What matters most +
for Al rollouts:
How you lead

The actions you take as a leader have the
biggest impact on the success of your Al rollout.
Our original research shows what we learned and
how you can get more from your Al tooling.

M multitudes

MM multitudes

Executive Summary

Despite 20% Al adoption among software teams, past research on Al's productivity impact has been

contradictory. Studies show everything from 56% faster task completion to 19% slower performance.

To understand what's really happening with Al rollouts, we followed 500+ developers over several months while
their organizations rolled out Al tooling and other interventions. We then measured the impact on productivity,
quality, and wellbeing by combining telemetry data, surveys, and interviews.

Our ultimate goal: To understand how Al impacts outcomes, and what actually drives successful Al adoption.

Top findings

Buying Al tooling doesn’t guarantee adoption — enablement matters.

Adoption accelerates when organizations invest in enablement.

Engineers merged 27.2% more PRs with Al - but did 19.6% more
out-of-hours commits.

This is likely because Al rollouts also bring heightened Al expectations — and more delivery pressures.

Good code review practices can prevent Al quality issues.

For most, Al had an adverse impact on leading indicators code quality — but this reversed in a few cases,
showing that good engineering practices can safeguard against Al-related quality erosion.

Find & follow your super-users.

Super-users know how to get Al working best on your codebase, and your other developers want to learn
from peers — so set up more peer-to-peer learning to share the knowledge.

Recommendations for leaders

From our research, the top actions you can take to get more from Al are:

* Set clear expectations about how you see the role of Al in your org; share why you're
rolling it out and what success looks like.

Track a holistic set of outcome metrics, then use that to measure the impact of your
different Al interventions, so you can learn and iterate.

* Make code quality a goal: Set the expectation that you want to maintain or improve code
quality alongside the Al rollout, then measure leading indicators of Al's impact on quality.

Do more peer-to-peer sharing, with a particular focus on your super-users

https://dora.dev/dora-report-2025/
https://arxiv.org/abs/2302.06590
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/

MM multitudes

Research motivation: No consensus on
how Al impacts developer productivity

Nearly every engineering organization has purchased Al coding tools. The 2025 DORA Report found that Al
adoption has reached 90% among software development professionals, a 14% increase from the previous
year. But when it comes to Al's actual impact on developer productivity, the research landscape is
contradictory — here's a sample of findings:

+ DORA (2025): Al increases organizational performance but negatively impacts software stability.

« METR (2025): Al tools make developers 19% slower (though when surveyed, they thought they were 20% faster).

+ MIT Study (2025): 95% of Al initiatives at companies fail.

+ Peking_University (2025): There's a 9% competence penalty for using Al. That splits out into a 13% penalty for
women vs 6% for men — and when men who don’t use Al review code written by women with Al, they gave a 26%

penalty.

+ GitClear (2025): 2024 was the first year where "Copy/Pasted" lines exceeded "Moved" lines (a proxy for
refactoring).

+ Cisco Study (2023): 26-35% efficiency gains in constrained environments.

+ GitHub Copilot Impact Randomized Controlled Trial (2023): This study showed that developers had +55.8%

faster task completion with Al; it is the most-cited paper in this space.

How can Al make developers both 55.8% faster and 19% slower? Why do some organizations see massive gains
and yet 95% of initiatives fail? To answer these questions, we dived into the data ourselves.

From Jan to October 2025, we followed 500+ developers across multiple organizations through their Al rollouts,
combining telemetry data, surveys, and interviews to understand the full impact of Al. Our goal was to move
beyond the headlines and understand the full picture of what happens when engineering teams adopt Al tools.

Our research focused on three key questions:
1.Adoption: What are the adoption patterns for Al tools — which tools, use cases, and what usage frequency?

2.Impact: How is Al impacting engineering productivity, quality, collaboration, and wellbeing?

3.Best practices: What are the best practices for getting the most out of Al coding tools?

This white paper shares our findings. Even when teams had access to the same Al tools, the results varied widely —
showing that it's not the tooling but how your people use it that matters most.

About this research

This research draws on data collected from Jan-October 2025. We gathered data from a range of sources to
help us see the full picture — specifically:
« Telemetry data from 500+ developers

+ Al usage data from ChatGPT, Gemini, Cursor, Claude Code, and Github Copilot
 Survey responses from 191 leaders and team members with views on Al benefits, risks, and rollout success

» One-hour interviews with 19 engineering leaders, super-users, and skeptics

See appendix for more detail on data sources and methodology.

We're grateful to our spotlight partner organizations who gave their time and insights to be part of this work.
Their openness in sharing both what worked and what didn't made this research possible.

P\EO eucalyptus C Culture Amp) mable

https://dora.dev/research/2025/
https://dora.dev/dora-report-2025/
https://metr.org/Early_2025_AI_Experienced_OS_Devs_Study.pdf
https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5255039
https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://arxiv.org/pdf/2406.17910
https://arxiv.org/abs/2302.06590

Findings m multitudes

Buying Al tooling doesn’t
guarantee adoption -
enablement matters

Our first research question looked at what drives Al adoption. When we plotted the adoption curves
across organizations, it was clear that there's more to it than just buying Al tooling. Depending on
an organization’s practices, even the same Al tool would have a very different adoption curve.

To see this, refer to Figure 1, which shows the Al adoption curves for different tools and
organizations. T=0 is the date that everyone in the engineering team was given access to the
named Al tool. We've also annotated key dates in the rollout — namely, when organizations
launched Al enablement initiatives, and when there was a major product launch.

Al tooling doesn’t guarantee Al usage

We can see from these curves that it's not that a specific Al tool guarantees adoption. The fastest
adoption curve here is Cursor 1 — but we've added in Cursor data from another organization too,
the Cursor 2 line, which shows a much slower adoption pathway. Clearly, it's not the tool that has
the biggest impact.

Figure 1: Al coding tool adoption

Daily Active Users, averaged by week

100 Cursor1

N
o

Claude Code

% of engineers active
(6]
o

Copilot

Product
launch
[/

N
ol

Al enablement
I enablement

[¢] 5 10 15 20

Weeks since rollout

Note on Figure 1: Daily active users (DAU) are measured at the tool level based on Al feature usage. For Copilot, we measure
engaged users as reported by the Github Copilot metrics API; for Cursor, users who used at least one Al feature on a given day;
and for Claude Code, users who incurred any spending on the platform that day.

Findings - Adoption m multitudes

Leadership actions determine adoption success

What did speed up adoption? When leaders made it a priority.

You can see this with the “Al enablement” annotations on the charts in Figure 1. The slopes of the adoption curves get
much steeper (= faster adoption) after leaders start an Al enablement campaign.

What does Al enablement look like?

These Al enablement campaigns included initiatives such as establishing an Al guild (cross-functional groups) that runs
workshops, manages dedicated Slack channels for sharing tools and best practices, and might even provide full-time
resources dedicated to helping teams identify Al/automation opportunities. At another organization, the company
launched their Al push with an all-hands where they shared the vision for Al at their organization and the expectations
of engineers.

Set clear expectations

Both organizations with Al enablement initiatives also made it clear that using Al was part of being a developer at their
company. As one leader shared, “we needed to mandate Al to see an increase in Al adoption.” Call it a “mandate” or
“clear expectations”; either way, they were upfront about the role they saw Al play.

As a note, many developers in our interviews had a negative reaction to mandating Al — which is probably why the
organizations with Al enablement initiatives didn’t mandate how to use Al, but instead made it clear that it was
important. Leaving the how open gave team members more autonomy to define what Al usage works for them. In one
of these companies, their engineers ended up using Al more for learning something new or summarizing information
(the top 2 self-reported use cases) than for writing code (the 4th-highest use case). The other company mandated
putting an Al-related learning goal in each personal development plan, but left each individual to define what that
would look like — and they specifically chose to make it a learning goal rather than a usage goal because the value of
learning is clear.

“I am skeptical about the need to accelerate Al adoption with any kind of mandate. I think
what is missing is not a push to use Al, but [instead] having time to experiment with Al tools
outside of delivery pressures.”

- Tech Lead

Share the why

A final theme that came out of the survey and interviews was the importance of clarity from leaders about why the org is
rolling out Al and what success looks like. Is it to increase developer productivity? Is it to support learning and
development, so your engineers will be competitive applicants in their next job (since all engineering jobs are going in
the direction of requiring Al skills)? Or is it something else? Without this context, developers are left uncertain about
expectations and best practices.

In teams where Al adoption was slower, team members often proactively mentioned the lack of clarity — like this person:

"We need clarity - what purpose are we introducing Al for? Is it to improve throughput and
productivity, or is it because we want to help our staff continue to be employable and
maintain their skills? What we need to focus on and measure depends on the goal

— Engineering Team Lead, organization without Al enablement initiative

Findings - Adoption m multitudes

In these organizations, engineers weren't sure what to focus on when it came to Al, and it made their learning less
focused.

In organizations with Ai enablement, the goal was usually more clear. That said, some engineers still wanted even
more clarity, especially around looking past the hype to the underlying problem to solve.

"I am extremely jaded by all the Al hype. I don't like when companies jump on the
bandwagon for something just because everyone is talking about it. Tell me, what problem
are we fixing? If it's fixing a problem, then let's get in."

— Senior Software Engineer, organization with Al enablement initiative

This shows a clear opportunity for every leader: Make sure the “why” of your Al rollout is clear, and repeat it until
everyone on your team knows it by heart.

Delivery pressure can slow Al adoption

Alongside all these examples of what speeds up adoption, Figure 1 also shows us something that
slowed it down: The delivery pressures of a product launch.

You can see this in the Cursor 1 adoption curve - it flattened in the weeks leading up to a product
launch. This wasn't just any launch — it was an all-hands push. 2 weeks before the launch, leadership told
the team that everyone would need to push hard to get this shipped on time.

We sliced the adoption data by seniority level and discovered something unexpected: Junior and
intermediate developers actually increased their Al usage during this high-pressure period while senior
engineers remained flat — so it was actually the adoption slow-down from seniors that drove the
flattening of the overall adoption curve.

However, once the launch was done, seniors started picking up Al again.

Figure 2: Al adoption by seniority during delivery pressure

Percentage of people using Al tools by week and seniority

Junior & Intermediate Senior

100 Cursor Product Cursor Product
® rollout launch rollout launch
- i : : g
o 75 : : : :
]

Q
—

[¢]

o 50

o

©
o

c

o

o 25

[
a

Jan Apr Jul Jan Apr Jul
Week

— People using Al

N=42 engineers

Findings - Adoption

M multitudes

Why the difference? In our interviews, we saw a common concern from senior engineers about the hype of Al,
and skepticism about whether the productivity impact of Al would be as big as the headlines claim.

“People start believing that if you add Al, it will increase productivity 30% - but what's real and what’s hype?”

— Senior Software Engineer

Given that concern, we postulate that in the face of tight deadlines, senior engineers relied on the workflows and
tools that they already knew worked. Al represented another uncertainty — something that would take time to learn.
Under the pressure of a big release, they stuck with what they already knew. Once delivery pressures slowed, senior

uptake of Al tooling picked up again.

However, the effort calculation was different for junior and
intermediate engineers, who kept adopting Al even during
crunch time. Even with the learning cost, Al was helpful for
filling knowledge gaps.

Junior engineers spoke about how Al helped them
navigate unfamiliar parts of the codebase and get unstuck
faster during the high-pressure period. And in fact, having
Al as a resource gave them confidence that they were
using other people’s time better with their asks. (See
quotes to the right.)

That seems to be why juniors and intermediates kept
adopting Al through this period — because the potential
gains of Al seemed bigger than the learning cost.

“New starters like myself gain a lot from
asking Cursor questions like, ‘How does the
codebase handle X case?””

— Junior Software Engineer

“Asking Al first gives me confidence that I'm
not wasting another person's time when I
ask them how to fix something. I have more
options to fix a problem myself first."

— Junior Software Engineer

The key takeaway is that people won't have as much time to learn when they're facing big delivery pressures. Of
course, sometimes it happens that we're juggling a tooling rollout alongside a big release. In that case, one
potential mitigation is to work with your early adopters to show examples of how Al could help people move
faster. What we saw in our research is that when Al is seen as something that can help speed up the work, then
people are more motivated to learn it even when facing delivery pressures.

Key actions for leaders

From our research, the top actions you can take to get more from Al are:

* Don't agonize over what tooling to use — the important thing is how you support your teams

to use the tool.

* Treat Al rollout as a capability-building activity, not just a procurement decision.
+ Adoption won't pick up until leaders make it clear that Al is part of the expectations of

the role.

+ Be clear about why Al. Communicate why your organization is adopting Al, what
problems you're trying to solve, and what success looks like. Ambiguity and half-

measures create friction.

* Ideally you can give your people time for learning, with less delivery pressure — Al is a new
skill, after all, and skill development takes time. If you have to roll out Al during a period
with a delivery crunch, you'll need to do more upfront to show your team use cases where Al
could make their job easier even with the learning cost. Otherwise, adoption will be slower

until delivery pressures ease.

Findings m multitudes

Engineers merged 27.2% more
PRs with Al - but did 19.6%
more out-of-hours commits.

Our second key research question was about impact — how is Al impacting productivity, quality, wellbeing, and more?

To assess this, we measured the impact of Al adoption on DORA and SPACE metrics. We looked at standard
productivity metrics like Change Lead Time and Deployment Frequency, quality indicators like Change Failure Rate
and Mean Time to Recovery, and people metrics like the amount of out-of-hours work, the quality of code review
feedback, common themes in code reviews, and more. Most of these metrics varied widely across organizations
(which reinforces our previous finding that what leadership does matters more than the Al tool you choose).

However, there were two metrics that showed consistent changes when organizations rolled out Al tooling: Merge
frequency and out-of-hours work (see figures 3 and 4).

Figure 3: Trends in Merge Frequency relative to Figure 4: Trends in Out-of-Hours Work relative
Al rollout to Al rollout
N=372 contributors across 4 organizations N=372 contributors across 4 organizations

Faded lines show individual averages across orgs Faded lines show individual averages across orgs
Bold lines show regression trends (blue = pre, orange = post) Bold lines show regression trends (blue = pre, orange = post)

8 : 6

i3 pelta=0.59
2 L (27.2%)

4% Delta=0.24
L(19.6%)

Average Merge Frequency per person
N
Average Out-of-Hours Commits

-14 -10 -6 -2 2 6 -14 -10 -6 -2 2 6

Weeks since Al adoption Weeks since Al adoption

Figure 3 shows what changed with merge frequency: Across 372 individual contributors* and 4 organizations,
average merge frequency per engineer rose by 27.2% after Al adoption rose. This doesn't prove that Al caused
this change, but the consistency of this shift across diverse teams and codebases suggests that you're likely to get
a meaningful increase in the number of code changes when you roll out Al.

Note on Figures 3 and 4: T=0 in these figures is different here from the T=0 in Figure 1. In figures 3 and 4, T=0 is the week where there
was a meaningful shift in the Al adoption curve - rather than when the tool was made available or another Al enablement initiative was
launched. This is because we don't expect Al outcomes to change until after we see a significant change in adoption.

We fit interrupted time-series regressions across all individuals, with separate trend lines pre- and post-intervention

*While our broader research included 500+ participants across 4 organizations, one organization'’s telemetry data came via a third party
and lacked the granularity needed for individual-level analysis; it was also missing some of the metrics we show here (namely, out-of-
hours work). As a result, we brought in an additional organization from Multitudes's customer base to supplement this data. After
filtering for active code contributors within engineering, the telemetry metrics analysis includes 372 individual contributors. This
supplementary organization's data is included only in the DORA/SPACE metrics analysis, not in the Al adoption surveys or interviews.

https://docs.multitudes.com/metrics-and-definitions/process-metrics/flow-of-work/change-lead-time
https://docs.multitudes.com/metrics-and-definitions/process-metrics/value-delivery/deployment-frequency
https://docs.multitudes.com/metrics-and-definitions/process-metrics/quality-of-work/change-failure-rate
https://docs.multitudes.com/metrics-and-definitions/process-metrics/quality-of-work/mean-time-to-recovery

Findings m multitudes

However, there's a hidden cost, which we can see in Figure 4: Alongside the increase in PRs merged, was a
19.6% increase in out-of-hours commits. This means that developers were doing more work in evenings and
weekends than they did before the Al rollout. These extra hours indicate a human cost, and they also imply that
the 27.2% increase in merge frequency is partially because people are putting in more working time. It could be
that 19.6% of the merge frequency increase is just from longer hours, which would leave just 7.6 percentage
points of change that could be explained by the Al tooling itself.

To reiterate, both the merge frequency and out-of-hours work shifts are relational rather than causal - the
timing and consistency of these changes coincide with Al rollouts, but they could be influenced by other
factors. One possible explanation is that the Al rollout also brings increased Al expectations, a.k.a. greater
delivery pressures on teams. That could be something that pushes people to put in longer hours. Another
possible explanation is that Al makes coding more fun and less tedious, so people want to stay late to
experiment with new workflows and explore what's possible.

To understand which of these explanations is right, we looked to our qualitative research. Across interviews and
surveys, delivery pressures emerged as the clear theme — see examples below.

“Our team had a reorg and the subsequent pressure of delivering while resetting as a team, plus then you
bring in Al. It's been very hard.”

— Engineering Manager

"We haven't had enough time to play, as delivery pressures and the way the team is structured require
balancing Al learning with delivery."

— Engineering Manager

It's still possible that some engineers are using Al more out-of-hours because they're excited about
these tools — but our qualitative data didn’t show that. Instead, the dominant signal from our interviews
points to pressure rather than play.

Key actions for leaders

* The most common outcomes from an Al rollout are that people merge more PRs and do
more out-of-hours work, with developers referencing delivery pressures as a key driver (this
could be contributing to both the merge frequency and out-of-hours work trends). As a
leader, be sure to check in with your people through the rollout to see how these changes
are impacting them.

* Given the above, it's especially important to track a holistic set of metrics, from productivity
and quality to human factors like quality of reviews and wellbeing. This will help you stay
across the intended and unintended consequences of increased Al usage.

Findings m multitudes

Good code review practices
can prevent Al quality issues.

Another key part of the Al impact assessment is considering how Al impacts code quality. Looking at code quality reveals
whether throughput gains are sustainable — or if we're taking shortcuts now that will slow us down later.

As we mentioned above, we looked at the DORA quality metrics — Change Failure Rate (CFR) and Mean Time to Recovery
(MTTR). However, there were no consistent trends in these metrics organizations; in some cases, they improved alongside the Al
rollout, and in others they got worse. Moreover, in cases where we did see big spikes in MTTR (= it got worse), when we looked
into the data with our partner organizations, the failures were often caused by something separate from Al. Ultimately, we
concluded that it was still too early to see the impact of Al on CFR and MTTR, because it can take time for issues in the
codebase to surface as a failure.

Instead, we needed reliable, leading indicators of code quality — metrics that we could look at now to help us understand if we
were moving code quality in the right direction.

We chose two types of metrics to look at, specifically:

» PR size: Longer PRs are more likely to introduce bugs, have more merge conflicts, and are harder to roll back. When PRs
balloon in size, review quality suffers, review wait times lengthen, and the collaboration benefits of incremental
development erode (see Microsoft research). This means that an increase in PR size is a warning sign for potential problems
later. Google's Engineering Practices Documentation shares more about why small code changes are important; research
with Cisco showed that 200-400 lines of code changed is the optimal size.

» Quantity and quality of human reviews: As Artie Shevchenko lays out in his book, humans are your code health guardians.
This role is more important than ever with Al-generated code coming through. So the quantity and quality of human code
reviews being given on Al-written code shows how well our teams will do at catching issues in the code changes.

In particular, we saw a pattern with PR size across teams: Typically, PR size increased after Al rollouts. This is not surprising given
how verbose Al code outputs tend to be — but as we saw above, it is a warning sign for the degradation of quality in our
codebase.

Al slop was also a common complaint in the survey and interviews — showing that the negative human impact is substantial.
Developers spoke about how Al slop reduced team trust and their enjoyment at work.

“With Al I've seen people raise PRs that have to go through 40 iterations and 100 comments. It's
frustrating and time-consuming for other engineers. Plus, you lose a lot of trust from your peers."
- Tech Lead

The increase in PR size was expected - but TR DS T

what surprised us was when we saw an
organization completely buck that trend.
Amazingly, developers with high Al usage at
this company actually decreased their PR
size by 8.5%. Figure 5 shows more: On the
left, we see an example of a typical

1,000
500 |

100
50

organization, where PR size increases for
high Al adopters after Al adoption
increased. On the right, we see the data for
this organization — where PR size actually
decreases for the high Al adopters.

Lines changed per PR (log scale)

Pre Post Pre Post

* No standards enforcement $ Standards enforcement

Pre/Post =10 weeks before/after Alintervention
High Alusers in org with no standards enforcement: N=41; High Al users in org with standards enforcement: N=17

Note on Figure 5: "High Al usage” is defined based on the Al telemetry data; it's >50% daily active usage of any Al tool, excluding
weekends. PR size is displayed on a log scale for interpretability.

https://static1.smartbear.co/support/media/resources/cc/book/code-review-cisco-case-study.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bosu2015useful.pdf
https://google.github.io/eng-practices/review/developer/small-cls.html
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
https://blog.codehealthguardian.com/book/2024/11/07/book-launch.html

Findings m multitudes

We were impressed by this outcome, so we dived into it in the follow-up interviews to learn more.

How did this organization keep PR sizes low through their Al rollout? There were two key things they did well:

They had strong code review norms

Their developers cited several code reviews norms they were thinking of when they used Al:
+ All PRs require two PRs and they follow the Google Style Guide for PRs (as we saw, smaller code changes
is one of the things that Google advocates).
» There was a strong culture of being a good colleague - to not put something forward for a review unless
you would want to review it yourself. That means not sending Al slop to your PRs.

"This organization has optimized for code review as opposed to code output.”

— Senior Engineer

The expectations with Al were clear — move faster, but maintain code quality

The big example here was that when the platform team rolled out Al tooling, their leadership explicitly
stated that they wouldn't review PRs if they were too long — so developers across the org knew it was
important to keep PR size low even while using Al.

With clear cultural norms and goals with Al, their engineers then figured out how to use Al to reduce PR sizes, instead
of the opposite. Specifically, they did things like:
+ Give Al clear baseline instructions to be concise — even putting it in their rules or markdown file
« Have Al do an initial review before requesting a review from humans, to make sure there was nothing obvious to
fix in the PR before asking for feedback. As one dev shared, “l want to make sure I'm not wasting another person’s
time when | ask for something - it's better to save human input for the harder questions.”

The takeaway here is an optimistic one — with the right culture and Al expectations, leaders can point their team in the
direction of code quality. Your team is smart, so as long as the goal is clear and they have autonomy, they'll get you to
where you need to go.

Key actions for leaders

* When leaders set code quality as a goal and have strong code review norms, they can
overcome the quality issues of Al - to scale Al benefits without compromising code health.

* Alongside that, getting leading indicators of how Al is impacting code quality can help
leaders stay ahead of issues and make sure their Al interventions are taking the organization
in the desired direction.

X

Findings m multitudes

Find & follow your super-users

Our third and final research question was around best practices — for the teams that get more
benefits and fewer costs from Al, what do they do differently?

Not surprisingly, Al usage follows a Pareto distribution. Figure 6 shows an example of this with one
organization’s Claude Code spend (a proxy for usage intensity; the org size is~200 engineers). The
chart shows that the top 10% of users account for 56.7% of total costs.

Figure 6: Claude Code Total Spend by Individual

Color-coded by spending tier | Total spend between 2025-07-09 to 2025-10-12

$1,000
Top 10% of users
56.7% of costs
$750
2
el
[
a
5 $500
®
)
]
$250
$0

<$10 $10-50 $50-100 [l $100-500 [$500+

This distribution isn't unique to this organization; we saw similar patterns across every team and tool that we tracked.

Alongside the Al adoption data, we could also see the telemetry data to get a sense of the kinds of outcomes these

people were getting. As it turns out, many of the super-users were also high-performers. The question then was: What
do they do differently with Al to get more from it?

We share a case study below of one of these users, a Lead Engineer who is a Claude Code super-user. Al practices are

changing quickly, so we offer this success story less as a playbook of what to do and more for insights into how to
approach Al to get more value from it.

“I'd love to learn from people who've used Al extensively - how they use it
day-to-day, built a feature, or solved a problem. I think that's what we need
more of next”

- Staff Engineer

As it turns out, there's also a ton of demand from developers to learn from their peers. Even in organizations where
hugely successful Al rollouts, developers proactively spoke about how they'd like more peer-to-peer learning. One

honest software engineer was blunt in the interview about having more trust when a peer makes an Al recommendation
(full quote below).

“It's useful to hear about Al use cases from a peer who's not invested in how
much money the company makes.”

- Software Engineer

12

https://en.wikipedia.org/wiki/Pareto_distribution

Findings m multitudes

There's a natural opportunity here: Super-users are high Al users because they enjoy learning the latest Al
practices, and they're already learning what works best on your organization’s codebase. (For example, Al
still struggles with complex code-bases — but your Al super-users may have developed unique ways to get
around this.) Meanwhile, other people on your team want to know the Al use cases relevant to your
organization, and would rather learn from peers anyway. So pair them up with time for peer-to-peer
learning.

Put together, all of this indicates that creating structured opportunities for super users to share their
practices with teammates — such as through dedicated Al guilds, peer-to-peer learning sessions, and super
user support roles — can accelerate adoption and strengthen productivity gains more effectively than relying
solely on formal training programs or tool purchases without enablement.

Your super-users have already figured out things that the majority will take a few months to get to. Create
systems to capture and scale their practices — because making expertise transferable, not buying more
tools, will increase the benefits you get from Al.

Case Study: A super-user’s practices with Al

One of the top Claude Code users in Figure 5 is JT, a lead engineer who's honed his approach to using
Al. His workflow reveals three key principles that help him maintain quality and manages Al risks, while
still being able to boost productivity.

(1) Humans are accountable for Al outputs

From JT to other experienced engineers we spoke to, a common theme emerged: Humans, not Al, are still
responsible for the work.

Effective Al users don't treat it as a “hands-off” solution. They maintain tight control over the Al's direction
and take full accountability for validating Al outputs.

JT put this into practice when he needed to write a “Request for Comment” (RFC) document based on a
Slack conversation with a colleague. The colleague had shared what needed to go into the document, so then
JT used Claude Code and MCPs to pull in information he needed — with the AWS Knowledge Base to pull in
relevant information, and the MCP with Confluence to pull in the RCP template.

Al did the draft, but then JT took responsibility for the work. As he shared,

“[Claude gave] me a well-referenced document, probably better referenced than what I
would create for myself. But I'm the one that's still providing the steering. And I'm also
responsible for checking that the quotes exist and that those references are correct."

Ultimately, he got both speed and quality — he had an RFC in 10 minutes, and then made sure it was
accurate before sending it on.

JT pointed out that Al doesn’t remove the work that a human needs to do, it just changes it:

"There's this idea that using Al makes things super quick and simple. But in reality, what it
more expands is the amount of context that you're able to hold and use and gather and apply
towards a particular task. If you aren't prepared to work hard, but in a different way, to get
good results, you're gonna get rubbish results."

*As a bonus tip, JT notes that you should turn MCP servers off and on to save tokens. Think about which
servers the LLM will need for a task, and only turn those ones on.

13

https://arxiv.org/pdf/2406.17910

Findings m multitudes

Case Study: A Lead Engineer's Al Workflow

(2) Avoid context rot through progress tracking

Al models have limited context windows that can become “rotted” with irrelevant information over long
sessions (for example, this research found that LLM performance degrades significantly as additional
context is provided). Advanced Al users develop systems such as “context pruning” (removing outdated
or conflicting information) to maintain continuity across tasks while keeping the Al system focused on

what matters.

JT noticed context rot in his own work —

“If you don't clear your context often, your context will get poisoned by all of the things it's
mucking around with. What you really want to do is take the actual things that have worked,
summarize those and get rid of that other stuff and help it forget”

His approach to managing this context rot bakes in this lesson: he uses two markdown files (progress.md
and lessons.md) to track progress and learning. These markdown files serve as a memory state for the Al
tool across different work sessions.

“No plan survives first contact with an LLM. The key thing I've baked in is having a way of
keeping progress through the tasks, but also keeping memory of its lessons learned."

This approach lets him avoid context rot while maintaining continuity:

“I'd say to Claude: ‘Pick up this task, here's the task spec, here's the overall design. And here
are the lessons that you've learned from previous things. So you get a fresh context window,
but primed with authoritative data from the beginning’

(3) The best use of Al depends on task complexity

JT has learned to calibrate his approach based on task complexity:
» For simple tasks, he'll execute in Claude without advance planning - trying out a one-shot approach to see
what works.
« If it's a task with mid-level complexity, he'll do some planning and iteration, then execute.
» For large, complex tasks, he'll invest time into breaking things down and providing more guidance to the
LLM. His approach here is: Do a high level plan, split into lower-level chunks, then track progress and lessons
learned to put into your memory files (see point 2 above).

Being mindful of which approach to use for the specific tasks saves time and improves outcomes. Overall, we
know that breaking smaller tasks down gets better outcomes, so that's why the upfront is so important the more
complex the task is.

A few examples of what this looks like for JT with different use cases:

» Documentation: "Don't try and write essays with it, but small, focused documentation and keeping the
documentation up to date with the code, Al's great for that. So leverage it, because then that makes humans
and Al better."

» Doing research: "l used to do a lot of research, and put a lot of effort into understanding the whole thing
before | started on implementation. LLMs allow me to have that same rigor but not take so much time."

« On writing code requirements: He uses Al to iterate on clear requirements and criteria so that tests are
directly related to actual use cases rather than made-up scenarios. "l get the Al to write the code and the
tests together, and then get the Al to check them both for spec compliance."

14

https://research.trychroma.com/context-rot
https://www.datacamp.com/blog/context-engineering
http://progress.md/
http://lessons.md/

Findings

Case Study: A Lead Engineer's Al Workflow

M multitudes

The role of super-users in Al rollouts
JT is self-aware that not everyone has the same love that he does for adopting new things:

“Some people are really change-happy, love to adopt new things, love to try things out, and
I'm often firmly in that camp. However, that's not everyone."

Not everyone is a super-user, but most organizations have at least a couple of them — and that’s the opportunity
for leaders. JT's view is that the best way to support middle and late adopters is with incentives and enablement
to support them in their journey — and he's happy to share his learnings as part of that.

As a final note, our conversation with JT was a reminder that this is a very new technology still and most of us
feel behind. Despite his sophisticated approaches to using Al (and the telemetry data we have that shows he's a
super-user!), JT remains humble about the pace of change:

“I feel like I'm continually catching up. Do you know what I mean? It's moving so, so fast”

Key actions for leaders

* Find your super-users and see what they do differently: Identify and learn from your
super-users. Document the specific prompts, workflows, and review practices that work on
your codebase.

* Support peer-to-peer learning: Host regular sessions where high-performing super-users
demo their work. Developers trust their peers, and seeing Al work on their actual codebase
and their specific problems accelerates adoption.

15

M multitudes

Getting more from
Al depends on
how you lead

The bad news is that buying Al tooling doesn’t guarantee good outcomes — or even decent Al adoption.

The good news is that what does make a big difference is what you do as a leader. The culture and

expectations you set for your people seems to be what make the difference between a successful Al rollout
and a lackluster one.

From our research, the top actions you can take to get more from Al are:

+ Set clear expectations about how you see the role of Al in your org; share why you're rolling it out and
what success looks like.

+ Track a holistic set of outcome metrics, then use that to measure the impact of your different Al
interventions, so you can learn and iterate.

+ Make code quality a goal: Set the expectation that you want to maintain or improve code quality
alongside the Al rollout, then measure leading indicators of Al's impact on quality.

+ Do more peer-to-peer sharing, with a particular focus on your super-users.

And remember — we're still in the early days of this technology. No one has all the answers (not even your
super-users!), so the key right now is to experiment and learn as much as you can. As long as you and your

teams are trying new experiments, measuring progress, and iterating, then you're heading in the right
direction. Good luck!

Curious about the impact of your Al interventions?
Put the research findings into practice

Our Al impact feature puts the key recommendations from this research into practice — helping you:
See the holistic impact of Al, across productivity, quality, and wellbeing
Measure the impact of your different Al interventions — so you know what's working and what's not
Catch early signs of Al slop in your PRs and from your code review process
Find your super-users, and connect them to others at other points on the learning journey

Learn more about our Al impact feature, or get in touch for a free trial.

16

https://multitudes.com/ai-impact
https://www.multitudes.com/demo

M multitudes

Appendix:
Data and Methodology Notes

Data Sources

This research draws on four complementary data sources:

1.Telemetry data from 500+ developers across multiple organizations tracked from Jan to Oct 2025; the data goes
back to months before the Al rollouts to create a historic baseline for the impact analysis.

2.Al usage telemetry data from the Al tools implemented across the organizations (ChatGPT, Cursor, Claude Code,
Gemini, Github Copilot), covering the period of March to Oct 2025.

3.A comprehensive survey on Al rollouts, perceived benefits, and risks from 191 survey respondents. Survey
responses were collected from June to Oct 2025.

4.1:1 interviews with engineering leaders, super-users, and skeptics. We did one-hour interviews with 19 people to
explore insights from the telemetry and survey data. These were conducted from August to Oct 2025.

Note that the organizations were a mix of Multitudes and non-Multitudes customers, to make sure we got a diversity
of perspectives.

One research participant shared telemetry data via a third party that lacked the granularity needed for cross-
organization impact analysis. To address this, we brought in an additional organization from Multitudes's customer
base of a similar size. For this supplementary organization, we had Multitudes telemetry and information on Al rollouts
and interventions but their data is not included in the Al adoption analysis, surveys or interviews.

Methodology for Qualitative Analysis

For open-ended survey responses and interview transcripts, we implemented thematic analysis following
Braun & Clarke's framework, coding iteratively to surface patterns across both data sources.

Daily Active User (DAU) calculations

DAU are measured at the tool level based on Al feature usage, per these rules:
+ For Copilot: Engaged users as reported by the Github Copilot metrics API
+ For Cursor: Users who used at least one Al feature on a given day
+ For Claude Code: Users who incurred any spending on the platform that day

Defining “High Al Usage”

We define high Al usage differently depending on the data source:
« Telemetry insights: “High usage” is defined as >50% daily active usage of any Al tool, excluding weekends.
 Survey insights: Usage levels are based on self-reported frequency:
o High Usage: "Daily" or "Multiple times a day"
o Medium Usage: "Weekly" or "Multiple times a week"
o Low Usage: “"Once a week”, “Multiple times a month”, “Once a month” or “No Usage”

Measuring Al Impact

For the Al impact charts (Figure 3 and Figure 4), we standardized timing across organizations:

+ Unlike in Figure 1 where T=0 is the date that Al tooling was made available, in the Al impact charts, T=0 was set at
the week where there was a meaningful shift in the Al adoption curve. We used an increase in adoption (instead of
tool availability) as T=0 because we don’t expect Al outcomes to change until after we see a significant change in
adoption.

+ We fit interrupted time-series regressions across all individuals, with separate trend lines pre- and post-intervention

17

https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

M multitudes

Authors

This research was conducted by:

Lauren Peate

Founder, CEO,
Multitudes

Dr. Vivek Katial

Lead Data Scientist,
Multitudes

We're grateful for the feedback and support provided by Dr. Kelly Blincoe (Associate Professor of
Software Engineering, University of Auckland), Dr. Thomas Fritz (Associate Professor, University of
Zurich), and Nathen Harvey (DORA Lead, Google Cloud).

For more about our other research and academic relationships, please visit
www.multitudes.com/research.

18

https://www.multitudes.com/research

w

[multitudes

