We trained models on Stanford data using 206 features (193 
from structured data, including demographics, and 13 from 
unstructured data) to predict whether a patient would experi
ence treatment attrition within 6 months of starting BUP- 
NAL therapy. The evaluated classification models include 

Figure 1. Timeline representation of a patient with feature extraction and treatment tracking for BUP-NAL therapy. A common set of 189 features, 
including diagnoses, medications, and procedural records, plus 4 demographic features, is extracted from patient data in the Stanford and NeuroBlu 
OMOP datasets. The prediction index time is set at the onset of a BUP-NAL treatment period when continuous prescriptions persist without a treatment 
gap of more than 30 days. The treatment duration is illustrated up to the red “X” after a continuous period of 89 days in this example.
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Logistic Regression, Random Forest,34 and XGBoost35 classi
fiers for binary prediction of treatment attrition vs retention. 
These methods were chosen for their demonstrated effective
ness in prior research predicting attrition in OUD 
treatment.36

Each model underwent hyperparameter tuning using grid 
search with cross-validation on the Stanford dataset to opti
mize performance. The models’ performance was internally 
validated using the Stanford dataset and externally validated 
using the NeuroBlu dataset.

To assess model performance, we used precision, recall, 
F1-score, and Receiver Operating Characteristic—Area 
Under the Curve (ROC-AUC) as standard evaluation metrics. 
Precision (positive predictive value) measures the proportion 
of predicted attrition cases that were correctly identified, 
where a higher precision indicates fewer false positives. 
Recall (sensitivity) evaluates the proportion of actual attrition 
cases that the model correctly identified, with higher recall 
reflecting fewer false negatives. F1-score is the harmonic 
mean of precision and recall, providing a balanced measure 
of model performance when false positives and false nega
tives carry similar importance. Lastly, ROC-AUC quantifies 
the model’s ability to discriminate between retention and 
attrition cases by summarizing the tradeoff between sensitiv
ity and specificity. A higher ROC-AUC score, approaching 
1.0, indicates perfect discrimination and ranking of high vs 
low risk cases, whereas an ROC-AUC of 0.5 indicates risk 
predictions no better than random guessing.

The robustness of model performance was further assessed 
through 50 iterations of testing on resampled test data, with 
average values and standard deviations reported. Our 
approach to developing and evaluating machine learning 
models adheres to established practices,37 and the design and 
reporting of this study conform to the TRIPOD reporting 
guidelines for risk prediction models.38,39

Time-to-event analysis
In addition to binary prediction of treatment attrition, we 
conducted a time-to-event survival analysis to focus on 
understanding the duration of treatment retention, that is, 
how long a patient stays in treatment, estimating the proba
bility of discontinuation at different times while accounting 
for censored data. This analysis provided insights into the 
duration of BUP-NAL therapy by allowing us to model the 
likelihood and timing of attrition.

For this purpose, we employed Cox proportional hazards 
(CoxPH),40 Random Survival Forest (RSF),41 and Survival 
XGBoost35 models. Feature selection and the number of fea
tures to use for these models were identical to those used for 
the binary classifier models. Models were trained and inter
nally validated on the Stanford dataset and externally vali
dated on the NeuroBlu dataset.

We used the concordance index (C-index)42 to measure the 
models’ ability to rank survival times accurately, analogous 
to the ROC-AUC for binary classification. A higher C-index 
indicates a better ranking of patients by their treatment dura
tion, with a C-index of 1.0 signifying a perfect ranking.

Each model underwent 5-fold cross-validation, repeated 10 
times, totaling 50 evaluations per model. We calculated the 
average C-index and standard deviations to assess perform
ance and consistency. The scikit-survival package was used 
for these analyses.43

Feature importance and sensitivity analysis
We used SHapley Additive exPlanations (SHAP)44 to quan
tify the top 15 most important features influencing model 
predictions.

To evaluate the added predictive value of features 
extracted from unstructured data, we conducted a sensitivity 
analysis using Stanford data. We compared model perform
ance (ROC-AUC for classification and C-index for time-to- 

Figure 2. Data processing workflow for feature extraction and model training. Clinical notes are processed through the CLEAR pipeline, which extracts 
relevant features using LLMs. The output from CLEAR is combined with structured EHR data. This resulted in 206 features in common across all study 
sites and was used to train and validate the machine learning models.
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event) across 2 configurations: (1) a model with 193 features 
from structured data only and (2) a model with a full 206 fea
tures, including 13 features from unstructured data. To assess 
the statistical significance of performance differences, we 
applied 3 statistical tests—Wilcoxon signed-rank, Mann– 
Whitney U, and paired t-tests—for each model comparison.

To further address redundancy and explore the interplay 
between structured and unstructured features, we compared 
4 model configurations: a structured-only model, an NLP- 
only model using just the 13 LLM-derived features, a com
bined model appending all features without harmonization, 
and a harmonized model where overlapping features were 
reconciled into unified binary indicators (eg, “depression 
from any source”). All models were trained using Random 
Survival Forests with 5-fold cross-validation repeated over 
100 runs and evaluated using the C-index.

Finally, we conducted a subgroup analysis stratified by 
age, gender, race, and ethnicity. For each subgroup, model 
performance was assessed using the C-index from 5-fold 
cross-validation RSF.

Web application for interactive use
To enhance the translation of our predictive model into clini
cal workflows, we created an interactive web application that 
enables users to visualize predictions in real time. We utilized 
the top 15 important features extracted from SHAP to 
develop and deploy this model. The application allows clini
cians and researchers to enter individual patient clinical vari
ables interactively to dynamically generate a custom risk 
prediction report and personalized “survival” risk curve.

Results
Feature prevalence
Table 1 provides the demographic characteristics of the Stan
ford and NeuroBlu datasets. Individual patients may have 
multiple encounters if they initiated BUP-NAL treatment 
more than once after a treatment gap (more than 30 days). In 
the Stanford dataset, 28% of patients experienced multiple 
encounters, and in the NeuroBlu dataset, this percentage was 
34%.

The 2 datasets show notable differences in their demo
graphics. The Stanford dataset has a higher mean age (49.4 

years) compared to the NeuroBlu dataset (42.2 years). Most 
patients in the Stanford dataset were identified as White 
(72.1%), whereas the NeuroBlu dataset has a majority of 
Black or African American individuals (55.6%). Addition
ally, 12.4% of Stanford participants are Hispanic or Latino, 
whereas none in NeuroBlu are.

Additionally, Table S3 reports the prevalence of 13 LLM- 
derived features across the 2 datasets based on the number of 
encounters. Patients in the NeuroBlu dataset showed higher 
rates of psychiatric comorbidities, particularly bipolar disor
der and depression, compared to the Stanford cohort.

A correlation heatmap (Figure S2) visualizes the relation
ships among the 13 features extracted from unstructured 
data using Stanford data. Strong positive correlations were 
observed between Chronic Pain and Substance Use Disorder, 
as well as between Alcohol Dependence and Substance Use 
Disorder.

Model performance
The performance of both classification and time-to-event 
models is summarized in Tables 2 and 3. In Table 2, which 
presents results for classification models, Random Forest 
achieved the highest recall across both datasets, while 
XGBoost achieved the highest precision. XGBoost had the 
best overall ROC-AUC on the Stanford data. Logistic Regres
sion had the lowest performance across all metrics but 
improved notably when LLM-derived features were included 
(detailed in the Sensitivity Analysis section).

In Table 3, which shows the time-to-event (survival) model 
results, Random Survival Forest showed the highest perform
ance across both datasets, with XGBoost showing similar 
results on the Stanford dataset.

Sensitivity analysis: Impact of LLM-derived clinical 
features and subgroup analysis
Figure 3 illustrates the comparative performance between the 
models trained on structured data (193 features) and the 
model trained on all features, including those from unstruc
tured data (206 features). Results demonstrate that adding 
LLM-derived features improved model performance across all 
architectures, with several models showing statistically signifi
cant improvements based on Wilcoxon signed-rank tests 
(P< .05). Among the classification models (shown in blue), 
Logistic Regression showed the most substantial improve
ment, with performance increasing from �0.53 to 0.57 
(þ4%), representing a statistically significant gain. XGBoost 
also demonstrated significant improvement with the addition 
of LLM features (>þ2%), achieving the highest overall classi
fication performance at �0.65. Random Forest showed mod
est, non-significant improvement when incorporating LLM- 
derived features. Time-to-event models (shown in red) consis
tently demonstrated modest but statistically significant 
improvements with the addition of LLM-derived features. 
CoxPH, Random Survival Forest, and Survival XGBoost all 
showed similar C-index values around 0.63-0.65 when aug
mented with LLM-derived features, compared to 0.61-0.64 
with structured data alone. Additional statistical comparisons 
using Mann–Whitney U and paired t-tests were also con
ducted to confirm the robustness of the observed improve
ments. The results of these tests are provided in Table S4.

Overall, these results demonstrate that LLM-derived fea
tures can enhance model performance across different archi
tectures, though the magnitude of improvement varies by 

Table 1. The demographic characteristics of the Stanford and NeuroBlu 
datasets, which represent encounters rather than unique patients, as 
individuals may have multiple encounters of care within the study period.

Feature Stanford dataset NeuroBlu dataset

Age (years)
Mean (SD) 49.4 (16.5) 42.2 (12.4)
Median (IQR) 51 (28) 40 (18)

Sex
Male 52.8% 59.3%
Female 47.2 % 40.7%

Race
White 72.1% 43.4%
Black or African American 6.6% 55.6%
Other Race 5.1% 0.4%
Not reported 16.2% 0.7%

Ethnicity
Hispanic or Latino 12.4% 0%
Not Hispanic or Latino 84.5% 0.4%
Not reported 3.1% 99.6%
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model type and complexity. Simpler models like Logistic 
Regression and CoxPH showed the greatest relative improve
ments, while ensemble-based models such as XGBoost, Ran
dom Survival Forest, and Survival XGBoost achieved the 
highest absolute predictive performance.

To further evaluate the added value of LLM-derived fea
tures, we compared 4 modeling strategies. The NLP-only 
model (13 unstructured features) had substantially lower per
formance (C-index¼0.5364), while both combined models, 
whether appending or harmonizing overlapping features, out
performed the structured-only baseline (C-index¼ 0.6517), 
achieving similar top performance (�0.654). These results 
confirm the complementary predictive value of features 
derived from clinical notes, even when partially redundant 
with structured variables (Figure S3 and Table S5).

Subgroup analysis demonstrated consistent model per
formance across age, gender, race, and ethnicity groups, with 
C-index values ranging from 0.60 to 0.67. Slightly lower per
formance was observed in the “Other race” and “Ethnicity 
Not Reported” categories, likely due to small sample sizes 
(n¼92 and n¼ 56, respectively) (Figure S4).

Feature importance using SHAP
We used SHAP values to understand each feature’s contribu
tion, ranked by their impact on the survival XGBoost model’s 
output for treatment attrition prediction, as illustrated in Fig
ure 4 for the top 15 features. The SHAP summary plot 
depicts each feature’s impact on the model’s output along the 
x-axis, with the y-axis listing the features. The color of each 
point represents the value of the corresponding feature: for 
binary features, darker shades (red in Figure 4) indicate pres
ence (coded as 1) and lighter shades (blue in Figure 4) indi
cate absence (coded as 0); for continuous features such as 
age, warmer colors correspond to higher values and cooler 
colors to lower values. Horizontal placement shows the 
extent to which each feature affects the time to attrition. Fea
tures contributing to shorter times to attrition appear to the 

right (positive SHAP values), while features contributing to 
longer times appear to the left (negative SHAP values). For 
example, a formally coded Opioid Dependence diagnosis 
(ICD-10 F11.2) is denoted by the red points and is to the left 
of the dividing indifference line. This means that those 
patients were less likely to have treatment attrition and more 
likely to have longer treatment retention. In contrast, if the 
CLEAR pipeline identified Liver Disease in a patient’s chart, 
that was correlated with the patient’s being more likely to 
have treatment attrition (and shorter treatment retention 
time). For a continuous valued feature (age, in this case), a 
higher (red) value (ie, older patient) was more correlated with 
treatment retention, although the spread of red and blue cases 
indicates that there was heterogeneity in that effect. Among 
the features extracted from unstructured data, Chronic Pain, 
Liver Disease, and Major Depression showed important con
tributions to the model’s predictions.

Web application for interactive use
Figure 5 depicts a screenshot of an interactive web application 
that allows users to visualize treatment retention predictions 
in real time. Figure 5A shows an example for a 34-year-old 
patient with liver disease and prescriptions including aspirin 
and acetaminophen. The web application dynamically updates 
the patient-specific retention probability curve based on these 
input features. The tool provides a day-by-day probability esti
mate of retention up to 180 days, allowing clinicians to track 
the likelihood of continued treatment at any given time point. 
This prediction is presented together with 3 reference curves: 
the high-risk profile (red), which represents the 2.5th percen
tile of predicted retention probabilities across the population 
(indicating patients most likely to discontinue early); the low- 
risk profile (green), which represents the 97.5th percentile 
(patients predicted to remain in treatment the longest); and the 
median retention curve (dotted gray), which reflects the 50th 
percentile retention probability across the training sample 
(Stanford data). As shown in Figure 5B, the model predicts 
that this example patient has a 47% probability of remaining 
in treatment on day 7. Their predicted retention pattern 
matches the high-risk profile (red curve), showing a high risk 
of early treatment attrition. The tool is accessible at [https:// 
www.healthrexlab.com/resources].

Discussion
Prior research suggests that co-occurring medical and psychi
atric conditions significantly influence retention in MOUD 
and may not be fully captured by structured data.45,46 In this 
study, we developed and evaluated multiple machine learning 
models to predict treatment attrition in daily oral BUP-NAL 

Table 2. Classification performance of machine learning models trained on Stanford EHR data in terms of predicting whether a patient starting BUP-NAL 
therapy will stop treatment within 180 days.

Source Model Precision Recall F1-score ROC-AUC

Stanford (internal validation) Logistic Regression 0.69 ± 0.02 0.52 ± 0.03 0.57 ± 0.03 0.57 ± 0.03
Random Forest 0.70 ± 0.01 0.77 ± 0.02 0.72 ± 0.02 0.64 ± 0.03
XGBoost 0.72 ± 0.02 0.75 ± 0.02 0.71 ± 0.02 0.65 ± 0.03

NeuroBlu (external validation) Logistic Regression 0.90 ± 1.00 0.20 ± 0.07 0.32 ± 0.03 0.60 ± 0.03
Random Forest 0.83 ± 0.01 0.78 ± 0.02 0.69 ± 0.02 0.56 ± 0.03
XGBoost 0.86 ± 0.01 0.56 ± 0.03 0.64 ± 0.07 0.57 ± 0.03

Precision (positive predictive value), recall (sensitivity), F1-score, and ROC-AUC are reported for the Logistic Regression, Random Forest, and XGBoost 
models.

Table 3. Time-to-event analysis performance of survival models across 
the Stanford and NeuroBlu datasets.

Source Model C-index

Stanford (internal validation) CoxPH 0.63 ± 0.02
Random survival forest 0.65 ± 0.01
Survival XGBoost 0.65 ± 0.02

NeuroBlu (external validation) CoxPH 0.51 ± 0.01
Random survival forest 0.56 ± 0.00
Survival XGBoost 0.55 ± 0.00

C-index is reported for CoxPH, Random Survival Forest, and Survival 
XGBoost models.
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Figure 3. Performance comparison of classification models (A) and time-to-event models (B) using structured data alone (light colors) vs structured data 
augmented with LLM-derived features (dark colors). (A) ROC-AUC for classification models (Logistic Regression, Random Forest, and XGBoost), and (B) 
C-index for time-to-event models (CoxPH, Random Survival Forest, and Survival XGBoost) are shown. Error bars represent standard deviations across 
repeated experiments (50 iterations). Asterisks (�) indicate statistically significant differences (P< .05) between structured-only and LLM-augmented 
approaches, based on Wilcoxon signed-rank tests. Improvements were observed for the Logistic Regression, XGBoost, and all 3 time-to-event models 
(CoxPH, Random Survival Forest, and Survival XGBoost) when incorporating LLM-derived features.

Figure 4. The figure shows the top 15 features ranked by their impact on the survival XGBoost model’s output for treatment attrition prediction. For 
example, a formal diagnosis code for Opioid Dependence was associated with a higher chance of treatment retention.
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therapy using both structured EHR data and features 
extracted from unstructured clinical notes. We compared 
nonlinear machine learning models, such as Random Forest 
and XGBoost, with traditional statistical methods like Logis
tic Regression and CoxPH, given that the former can be bet
ter at capturing complex patterns in data. While these models 
could identify patients at risk of early treatment discontinua
tion, their overall discriminative power is imperfect. Our 
findings align with our previous research, where addiction 
medicine clinicians faced challenges in accurately predicting 
treatment retention, highlighting the complexity of this task 
even for experts.18

Across various model types, we found moderate predictive 
performance, with statistically significant improvements 
when including features from unstructured clinical notes. 
While it is possible that other clinical note feature extraction 
methods might have yielded better performance results, given 
the >90% agreement on the extracted features with human 
expert review, it is more likely that predictive performance 

may already be maximized for this complex biopsychosocial 
phenomenon that may need other data sources (or may just 
be fundamentally difficult to predict).

A key consideration in predictive modeling is ensuring gen
eralizability across diverse patient populations. This study 
revealed significant demographic differences between the 
Stanford and NeuroBlu datasets, particularly in terms of age, 
race, and ethnic composition (Table S6). The NeuroBlu data
set represents behavioral health settings spanning hundreds 
of sites across the United States, encompassing a patient pop
ulation with more complex behavioral health conditions and 
social determinants of health. This subset of NeuroBlu data 
reflects a higher attrition rate, likely influenced by factors 
such as younger age, psychiatric comorbidities, and socioeco
nomic barriers to treatment retention. The prevalence of fea
tures extracted from unstructured data also differed across 
datasets, with the NeuroBlu cohort showing higher rates of 
psychiatric comorbidities and social determinants of health 
indicators, such as homelessness, unemployment, and 

Figure 5. Interactive web-based tool for BUP-NAL treatment retention prediction. (A) This example features a 34-year-old patient with prescriptions for 
acetaminophen, aspirin, and docusate (laxative), along with a history of liver disease. (B) The personalized retention probability curve (in blue) shows a 
47% likelihood of continued treatment at day 7, compared to high-risk (red), low-risk (green), and median retention (dotted gray) reference curves.
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substance use disorders. These differences highlight the neces
sity of considering variations in patient populations when 
developing predictive models for OUD treatment retention. 
The contrast in attrition rates underscores the need for model 
validation in diverse settings to ensure reliability and external 
generalizability.

In this context, we made a modeling decision to restrict 
structured features to the intersection between Stanford and 
NeuroBlu datasets to ensure consistency and comparability 
in cross-site evaluations. While this approach may exclude 
informative features unique to either site, it enables a fair test 
of generalizability. Importantly, our prior research19

explored a single-site model using all locally available fea
tures, effectively capturing the predictive value of site-specific 
information. Thus, the current study complements that work 
by directly addressing the performance trade-offs of harmoni
zation, highlighting how generalizability may be improved at 
the expense of local specificity. We contrast these 2 
approaches to frame future directions for optimizing both 
performance and portability.

The identification of key clinical and psychosocial risk fac
tors itself remains valuable, aligning with prior research on 
the challenges of sustaining long-term engagement in MOUD 
treatment.18,47 Notably, among the 13 features extracted 
from clinical notes, Chronic Pain, Liver Disease, and Major 
Depression were among the top 15 most significant predic
tors of treatment attrition out of a total of 206 features. If 
they were only randomly correlated, one might expect only 
one of the extracted text features to emerge in the top 15. 
Liver disease was associated with a higher likelihood of early 
attrition, reflecting the challenges of managing MOUD in 
patients with complex medical conditions. In contrast, 
chronic pain and major depression were associated with lon
ger treatment retention. This could indicate increased engage
ment with care or closer monitoring for individuals with 
these comorbidities. These observations align with prior 
research, which indicates that psychiatric comorbidities can 
reduce the likelihood of patient-initiated attrition while 
simultaneously increasing the likelihood of treatment termi
nation by facilities.48 For example, Friesen et al. found that 
individuals with depression, anxiety, and bipolar disorder 
comorbidities were less likely to initiate attrition them
selves.48 The fact that these 3 psychiatric conditions are 
among the top predictors suggests that clinicians treating 
patients with OUD using BUP-NAL should routinely screen 
for these disorders, as the coexistence of medical and psychi
atric conditions is critical for patient retention in MOUD.

Early identification and targeted interventions for individu
als at high risk of attrition could improve long-term engage
ment in care. For example, high-risk individuals may be 
considered for early initiation of long-acting injectable and 
implantable formulations of buprenorphine, which have been 
shown to improve treatment retention and adherence by 
reducing the need for daily medication management.49 The 
availability of multiple extended-release versions provides 
additional flexibility in optimizing treatment plans based on 
individual patient needs.

Lower buprenorphine doses were associated with higher 
treatment attrition, a finding demonstrated in other recent 
work,50 reinforcing the importance of optimizing dosing in 
practice. Two of the features that contributed most to the 
attrition prediction were laxatives, which may suggest that 
patients already suffering constipation as a side effect of 

opioid use are at risk of treatment discontinuation, but it is 
also a treatable condition that could be intervened on early 
by clinicians.

Predictive modeling efforts should focus not only on 
improving accuracy but also on providing actionable insights 
that can be integrated into clinical decision support systems. 
To facilitate this, we developed an interactive web application 
that allows clinicians and researchers to explore model predic
tions, visualize feature importance, and assess individualized 
risk scores. Although machine learning models can identify 
patients at risk of treatment attrition, their clinical utility 
depends on ease of interpretation and integration into 
workflows. By offering an interactive platform that enhances 
model transparency and interpretability, the web application 
can bridge the gap between research and real-world decision- 
making. Future work should focus on validating the applica
tion in diverse clinical settings, integrating it with EHR 
systems, and incorporating real-time patient data to further 
improve its utility in guiding personalized interventions.

Several limitations in this study should be considered. 
While LLM-derived features were extracted using a system
atic pipeline with high agreement with human expert 
reviewers, they may not fully capture the depth of clinical rea
soning and patient narratives present in free-text notes. 
Aspects such as provider tone or sentiment written “between 
the lines,” such as expressions of concern about retention, 
could carry predictive value but were not explicitly incorpo
rated in our analysis. Future research could explore sentiment 
analysis and NLP techniques to capture these nuanced indica
tors of retention risk. While our findings suggest that struc
tured EHR data alone provides reasonable predictive power, 
future investigations should consider whether alternative 
data sources (eg, patient-reported outcomes, insurance 
claims, medication adherence metrics, and even genetic, 
wearable, and digital data trends) could yield stronger predic
tors of long-term MOUD engagement.

A specific limitation in interpretation is the inability of 
EHRs to reliably distinguish between patients prescribed 
BUP-NAL specifically for OUD, physiologic opioid depend
ence without a use disorder, or other indications, such as for 
pain management. Although primarily used for OUD treat
ment, BUP-NAL's use off-label in other situations could com
plicate analyses. We showed that predictive results were 
stable and robust even when requiring that a formal OUD 
diagnosis code be in the inclusion criteria, which offers.18

Those results indicated that BUP-NAL combination therapy 
(as opposed to buprenorphine or methadone monotherapy) 
was a better proxy for the intended study population. 
Another limitation is that patients may fill prescriptions out
side of the healthcare systems included in this study (eg, 
“doctor shopping”). Though we did not find evidence of this 
occurring in high prevalence within our study population, 
this possibility could result in an underestimation of patients’ 
actual treatment duration, with predicted risks of attrition 
being worse than in reality.

While this study demonstrates the feasibility of clinical 
decision-support tools, additional evaluation is needed to 
assess the impact of model predictions on actual clinical 
decision-making. Prospective studies investigating whether 
risk stratification improves retention rates in real-world set
tings will be essential for refining and validating predictive 
approaches in OUD treatment.
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Conclusions
MOUD treatment retention is moderately predictable using 
structured EHR data, with some degree of transferability 
across clinical settings. Treatment retention is a complex and 
heterogeneous phenomenon that can vary due to population 
differences. Key risk factors can be extracted from clinical 
note text through advanced LLM processing methods to pro
vide additional contextual insight. For example, mentions of 
Liver Disease emerge as a major predictor of treatment attri
tion, while mentions of Chronic Pain and Major Depression 
emerge as predictors of treatment retention. The ability to 
distinguish high vs low-risk patients supports the implemen
tation of individualized management and targeted follow-up 
strategies, as well as risk adjustment, including optimization 
of buprenorphine dose adjustments across treatment pro
grams. An interactive web-based tool can enhance clinical 
translation by allowing healthcare providers to interpret 
model predictions and integrate data-driven insights into 
treatment decisions.
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