
Audit Report

HyperCycle
https://www.hypercycle.ai

Provided By on September 28, 2023

dcentralab.com/diligence



Security Audit Score 

Low Risk

DcentraLab Diligence team has conducted an extensive audit on HyperCycle Contracts and has 
found the code to be in minimal risk level given proper deployment and multi-sig permissioning.

Minimal Risk

Low Risk

Medium Risk

High Risk

Critical Risk

92%

Provided By on September 28, 2023 02/41

dcentralab.com/diligence



Provided By on September 28, 2023 03/41

Scope

Audited Repository:

https://github.com/hypercycle-development/hypercycle-contracts

Audited Branch:

license_develop

Audited Commit Hash:

ffdeb9e5b7b659b21aed87c1d6c0dced7991336f

Audited Contracts:

CrowdFundHYPCPoolV2.sol

Contracts Reviewed For Context:

� CHYPC.so�
� HyperCycleSwap.so�
� HyperCycleToken.so�
� CrowdFundHYPCPool.sol

Fixes Commit Hash:

7f0d455fdb632467448b4728504cb463a2534a29

Extended Scope Commit Hash:

3edc1019914acc2e7c902ecb11a7000e48871ce9

Extended Scope Audited Contracts:

HyperCycleLicense.sol

Extended Scope Fixes Commit Hash:

76488fba30a6ffa283d396041aed809240237e9e

https://github.com/hypercycle-development/hypercycle-contracts
https://github.com/hypercycle-development/hypercycle-contracts/commit/ffdeb9e5b7b659b21aed87c1d6c0dced7991336f
https://github.com/hypercycle-development/hypercycle-contracts/commit/7f0d455fdb632467448b4728504cb463a2534a29
https://github.com/hypercycle-development/hypercycle-contracts/commit/3edc1019914acc2e7c902ecb11a7000e48871ce9
https://github.com/hypercycle-development/hypercycle-contracts/commit/76488fba30a6ffa283d396041aed809240237e9e


Provided By on September 28, 2023 04/41

General Contracts Outline

Ethereum Contracts:
HyperCycleLicense.sol�

� Purpose: Manages specialized NFTs called "Licenses" originally created on the Cardano 
chain�

� Features: Allows importing a license from Cardano, setting a Cardano transaction ID, and 
splitting NFTs into child tokens.


CHYPC.sol�
� Purpose: Containerizes HyPC tokens into a more manageable unit called c_HyPC, which is an 

ERC721 token�
� Features: Allows conversion of 524,288 HyPC into one c_HyPC and vice versa. Additionally, 

allows for the assignment of a string (usually a license number) to a c_HyPC�
� Interaction: Interacts with HyperCycleSwap.sol for the swap functionality.


HyperCycleSwap.sol�
� Purpose: Manages the swap mechanism between HyPC (ERC20) and CHYPC (ERC721)�
� Features: Provides the swap functionality�
� Interaction: Interacts with CHYPC.sol for swapping and CrowdFundHYPCPoolV2.sol for 

pooling.


CrowdFundHYPCPoolV2.sol�
� Purpose: Acts as a pool for users who can't afford 524,288 HyPC to create proposals and 

acquire CHYPC tokens�
� Features: Allows for proposals with a lesser amount of HyPC as collateral. This amount acts 

as interest for others who contribute to the proposal�
� Interaction: Directly depends on CHYPC.sol and HyperCycleSwap.sol for its functionalities.


HyperCycleToken.sol�
� Purpose: Appears to be the ERC20 token (HyPC) contract�
� Interaction: Interacts with CHYPC.sol and HyperCycleSwap.sol for token conversions and 

swapping.


CrowdFundHYPCPool.sol�
� Purpose: The predecessor to CrowdFundHYPCPoolV2.sol, it provides similar functionalities 

but with limitations like not supporting multiple NFTs in a single proposal�
� Interaction: Likely interacts with CHYPC.sol and HyperCycleSwap.sol similarly to its V2 

counterpart.



Provided By on September 28, 2023 05/41

Interactions:

Ethereum Contracts:
� CHYPC.sol interacts with HyperCycleSwap.sol to manage the conversion between HyPC 

and CHYPC�
� CrowdFundHYPCPoolV2.sol depends on CHYPC.sol and HyperCycleSwap.sol to facilitate 

the pooling and conversion of tokens.



Provided By on September 28, 2023 06/41

General Notices:

�� Maintaining the license id taxonomy uniqueness and validity is critical to the sanity and 
coherence of the system. However, there is no strong enforcement mechanism for verifying 
license IDs are uniquely managed between their cardano and ethereum instances�

�� Deployment: should include script to hand over ownership to multi-sig of cold-storage vault/
congress contrac�

�� Deployment: should include checksum scripts for making sure ownership was correctly 
transferred, and correct contracts set

Risks:

DcentraLab Diligence (DD) has performed all checks and verifications in its capacity to ascertain 
the safety of the code. However, it should be noted that misuse of the code, bad deployment 
practices, bad key management, exposing of private keys of the deployer and/or owner address 
and/or multi-sig signer addresses and/or fee collector address and/or any exposition of the code 
to malicious actors may result in an exploit of the code and loss of state and/or funds. 
Furthermore, there is always a chance that other Smart Contracts code could be written and 
deployed to cause the provided code by DD to act outside the intended scope by the client, to 
the point of causing state corruption or loss of funds to the client of the users of the code.  



Provided By on September 28, 2023 07/41

issues severity reference table

Type

Discussion

The issue severity is dependent on design, centralization, and product specifications of the project.

Informational

This issue is not critical and does not pose an immediate threat to the functionality or security of 
the smart contract. It is simply an informational item that the auditors have identified and 
recommends addressing for best practices or to improve the overall performance of the contract.

Low 

This issue is relatively minor and does not pose a significant risk to the functionality or security of 
the smart contract. While it is recommended to address these issues to ensure the highest level 
of quality and security, they are not likely to cause significant problems if left unaddressed.

Medium

This issue poses a moderate risk to the functionality or security of the smart contract. While it 
may not be immediately exploitable, it has the potential to cause problems in the future if left 
unaddressed. It is recommended to address these issues as soon as possible to prevent any 
potential negative impact on the contract.

High

This issue poses a significant risk to the functionality or security of the smart contract. 
Addressing these issues as soon as possible is recommended to prevent any potential negative 
impact on the contract. Failure to address these issues could result in significant problems and 
potential loss of funds or other assets.

Critical

This issue poses an immediate and severe risk to the functionality or security of the smart 
contract. It is recommended to address these issues immediately to prevent any potential 
negative impact on the contract. Failure to address these issues could result in catastrophic 
problems and significant loss of funds or other assets.



Provided By on September 28, 2023 08/41

Findings summary

Discussion

Informational

Low Risk

Medium Risk

High Risk

Critical Risk

45

issues

ID Title Severity Status

E.1 Dependency conflicts Informational Resolved

E.2 Dependency vulnerabilities Informational Resolved

E.3 .env.example file lacks an attribute Informational Resolved

E.4 Code formatting Informational Resolved

G.1
Use of ‘require’ statements with solidity compiler 
version ^0.8.4

Informational Resolved

G.2
Non differentiated token precision and 
calculation precision

Low Resolved

G.3 License management High Partially Resolved

G.4 Contract non-upgradeability and immutability Discussion Acknowledged

A.1
Additional optimization of ‘amount’ local variable 
usage

Informational Resolved

A.2 Proposal state constants can be made an enum Informational Resolved



Provided By on September 28, 2023 09/41

Findings summary

ID Title Severity Status

A.3 Constructor missing event Informational Resolved

A.4
Proposal deadline argument can be used to 
create an unfulfillable proposal

Low Resolved

A.5
Missing minimum APR threshold which allows 
for 0% returns

Discussion Acknowledged

A.6
vague reference to amount parameters’ token 
fragmentation state

Informational Acknowledged

A.7
Missing upper border check on proposal creation 
on ‘numberNFTs’ argument

Low Resolved

A.8
Lack of flexibility and security impact of non-
upgradeability and immutable values

Discussion Acknowledged

A.9
Lack of flexibility with 3 offered ‘termLength’ 
options

Discussion Acknowledged

A.10
Missing check for existing proposals of the 
message sender

Low Acknowledged

A.11 transfer()/transferFrom() optimization Informational Resolved

A.12
Possible errors once deposit reaches the 
requested amount

Medium Resolved

A.13
Unnecessary double reference on 
transferDeposit()

Informational Resolved



Provided By on September 28, 2023 10/41

Findings summary

ID Title Severity Status

A.14 Rules of proposal transfer Discussion Acknowledged

A.15 Proposal starting permissions Low Resolved

A.16 Computation optimization Informational Resolved

A.17 Computation optimization Informational Resolved

A.18
Possible proposal and deposit transfers to non-
accessible wallets

Medium Resolved

A.19 volatile fragmented/duplicated code Medium Acknowledged

A.20 lack of validations on data assigned to hypc nft Discussion Acknowledged

A.21 Unused library import Informational Resolved

A.11 transfer()/transferFrom() optimization Informational Resolved

B.1 Redundant nonReentrant modifier Informational Resolved

B.2 Unnecessary use of ‘_safeMint()’ Informational Resolved

B.3 Inconsistent updates of ‘totalTokens’ Medium Resolved

B.4 Redundant value update Informational Resolved

B.5 Improper event argument names Informational Resolved



Provided By on September 28, 2023 11/41

Findings summary

ID Title Severity Status

B.6 Redundant value assignment Informational Resolved

B.7 Redundant license status check Informational Resolved

B.8
Ownership should be assigned to a secure multi 
signature wallet

Discussion Resolved

B.9 Missing ‘constant’ keyword Informational Resolved

B.10 ‘mint’ function return value Discussion Resolved

B.11  Unoptimized computation Informational Resolved

B.12
Burning of child licenses can cause permanent 
nonexistence of parent licenses

Medium Acknowledged

B.13 Additional burn event Informational Resolved

B.14 Hardcoded value Informational Resolved

B.15 Binary tree and license numbers Discussion Resolved

B.16 Merge Dynamics and Use Cases Discussion Resolved



Provided By on September 28, 2023 12/41

Complete analysis

Environmental Findings:

ID E.1: Status: Resolved

Informational | Dependency conflicts

Present at: package.json & package-lock.json



Description: Dependency conflicts found in repository forcing npm installation with –force flag.



Recommendation: Resolve dependency conflicts and make sure that none are deprecated or 
redundant.

ID E.2: Status: Resolved

Informational | Dependency vulnerabilities

Present at: package.json & package-lock.json



Description: During the project initialization process warnings showed that vulnerable and 
deprecated dependencies persist in the repository.



Recommendation: Make sure to update all vulnerable and deprecated dependencies.



Additional Notice: Issue is marked with ‘informational’ flag as dependencies which are vulnerable 
are not in direct relation with smart contracts.



Provided By on September 28, 2023 13/41

Complete analysis

Environmental Findings:

ID E.3: Status: Resolved

Informational | .env.example file lacks an attribute

Present at: .env.example



Description: In the .env.example file there is missing attribute ‘ETHEREUM_RPC_PROVIDER’ 
which is required in hardhat.config.ts.



Recommendation: Make sure to add a missing attribute to the file in order to avoid confusion in 
the process of repository setup.

ID E.4: Status: Resolved

Informational | Code formatting

Present at: Throughout the codebase



Description: Even though code present in the repository is of great readability and overall good 
quality, it could use a standardized formatting in order to straighten out minor imperfections that 
are present.



Recommendation: Consider formatting the code using standardized tools such as a part of your 
development process.



Project comment: added prettier to this commit: 
54f9f4fa6a8544a377ffc67ac3d47180845e0a7a




Provided By on September 28, 2023 14/41

Complete analysis

General Contract Findings:

ID G.1: Status: Resolved

Informational | Use of ‘require’ statements with solidity compiler version ^0.8.4

Present at: Contracts directory 


Description: Your chosen compiler version is above 0.8.4 (version that introduced ‘custom 
errors’), this implies that you can reduce gas consumption and bytecode size by introducing 
them instead of ‘require’ statements. After introduction of ‘custom errors’, the ‘require’ statements 
are considered redundant as there is no additional value that they provide.  

Helpful Resource: https://soliditylang.org/blog/2021/04/21/custom-errors/



Recommendation: Replace ‘require’ statements with ‘custom errors’.

ID G.2: Status: Resolved

Low | Non differentiated token precision and calculation precision

Description: We’ve noticed the 6 decimal param may be interchangeably used for both aligning 
amounts in the hypc token calculations to the fragmented notation and for utilizing a precision 
framework for general params (e.g. the apr). This can lead to costly errors later due to the 
ambiguity of usage in this param



Recommendation: Utilize a different param with different decimals for general computation 
precision requirements. 

https://soliditylang.org/blog/2021/04/21/custom-errors/


Provided By on September 28, 2023 15/41

Complete analysis

ID G.3: Status: Partially Resolved

High | License management

Description: Throughout the architecture it is important that licenses are managed properly cross 
chain. That implies the following�

� Only the true owner of a license on cardano shall be able to mint an NFT with that license on 
other chains�

� License numbers shall not be able to repeat among different NFT�
� License numbers shall be legitimate and respect a specific format



Architectural Recommendation: Make sure that license owner on the Cardano side provides a 
signature which provides proof of ownership of the license as well as his EVM identification 
address. Once the back-end of yours verifies the signature, it shall provide another to the user. 
With signature from your back-end, the user is able to mint an nft with his EVM address and with 
a specific license number. Except for the signature validation, the license is checked for 
repetition. If license is not repeated and signature is valid, only then an NFT which backs up such 
license can be minted.Notice: We are well aware of the fact that realization of NFT backup of 
specific license is an expensive action and therefore only the real license owner has the interest 
in proposal creation for it. Though, our architectural recommendation prevents identity theft in 
more extreme cases.



Notice on Contracts: Consider license assigning be a part of a process of proposal creation in 
order to save gas and make operation clearer to all users by letting them know which license 
number(s) are they supporting.



Project Response: Skipped for now - will be relevant after license contract audit. 

Project Response #2: We decided to do the burning and issuing of the tokens ourselves to make 
everything easier, so users would have to ask us to exchange their Cardano tokens for the new 
Ethereum ones.



Resolvement: Project’s approach on licenses was changed during the audit therefore this issue is 
no longer relevant. New Approach should be carefully audited to make sure that it is secure, but is 
outside of the current scope.




Provided By on September 28, 2023 16/41

Complete analysis

ID G.4: Status: acknowledged

Discussion | Contract non-upgradeability and immutability

Description: While in certain cases non-upgradeability can provide additional security, in many 
cases it is faced as a disadvantage which prevents developers from fixing a production issue.



Recommendation: Think about upgradeability and decide if current architecture suits your 
needs.



Suggestion: if for example such issues/bugs had been discovered after deployment, or for 
product advancement you would need to add new functionality, there would be a very messy 
process to update the token and switch all holders to a new contract, or update to new contracts 
and migrate state etc.. which is why we advise on separation of logic and state, aka the proxy 
pattern for upgradability of logic, without hampering with the state. This kind of architecture 
design is critical for the ability to resolve bugs post prod deployment. The centralization risk that 
arises can be solved to the degree of your preference by allocating a more or less distributed 
multi-sig congress/vault for approving upgrades. It can also be community level DAO that 
approves this etc..



Project Response: Will remain non-upgradable per project decision.



Provided By on September 28, 2023 17/41

Complete analysis

Local Contract Findings:

Contract: CrowdFundHYPCPoolV2.sol

ID A.1: Status: Resolved

Informational | Additional optimization of ‘amount’ local variable usage

Present at: CrowdFundHYPCPoolV2.sol / withdrawDeposit() @ L635-636



Description: Local variable ‘amount’ which has an assigned value of ‘depositData.amount’ is 
used multiple times inside ‘withdrawDeposit()’. We believe that variable was introduced with flow 
optimization as a purpose. Before the introduction of the mentioned variable,  
‘depositData.amount’ is used one more time, which provides an additional complexity to the 
function logic.



Recommendation: Initialize ‘amount’ before the first functional usage in order to further optimize 
the function flow.

ID a.2: Status: Resolved

Informational | Proposal state constants can be made an enum

Present at: CrowdFundHYPCPoolV2.sol @ L93-96



Description: Among the constants present in this contract there are 4 representing the state of 
the proposal. These 4 constants, as they contain only numbers 0 to 3 orderly, can be replaced 
with an enum. For such a case enum shall be considered a conventional solution, though the 
current way of functioning is perfectly fine too.



Recommendation: Replace mentioned constants with an enum.



Provided By on September 28, 2023 18/41

Complete analysis

ID A.3: Status: Resolved

Informational | Constructor missing event

Present at: CrowdFundHYPCPoolV2.sol / constructor() @L280-296



Description: Logic of the ‘setPoolFee()’ function emits an event once ‘poolFee’ is set. You might 
want to emit the event in the constructor, as the value is being set there too. Without an event 
there you will skip the initial value of poolFee in your event log.



Recommendation: Consider adding ‘PoolFeeSet()’ event emission after setting ‘poolFee’ in your 
constructor logic.

ID a.4: Status: Resolved

Low | Proposal deadline argument can be used to create an unfulfillable 
proposal

Present at: CrowdFundHYPCPoolV2.sol / createProposal() @L333



Description: Deadline is required to be greater than block.timestamp which still allows proposal to 
be unfulfillable.



Recommendation: Consider implementing a time buffer which will not allow for unfulfillable 
proposals inside the current check.



Solution Implementation Example: 

uint256 public constant PROPOSAL_CREATION_DEADLINE_BUFFER = 3600; //One hour

require(block.timestamp + PROPOSAL_CREATION_DEADLINE_BUFFER < deadline);



Provided By on September 28, 2023 19/41

Complete analysis

ID A.5: Status: acknowledged

Discussion | Missing minimum APR threshold which allows for 0% returns

Present at: CrowdFundHYPCPoolV2.sol / createProposal()



Description: Backing funds are required to be greater than zero, which still makes an ineffective 
check as the APR can still be zero.



Recommendation: Set a threshold minimum for the APR and replace current backing funds zero 
value check with an APR crossing threshold check.



Post fix comment: Removing the check did not fix the mentioned issue.



Project Response: The APR being zero is an acceptable use case of the pool contract and can 
act as a locking mechanism for HyPC, with the respective parties (depositors and proposer) 
agreeing to a lock agreement. Alternatively, the proposer could offer off-chain rewards for the 
depositors. As long as a 0% APR rate doesn't break the contract, this is acceptable. An extra test 
was added that creates a 0% APR proposal. See 
07b90e2a85f6dbffe590eb6fa1222f9fe36c3200

ID a.6: Status: acknowledged

Informational | vague reference to amount parameters’ token fragmentation 
state

Present at: CrowdFundHYPCPoolV2.sol (CrowdFundHYPCPool.sol) & HyperCycleSwap.sol



Description: When it comes to token handling, we recommend to verify that all parameters 
pertaining to token amounts are in their atomic fragmented notation, and any such parameter or 
variable that is not, should be clearly notated as being in double/float format. Also note that 
frontends calculating fragmented notation from user input which is usually in double notation, 
often result in rounding or casting errors that propagate to the contract and may cause underflow 
or overflow in intended amounts. 



Provided By on September 28, 2023 20/41

Complete analysis

Additional Comment: Providing a raw value input (uint with all of its “decimals”) to contracts is 
the most conventional approach. Usually, when it comes to popular dapps, a piece of logic to 
convert precise floating point numbers to uint is contained on the front-end side. After 
conversion the front-end will make sure that your wallet receives the exact uint value which 
represents the float value that you inserted at first. Contract logic should be resilient to frontend 
rounding/casting errors as much as possible, e.g. by implementing fuzzy limits on logic and 
calculations

 

Recommendation: Verify all decimals management is handled off chain via frontend/backend 
integrations. Expect users to input double notation values, and allow values inputted up to the full 
fragment precision (e.g. 6 decimals for HYPC), which should then be properly converted by the 
frontend to uint and prepared for contract interaction.

ID A.7: Status: Resolved

Low | Missing minimum APR threshold which allows for 0% returns

Present at: CrowdFundHYPCPoolV2.sol / createProposal() @L335



Description: Argument numberNFTs has no upper border which means someone can request a 
larger amount than possible to mint.



Recommendation: Consider implementing an upper border check for this argument with a 
reasonable number.Additional Notice: Make sure that number of NFTs is operable inside of every 
function that it will go through, complexity of logic will in some places linearly extend based on 
the number of NFTs in the proposal which may cause crossing block gas limit.

 



Provided By on September 28, 2023 21/41

Complete analysis

ID A.8: Status: acknowledged

Discussion | Lack of flexibility and security impact of non-upgradeability and 
immutable values

Present at: CrowdFundHYPCPoolV2.sol @L68-74



Description: Values declared in described lines are not changeable, we consider this an intended 
behavior but wanted to let you know of the potential risks it carries.



Recommendation: Think about potential risks and decide if the current way of functioning is 
desired.



Project Response: Lack of upgradeability of our contracts is a deliberate choice. Upgradability is 
done through migrating to new contracts, like from PoolV1 to PoolV2 for example.

ID A.9: Status: acknowledged

Discussion | Lack of flexibility with 3 offered ‘termLength’ options

Present at: CrowdFundHYPCPoolV2.sol



Description: Though we consider offering only 3 options an intended behavior we wanted to let 
you know of the lack of flexibility this carries.



Recommendation: Think about how lack of flexibility can impact the application flow and UX 
during a period of time. Reconsider a behavior which includes dynamic flow and custom time 
periods.



Project Response: Additional term lengths, if required, will be handled with a future pool versions. 
At the current time, 36 months is the most reasonable maximum amount of time for a proposal, 
and 18 months the most reasonable minimum amount of time.




Provided By on September 28, 2023 22/41

Complete analysis

ID A.10: Status: acknowledged

Low | Missing check for existing proposals of the message sender

Present at: CrowdFundHYPCPoolV2.sol / createProposal()



Description: The way that current flow works, a single person is able to create a very large 
amount of proposals.



Recommendation: Consider limiting the amount of active proposals per user to a reasonable 
number.



Project Response: Limiting per user will not stop a malicious user from creating many proposals 
since they can just change the address they're using to create proposals. If a user wants to spam 
the contract with many proposals, then the frontend will just order the proposals by APR and 
status of the proposals.

ID A.11: Status: Resolved

Informational | transfer()/transferFrom() optimization

Present at: CrowdFundHYPCPoolV2.sol



Description: Since the tokens interacting with the architecture belong to you and their logic is 
known, you can optimize the flow by using regular IERC20 transfer functions instead of 
safeTransfer. While safeTransfer is a must when handling tokens with unknown logic, when 
interacting with a token of your own there is no particular need to use this library.



Recommendation: Consider making transfers in raw form in order to optimize gas consumption 
and reduce bytecode size.



Provided By on September 28, 2023 23/41

Complete analysis

ID A.12: Status: Resolved

Medium | Possible errors once deposit reaches the requested amount

Present at: CrowdFundHYPCPoolV2.sol / createDeposit() & updateDeposit()



Description: When depositing, the user whose amount is supposed to fill the proposal is prone to 
reverting as equalization to the requested amount is required. When working with token 
fragments, amounts on the front-end can easily lose precision and that can cause the mentioned 
issue.



Recommendation: Consider implementing flow in such a way to accept greater amounts than the 
proposal owner requested but return the change back to the user if the requested amount is 
overfilled.



Project Response: This code allows for the final deposit to be less precise to fill the proposal in 
case of front-end precision issues, but prevents sniping issues where a user wants to deposit the 
last say, 500,000 HyPC, but then gets sniped by another user that posts 200,000 HyPC. The 
user posting the 500,000 HyPC didn't ask to make a 300,000 HyPC deposit - maybe they want 
to only have one deposit to update every two weeks instead of two and would choose to deposit 
to a different proposal if this was the case.

ID A.13: Status: Resolved

Informational | Unnecessary double reference on transferDeposit()

Present at: CrowdFundHYPCPoolV2.sol / transferDeposit() @ L438



Description: Unnecessary reference to a value is made on L438 while that value is stored locally 
already at L435.



Recommendation: Consider using an already instantiated local variable instead of making a new 
reference to a value in order to optimize gas consumption and reduce bytecode size.




Provided By on September 28, 2023 24/41

Complete analysis

ID A.14: Status: acknowledged

Discussion | Rules of proposal transfer

Present at: CrowdFundHYPCPoolV2.sol / transferProposal()



Recommendation: Think about the rules that should potentially be applied to the flow of proposal 
transfer, as proposal has different states - those states may imply different behavior in situations.



Project Response: transferring a proposal from one address to another only changes the 
proposal's owner attribute, which determines what address can perform actions on this proposal. 
Proposal ownership only impacts transferProposal, cancelProposal, finishProposal, and 
changeAssignment, with changes to proposal owners not impacting their flow.

ID A.15: Status: acknowledged

Discussion | Proposal starting permissions

Present at: CrowdFundHYPCPoolV2.sol / startProposal()



Recommendation: The time of starting the proposal may carry significance in state or other 
product dynamics, re-consider to only allow the proposal owner to start their proposal, or to allow 
the proposal owner to signal once creating the proposal that this proposal is open for anyone to 
start once fulfilled required amount.



Project Response: Restricting the starting of a proposal to only the proposer gives them the 
power to stonewall a proposal through either malice, incompetence, or simple forgetfulness. 
There is a choice between the proposer and the depositor in terms of who to prioritize between 
interest payments starting "on time" vs the assignment strings being assigned as soon as the 
proposal starts. Given the nature of the proposer, it is safer to assume they will take on the 
responsibility to see when the proposals are filled and change their assignment strings when the 
time comes.




Provided By on September 28, 2023 25/41

Complete analysis

ID A.16: Status: Resolved

Informational | Computation optimization

Present at: CrowdFundHYPCPoolV2.sol / createProposal() & swapTokens() & updateDeposit()



Description: Inside of mentioned functions there have been unnecessary re-computations of 
known values on every transaction. Constants PERIODS_PER_YEAR and HYPC_PER_CHYPC are 
multiplied by SIX_DECIMALS each time they’re used in computations.



Recommendation: In order to reduce gas consumption in execution of mentioned functions we 
recommend to replace redundant computations with constant values.

ID A.17: Status: Resolved

Informational | Computation optimization

Present at: CrowdFundHYPCPoolV2.sol / createDeposit() @ L515-516



Description: At mentioned lines the following computation is repeated: 
‘HYPC_PER_CHYPC_SIX_DECIMALS * proposalData.numberNFTs’



Recommendation: Consider executing computation only once and storing it in a local variable for 
reuse.

ID A.18: Status: Resolved

Medium | Possible proposal and deposit transfers to non-accessible wallets

Present at: CrowdFundHYPCPoolV2.sol / transferDeposit() & transferProposal()



Description: With the occurrence of a simple mistake, the user may transfer his deposit and/or 
proposal to a wrong wallet.




Provided By on September 28, 2023 26/41

Complete analysis

Recommendation: Consider making a 2-step transfer flow, which requires the ‘to’ wallet to 
accept the proposal or deposit. That way, in the case of a mistake, the user can just revoke his 
transfer offer which he made to another wallet.



Project Response: There's a transferRegistry added to prevent fat-fingering.



Auditor’s comment: Newly implemented transferRegistry flow provides a similar level of security 
to our recommended solution.

ID A.19: Status: acknowledged

Medium | volatile fragmented/duplicated code

Present at: CrowdFundHYPCPoolV2.sol / swapTokens()



Description: tokenId retrieved using duplicated segregated logic from swap contract assumed to 
be aligned with the swap contract, combined with soft assumptions on blocked race conditions 
for swapped out tokenIds, with no checksum on actual tokenId swapped out. This might also not 
align in some cases with actual logic executed on swap contract



Recommendation: on swap contract, hold state array for storing tokens ids swapped out in 
chronological order, expose a getter for nextAvailableTokenId, and add it as input param into swap 
function, so that on poolv2 you can get the next available token (without code duplication), and 
send it as param to the swap function, which would checksum and verify this is indeed the next 
available tokenId to swap out per current state on swap contract. This will ensure a strong 
handshake on tokenId swapped out between poolv2 and swap contract. Same should be 
handled for any direct flow of user directly swapping not via the poolv2.






Provided By on September 28, 2023 27/41

Complete analysis

Project Response: The CHYPC and Swap contracts are already deployed, and were previously 
audited by another firm. Since the external contract interfaces are well-defined (developed in 
house) and static (deployed and not upgradeable), there isn't a possibility for the interface to 
change. Operations like swapping for a new token can be abstracted into an interface to reduce 
code duplication, but there is only one place in the contract where this swapping occurs, so we 
feel there's no need to create an abstraction layer at this time. Likewise, a stronger handshake 
could be added to use the ERC721Received mechanism to guarantee the tokenId received is 
correct, but this would be a redundant  step in this case. This recommendation will be kept in 
mind for future versions of the Swap contract.

ID A.20: Status: acknowledged

Discussion | lack of validations on data assigned to hypc nft

Present at: CrowdFundHYPCPoolV2.sol / swapTokens()



Description: tokenId retrieved using duplicated segregated logic from swap contract assumed to 
be aligned with the swap contract, combined with soft assumptions on blocked race conditions 
for swapped out tokenIds, with no checksum on actual tokenId swapped out. This might also not 
align in some cases with actual logic executed on swap contract



Recommendation: on swap contract, hold state array for storing tokens ids swapped out in 
chronological order, expose a getter for nextAvailableTokenId, and add it as input param into swap 
function, so that on poolv2 you can get the next available token (without code duplication), and 
send it as param to the swap function, which would checksum and verify this is indeed the next 
available tokenId to swap out per current state on swap contract. This will ensure a strong 
handshake on tokenId swapped out between poolv2 and swap contract. Same should be 
handled for any direct flow of user directly swapping not via the poolv2.






Provided By on September 28, 2023 28/41

Complete analysis

ID A.21: Status: Resolved

Informational | Unused library import

Present at: CrowdFundHYPCPoolV2.sol



Description: Library ‘Strings.sol’ by OpenZeppelin is imported but never used.



Recommendation: Consider removing the library import.



Provided By on September 28, 2023 29/41

Complete analysis

Local Contract Findings:

Contract: HyperCycleLicense.sol

ID B.1: Status: Resolved

Informational | Redundant nonReentrant modifier

Present at: HyperCycleLicense.sol / mint() @ L151



Description: At the mentioned line a redundant ‘nonReentrant’ modifier is present. Its redundancy 
comes from the fact that the ‘onlyOwner’ modifier is also applied. Owner is the only wallet 
suitable for making a reentrancy attack (if it is a contract).



Recommendation: Consider removing the modifier.

ID B.2: Status: Resolved

Informational | Unnecessary use of ‘_safeMint()’

Present at: HyperCycleLicense.sol / mint() @ L158



Description: Usage of mentioned function instead of ordinary ‘_mint()’ is not needed as tokens 
are being minted to the owner. If the owner is not a contract which is supposed to perform 
specific action on ‘onERC721Received()’ call, then safe mint can be replaced with ordinary mint.



Recommendation: Consider replacing ‘_safeMint()’ with ‘_mint()’.




Provided By on September 28, 2023 30/41

Complete analysis

ID B.3: Status: Resolved

Medium | Inconsistent updates of ‘totalTokens’

Present at: HyperCycleLicense.sol / merge() & split()



Description: Variable ‘totalTokens’ is being updated on split, number of total tokens is increased 
by 2. Since the parent token gets burned it would make more sense to increase the number of 
total tokens by 1. On merge ‘totalTokens’ is not updated at all while it would make most sense to 
reduce it by 1, as children tokens are burned and parent token is minted.



Recommendation: If ‘totalTokens’ variable was meant to track number of existing tokens in 
circulation consider adapting flow to previously seen description.

ID B.4: Status: Resolved

Informational | Redundant value update

Present at: HyperCycleLicense.sol / split() @ L179 & merge() @ L209-210



Description: Attribute ‘burnData’ is being assigned value of an empty string. In order for the 
license to get splitted/merged it needs to be minted first, in the ‘mint’ function, value of an empty 
string is also set to the mentioned attribute. There might not be a scenario where you need to set 
this value again in the split/merge functions. ‘burnData’ value can be set to something other than 
an empty string only in independent ‘burns’, which is an action outside of merge/split flow.



Recommendation: Consider removing assignments of an empty string to the ‘burnData’ attribute 
in merge and split functions.




Provided By on September 28, 2023 31/41

Complete analysis

ID B.5: Status: Resolved

Informational | Improper event argument names

Present at: HyperCycleLicense.sol / L118-119



Description: ‘Merge’ event has the same arguments as ‘Split’ event and the names of ‘child 
licenses’ are not suitable in case of ‘Merge’. They’re called ‘newLicenseId1’ and ‘newLicenseId2’, 
since these licenses are existing and getting burned, we find this naming improper.



Recommendation: Consider renaming event arguments.

ID B.6: Status: Resolved

Informational | Redundant value assignment

Present at: HyperCycleLicense.sol / L84 & L146



Description: Value of ‘totalTokens’ is being set to zero twice, once in the place of declaration and 
once in the constructor. Both of these sets are unnecessary as the default value for a newly 
declared variable in solidity is zero. We understand that leaving the first statement like this can 
help code be more transparent, but there is no further benefit in setting it twice.



Recommendation: Consider removing the redundant assignment(s).

ID B.7: Status: Resolved

Informational | Redundant license status check

Present at: HyperCycleLicense.sol / getBurnData()




Provided By on September 28, 2023 32/41

Complete analysis

Description: Function ‘getBurnData()’ has 2 status checks, one which comes from the ‘isValid’ 
modifier and the other one checking that the license is burned. Second status check makes the 
first one unnecessary, as token being of status ‘BURNED’ implies that it is not of status 
‘NOT_MINTED’ which is being checked inside the ‘isValid’ modifier.



Recommendation: Consider removing the modifier.

ID B.8: Status: Resolved

Discussion | Ownership should be assigned to a secure multi signature wallet

Description: Have owner as multisig of cold wallets and ensure in deployment script that 
ownership is transferred to this multi sig immediately post deploy + enable a post deployment 
structure check script to ensure ownership is indeed held by the multisig.



Project Response: Added this to the deployment script for mainnet.

ID B.9: Status: Resolved

Informational | Missing ‘constant’ keyword

Present at: HyperCycleLicense.sol @ L85-86



Description: ‘endRootToken’ and ‘startRootToken’ can be marked as constants.



Recommendation: Declare mentioned variables as constants



Provided By on September 28, 2023 33/41

Complete analysis

ID B.10: Status: Resolved

Discussion | ‘mint’ function return value

Present at: HyperCycleLicense.sol / mint() @ L163



Description: If return value is indeed needed, returning the number of tokens minted does not 
help to ascertain in verified manner which tokens were actually minted.



Recommendation: first consider if return value actually needed, if needed, consider outputting 
more precise information such as id range (min,max) of minted license ids.



Project Response: Not needed, so removed.

ID B.11: Status: Resolved

Informational | Unoptimized computation

Present at: HyperCycleLicense.sol / split() @ L174-175



Description: ‘licenseId2’ is computed as ‘licenseId * 2 + 1’ while ‘licenseId1’ is computed as 
‘licenseId * 2’, this implies that ‘licenseId2’ can be computed more easily via ‘licenseId1 + 1’.



Recommendation: Consider implementing described flow in order to reduce gas usage.



Provided By on September 28, 2023 34/41

Complete analysis

ID B.12: Status: acknowledged

Medium | Burning of child licenses can cause permanent nonexistence of 
parent licenses

Description: Since child licenses can get burned independently outside of merge/split flow, that 
can cause merge to be impossible later on, as merge requires both children to be non burnt.



Recommendation: If this is not desired behavior consider limiting independent burns only to the 
parent/root nodes or enable mints of child nodes individually, or enable merges where one of the 
licenses being merged is burnt. 



Project Response: The merge functionality is an optional aspect of the contract and is a "nice to 
have" feature. If a token holder burns a child token, then it is expected that the parent can no 
longer be merged in this contract. If, for example, the burn mechanism was used for a one-way 
bridge to another blockchain, then both tokens would have to be burnt into the new blockchain in 
order to be merged up there, if merging was supported there.



Conclusion: This is a desired behavior.

ID B.13: Status: Resolved

Informational | Additional burn event

Present at: HyperCycleLicense.sol / burn()



Description: Even though native ‘_burn()’ function which is called inside the ‘burn()’ emits a 
‘Transfer’ event. You might want to add your own specific event which can contain extra 
arguments.



Recommendation: Consider adding an event.




Provided By on September 28, 2023 35/41

Complete analysis

ID B.14: Status: Resolved

Informational | Hardcoded value

Present at: HyperCycleLicense.sol / merge() @L202



Description: At the mentioned line there is a hardcoded value which can be replaced by global 
constant ‘startRootToken’.



Recommendation: Consider implementing described changes in order to increase code quality 
and readability.

ID B.15: Status: Resolved

Discussion | Binary tree and license numbers

Description:�
�� The notice comment mentions 64 levels supported by the tree, yet the contract only supports 

10 levels from height 19 to 10. I.e. There is no explicit adherence for 64 leaves on the 
contract �

�� In documentation it states: “These licenses have a unique LicenseID number, ranging from 
8796629893120 to 8796629897215 (4096 in total).  But checking 
8796629893120+4096 - 8796629897215 ⇒  the result is 1 so seems there is 
inconsistency there (perhaps add “exclusive” on the last id in the comment e.g. “from 
8796629893120 inclusive to 8796629897215 exclusive�

�� Please review:  https://colab.research.google.com/
drive/1Vbq2hCqm6rILzisFX2of6T_im4Bdtfvb?usp=sharing - according to this simulation�

�� each root license can generate up to 1022 sublicenses,�
�� and the total splitting of licenses can produce, including roots, 4,191,231 licenses. The 

min license id is =8796629893120 (the min root), and the max is 4503874507375103 
(bottom right of the tree�

�� The last level of the tree enabled by this contract is from license id minimum of 
4503874505277951 to maximum of 4503874507375103 -> the last level min and max 
values also differ from what’s written in the notice - Tokens at the bottom level in this 
contract are in the range of 4503874505277440 to 4503874505277951 inclusive



https://colab.research.google.com/drive/1Vbq2hCqm6rILzisFX2of6T_im4Bdtfvb?usp=sharing
https://colab.research.google.com/drive/1Vbq2hCqm6rILzisFX2of6T_im4Bdtfvb?usp=sharing


Provided By on September 28, 2023 36/41

Complete analysis

Recommendation: Review discrepancies and ascertain which is the intended. If values in notice 
are incorrect, please remedy.



Project Response: There are 4096 licenses in total, so the last token should be the starting token 
plus 4096, minus 1 (eg: starting at 10, and creating two tokens will give 10+2-1 = 11, so 10 and 11 
would be the tokenIds).

The endRootToken variable should be called endRootTokenLimit instead, since it is the startId 
plus 4096 and not the actual last root token. I've changed this in the code.

Each split level increases the number of tokens by a factor of 2, so this should be a power of two. 
Since there are 9 splits, this is 2^9 = 512.

From 2.) The max comes from the 8796629897215 token, which gives 4503874507374591 as 
the maximum token (a few digits were incorrect previously and are fixed now in the comment).

The minimum tokenId at the bottom level is 4503874505277440 as stated (8796629893120 * 
2^9).



Resolution: notes have been modified and all information checksummed.

ID B.16: Status: Resolved

Discussion | Merge Dynamics and Use Cases

Description: If the intended act of splitting a license is to distribute it among more people than the 
original owner, it’s fair to assume that on merge, not all licenses are owned by the same 
addresses. In such case, it could prove useful to enable with approval mechanisms the ability of 
owner X to merge licenses held by addresses Y and Z (after they provided approval for X to 
transfer their licenses), so that it would be possible to merge 2 licenses held by different people 
into a single license held by either one of them or a third address.



Recommendation: As the contract is non upgradable please think of any potential future 
usecases and consider enabling them for future use in the contract.





Provided By on September 28, 2023 37/41

Complete analysis

Project Response: As mentioned, the merge functionality is a nice-to-have feature of the 
contract and not necessary to properly function for us. For splitting, an approval mechanism can 
make sense, but for merging there's additional logic around who gets the merged token after the 
tokens are merged together (eg: Y, Z, or X, or someone else).

Since this is more complicated logic than a traditional transfer approval, it seems best to separate 
it out into a new contract if it is needed in the future. In this case, Y and Z would use regular 
erc721 approvals to deposit the tokens into this new contract and then agree to a merge with 
whatever logic is needed inside the contract (eg: merge it inside the contract and hold it there for 
some time, and then split it afterwards).




Provided By on September 28, 2023 38/41

Disclaimer:

DcentraLab Diligence (DD) has provided the code to the client as is and assumes no 
responsibility nor legal liability for any use client may do with the code. Any and all usage and/or 
deployment of the code provided by DcentraLab Diligence will be done solely by the client, at the 
sole discretion, responsibility, risk, and legal liability of the Client, and DD will not be held 
accountable or liable for any loss of funds, security exploits or incidents, or any other unintended 
or negative outcome that may occur in relation to the code provided by DD.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular 
project or team. This report is not, nor should be considered, an indication of the economics or 
value of any “product” or “asset” created by any team or project that contracts DD to perform a 
security assessment. This report does not provide any warranty or guarantee regarding the 
absolute bug-free nature of the technology analyzed, nor do they provide any indication of the 
technologies proprietors, business, business model, or legal compliance.



This report and the provided code or services as part of the SOW pertaining to this report should 
not be used in any way to make decisions around investment or involvement with any particular 
project. This report in no way provides investment advice, nor should it be leveraged as 
investment advice of any sort. This report represents an extensive assessing process intending to 
help our customers increase the quality of their code while reducing the high level of risk 
presented by cryptographic tokens and blockchain technology.



Blockchain technology and cryptographic assets present a high level of ongoing risk. DD’s 
position is that each company and individual are responsible for their own due diligence and 
continuous security. DD’s goal is to help reduce the attack vectors and the high level of variance 
associated with utilizing new and consistently changing technologies, and in no way claims any 
guarantee of security or functionality of the technology we agree to analyze.



The assessment services provided by DD are subject to dependencies and are under continuing 
development. You agree that your access and/or use, including but not limited to any services, 
code, reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis. 
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk 
and uncertainty. The assessment reports could include false positives, false negatives, and other 
unpredictable results. The services may access, and depend upon, multiple layers of third 
parties.



Provided By on September 28, 2023 39/41

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER 
MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS 
IS” AND “AS AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF 
ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, DcentraLab 
Diligence (DD) HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, 
STATUTORY, OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR 
OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING, DD SPECIFICALLY DISCLAIMS 



ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, 
TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM THE COURSE OF 
DEALING, USAGE, OR TRADE PRACTICE. 



WITHOUT LIMITING THE FOREGOING, DD MAKES NO WARRANTY OF ANY KIND THAT THE 
SERVICES, THE LABELS, THE ASSESSMENT / VERIFICATION REPORT, WORK PRODUCT, 
CODE OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, 
WILL MEET THE CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY 
INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER 
SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-
FREE. 



WITHOUT LIMITATION TO THE DISCLAIMER HyperCycle Contracts FOREGOING, DD 
PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY 
KIND THAT THE SERVICE WILL MEET THE CUSTOMER’S REQUIREMENTS, ACHIEVE ANY 
INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, 
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY 
PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR-FREE OR THAT ANY ERRORS 
OR DEFECTS CAN OR WILL BE CORRECTED.



WITHOUT LIMITING THE FOREGOING, NEITHER DD NOR ANY OF DD’S AGENTS MAKES ANY 
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE 
ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION, CODE OR CONTENT 
PROVIDED THROUGH THE SERVICE. DD WILL ASSUME NO LIABILITY OR RESPONSIBILITY 
FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS OR FOR 
ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY 
CONTENT OR CODE, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY 
NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO OR USE OF THE 
SERVICES, CODE, ASSESSMENT REPORT, OR OTHER MATERIALS. 



Provided By on September 28, 2023 40/41

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS,” AND ANY REPRESENTATION OR 
WARRANTY OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN 
THE CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS. THE SERVICES, ASSESSMENT 
REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO THE 
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE 
NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, 
ANY OTHER PERSON WITHOUT DD’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.



NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD 
PARTY OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY 
ACCOMPANYING MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF 
CONTRIBUTION AGAINST DD WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, 
AND ANY ACCOMPANYING MATERIALS. THE REPRESENTATIONS AND WARRANTIES OF DD 
CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE BENEFIT OF THE CUSTOMER. 
ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, 
SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND 
WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION 
AGAINST DD WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN 
INDEMNIFICATION UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT 
REPORTS, CODE, OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY 
FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.



Provided By on September 28, 2023

dcentralab.com/diligence




