

WELCOME

Connecting the dots in a complex world of strawberries

Antwerp – Belgium 17 – 20 September 2025

Wednesday

Parallel Session 1: Strawberry Breeding & Physiology

The application of priming agents as a stress alleviation strategy to combat salinity conditions in strawberry

George Manganaris

Cyprus University of Technology

Department of Agricultural Sciences, Biotechnology & Food Science

Email: george.manganaris@cut.ac.cy

Website: www.fruitsciences.eu

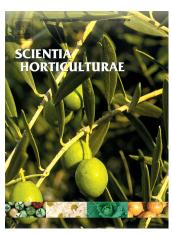
Outline

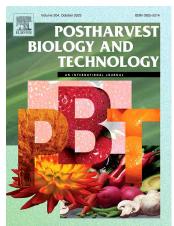
- #1 The strawberry sector in South Europe
 The case study of Greece
- #2 The concept of priming: a novel agricultural approach
- #3 The effect of priming agents on strawberry plants under salinity conditions (field experiment)
- #4 Exploring functionalized biopolymer prototypes towards mitigation of salt stress in strawberry plants

The CUT Fruit Sciences Group

Full Professor (2024-),

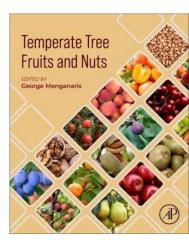
Group leader of the www.frutsciences.eu group


Post-doctoral Research Associate,


University of California at Davis, Department of Plant Sciences, USA

Post-doctoral Research Associate,

Recipient of an MC-IEF Fellowship, University of Padova, Italy



Home Thematic Packs Projects & Results Videos & Podcasts News Datalab Search

Home > ... > Horizon Europe > Development of innovative priming technologies safeguarding yield security in soft fruit crops through a cutting-edge technological approach

Development of innovative priming technologies safeguarding yield security in soft fruit crops through a cutting-edge technological approach

Fact Sheet

Results

www.prime-soft.eu

The strawberry production sector in South Europe The case study of Greece

Strawberry: a true success story of Greece

- ✓ More than 240 million € value from 300 growers
- ✓ From 160 ha in 2003->1000 ha in 2013-> to 2300 ha in 2024.
- One of the earliest site in South Europe for production (mid November to late May)
- ✓ Exports (90% of production): West and East Europe+ Gulf countries
- ✓ A lot of young growers with Horticulture degree

Source: Tsormpatsidis

Strawberry production system: the case of Greece

- ✓ Production in old beds (environmental friendly)
- ✓ Solarization
- ✓ Use of resilient varieties High level of expertise
- ✓ Production based on measurements (analysis)

Fortuna

Total Production: 1 kg/plant

Ripening period: November-April Plant material: 0.27 €/tray plant

Early production: 3-fold ↑ price

Excellent taste

Skilled farmer

Victory

Total Production: 0.85 kg/plant

Ripening period: February-May

Plant material: 0.18 €/bare root plant

Excellent postharvest performance

No claims

Inferior taste compared to 'Fortuna'

Source: Tsormpatsidis 🐼

Strawberry cultivation:

FRUIT SCIENCES GROUP

'Fortuna' production model

- Annual production cost: ca. 65,000€/ hectare 65,000 plants per hectare
- Farm gate price (mid November early January): 3,5€ marketable yield per plant: 150 g
- Farm gate price (mid January early May): 1,5€ marketable yield per plant: 850 g

Early production: 0,53€

otin

otin Mid-late production: 1,19 €

Net profit: 46,800 €/ hectare

Source: Tsormpatsidis

The strawberry production sector

The reality:

- Labor cost and labor availability
- Royalties for high yield cultivars
- Highly perishable commodity

The challenges:

- High yield efficiency and availability throughout the year
- Extended storage potential
- Sustainable production models that meet consumers' expectations
- Exploitation of second class products for other uses

Towards reduced food loss

"Ugly Fruits" Movement towards reduced food loss

The concept of priming: a novel agricultural approach

Genetic modification

CRISPR-Cas movement: Targeted Genome Editing Technology

gene-edited plants remain under the strict GMO framework

Lena Maas, Protoplast-CRISPR technology in strawberry

Selection of tolerant cultivars

Conventional breeding

Capital intensive and time consuming

Steven Knapp, Shaping the Next-Generation of Strawberry Cultivars

Plant priming

Defining the term 'priming'

The process of priming involves prior exposure to a biotic or abiotic stress factor making a plant more resistant/tolerant to future exposure.

Priming can also be achieved by applying natural or synthetic compounds which act as signaling transducers, 'activating' the plant's defense system.

Trends in Plant Science

Special issue: 21st century tools in plant science

Next generation chemical priming: with a little help from our nanocarrier friends

Gholamreza Gohari, 1,2 Meng Jiang, 3 George A. Manganaris, 1 Jie Zhou, 3,4 and Vasileios Fotopoulos 0,1,5,4,00

Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.

Essentials of plant chemical priming in a nutshell

Due to their sessile lifestyle, plants, including both crop and non-crop species, are continuously challenged by multiple types of biotic and abiotic stresses throughout their life cycle. Plants may be exposed to stress episodes sequentially or simultaneously. Orugially, a combination of biotic or abiotic stresses may exacerbate the devastating effects on crop productivity compared with the individual effects of the stressors. Recent advances in plant stress physiology have focused the questions of plant biologists on how plants prepare themselves for the possible recurrence of a stress that has passed, and on the type of responses that are generated following requirence of the same stress factor. Another critical concern has grisen about the responses of plants exposed to different stresses at different stages of their life cycle

Among the approaches used to address environmental constraints, seed and seeding priming Oypus University of Technology has been receiving an increasing degree of attention, as evidenced by -1957 documents in the agricultural and biological sciences according to the SCOPUS database, and more than half of these works have been published in the past 5 years. The main philosophy of priming is to enhance the tolerance of plants to stress factors by using priming agents, and this is achieved by activating multiple defense-related pathways. Plants can be primed to better tolerate the stressors through modifications in primary and secondary metabolism. The remarkable effects of priming have been demonstrated across a range of crop and non-crop species. Priming can be initiated naturally following exposure to an environmental stress (also known as physiological priming or hardening), and it can also be achieved by exogenous treatment with biotic (organisma) and abiotic (nonorganismal) priming agents [1]. The latter most commonly involve chemical agents such as natural metabolities or synthetic chemical compounds, and present exciting opportunities for more effective use of plant priming in grop stress management [2].

Changes in osmoregulation, detoxification of reactive oxygen species (ROS), and protein and ion (v. Fotopoulos). homeostasis mediated by chemical priming agents have been associated with acquired tolerance

Nanocemers NCs) functions and with chemical agents represent a novel approach for improved priming efficiency through targeted delivery.

bined used of different agents in novel engineered nanocemers (NENCs) has the potential to achieve multiple benefits

The application of NENCs as seed cost ngs has the potential to improve crop yields, while adviewing maximum cost efectiveness compared with application at the plant level as it requires less time.

Gene-editing techniques can be used to modify the expression of targeted genes involved in plant priming as identified by transprotomic approaches, and gamen priming treatments and improve their

*Department of Agricultural Sciences Horticulture University of Mamahah Maragheh, Iran ³Hainan Institute, Zhejiang University Yazhou Bay Sd-Tech City, Sanya, Department of Horticulture, Zhejjang Provincial Key Laboratory of Horticultural University, Hangshou, PR China

150 Triends in Plant Science, February 2024, Vol. 29, No. 2 https://doi.org/10.1016/j.solema.2023.11.0

Classes of priming agents

Chemicals (including natural and synthetic molecules)

- Hormones (i.e. salicylic acid, jasmonic acid)
- Reactive Oxygen Nitrogen and Sulphur Species (RONSS: NO, H_2S , H_2O_2)
- Small organic molecules (i.e. <u>melatonin</u>, putrescine)

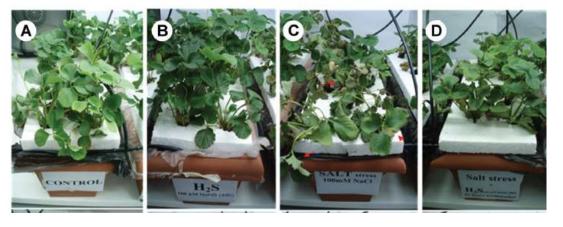
Microorganisms

- Arbuscular mycorrhizal fungi
- Plant growth-promoting bacteria

Nanomaterials

- Organic nanoparticles
- Inorganic nanoparticles
- Polymers (i.e., chitosan, <u>sodium alginate</u>)

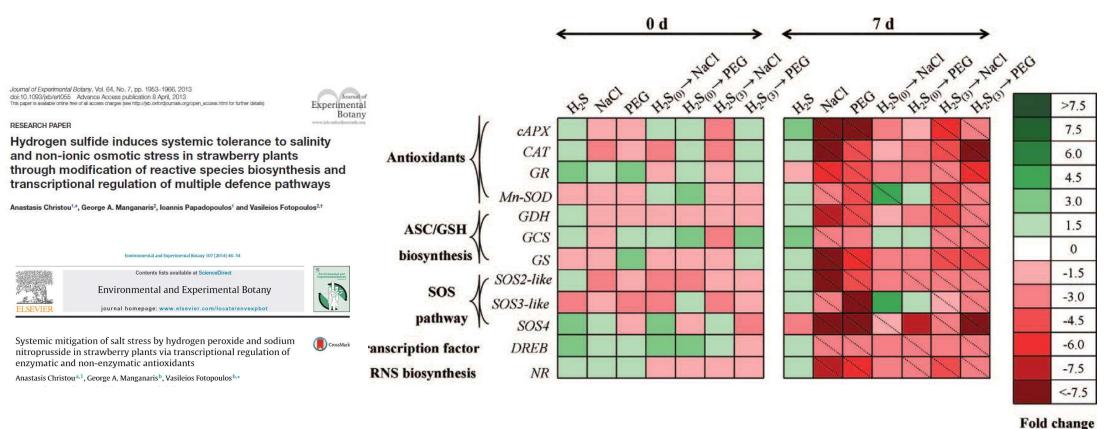
The effect of PAs on strawberry plants Period: 2010-2013 (PhD project)


Plant priming with signaling molecules (H₂O₂, NO, H₂S): a promising approach for alleviating abiotic stress devastating effects

Pretreatment was carried out in a hydroponic cultivation system and plants exposed to a multitude of abiotic stress factors and analyzed through a combinatorial physiological, biochemical and molecular approach

H₂S promotes NaCl and PEG stress tolerance in strawberry plants

A. Christou et al. / Environmental and Experimental Botany 107 (2014) 46-54



Exploring the mechanistic action of PAs

Defence-related genes are highly-expressed in primed plants

Source: Christou et al. (2013), *J Exp Bot 64*, 1953-1966

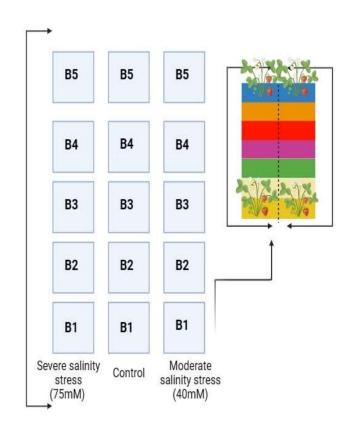
The effect of priming agents on strawberry plants under salinity conditions

Plant material

"Red Sayama (1075)" fresh rooted plants that were subsequently transplanted in 6.5 L pots consisting of peat: perlite substrate (ratio 2:1).

Treatments

- (1) Untreated
- (2) Hydroprimed
- (3) Melatonin
- (4) Sodium alginate (NaA)
- (5) Sodium alginate/Melatonin (NaA/Mel)
- (6) Proline
- (7) Sodium alginate/Proline (NaA/Proline)


Applications:

- 2 days before transplantation
- 8 days after transplantation
- 15 days after transplantation

Salinity Stress levels:

- ✓ Moderate = 40 mM of NaCl
- ✓ Severe = 75 mM of NaCl

Experiment was set up: **factorial design** with 2 levels of salinity stress with 5 replicates and priming agent applications

Treatments justification

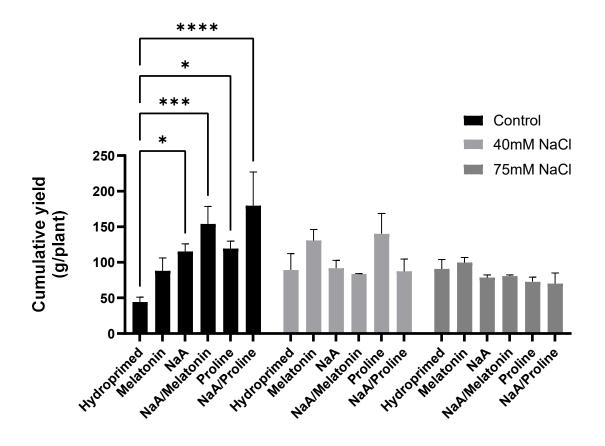
 Melatonin: a naturally occurring hormone in plants, animals, and humans that has been reported to enhance biomass production and resistance to water stress

 Proline: An amino acid, acting in plants as an osmoprotectant from various stresses and also helps plants to recover from stress more rapidly.

 Sodium alginate: A natural anionic polysaccharide being exploited in nano-smart delivery systems.

Leaf analysis

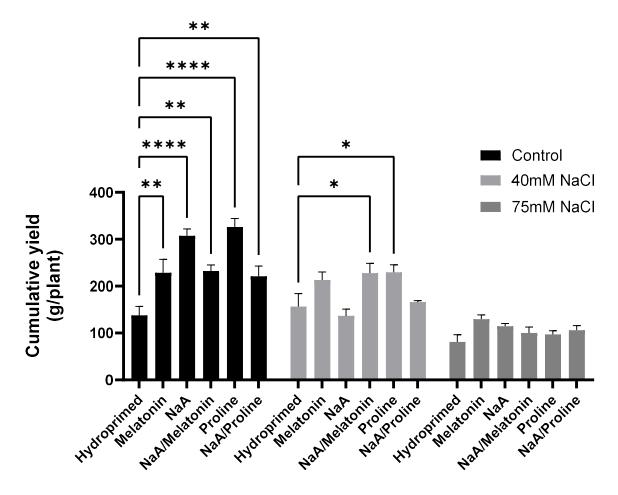
- Malondialdehyde (MDA) a key biomarker for oxidative stress H₂O₂
- Nitric oxide (NO) mitigate the damaging effects of ROS
- Proline a precursor molecule of poyamines with osmoprotective effect
- Melatonin content


Fruit analysis

- Phytochemical analysis (reduced ascorbic acid, anthocyanins, flavonoids, phenolics)
- Metabolomic analysis
- Melatonin content

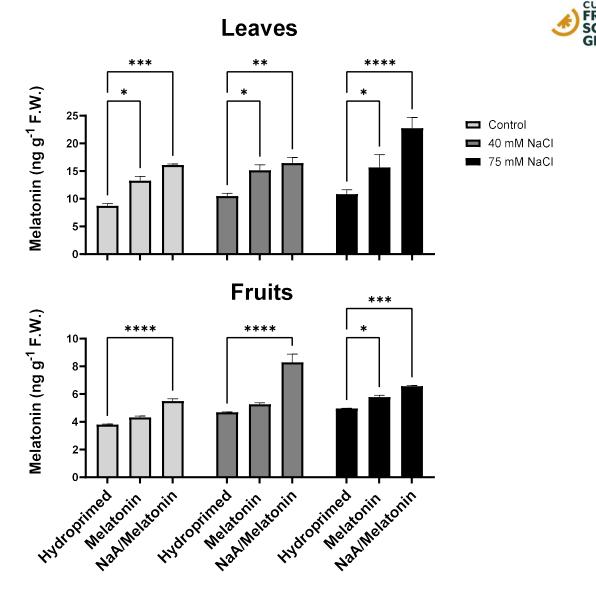
Cumulative Yield

Harvest: 1-5

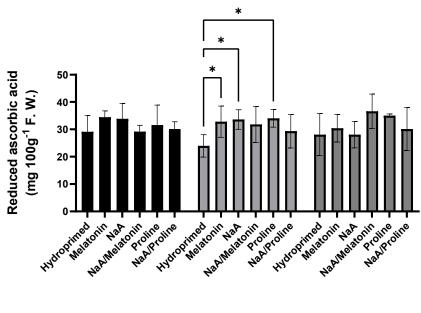


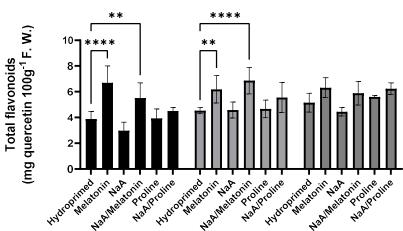
NaA/Proline (p-value<0.0001) and NaA/Melatonin (p-value<0.001) conjugates had the most significant effect in the absence of stress.

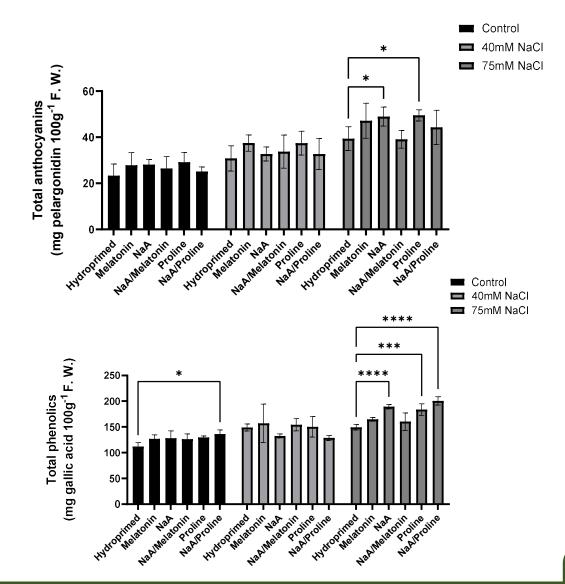
Cumulative Yield


Harvest: 1-10

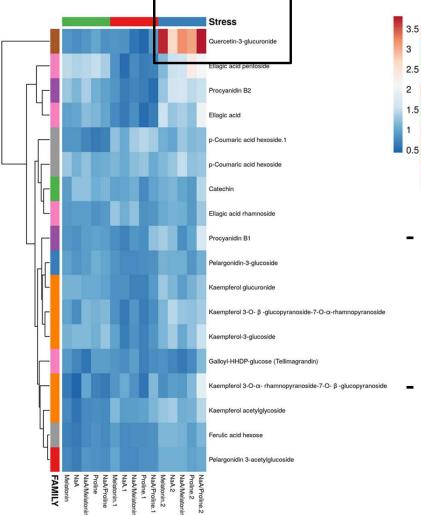
- ❖ PAs significantly increased plant productivity by more than 50% compared with hydroprimed
- Under mild salinity, NaA/Melatonin conjugate and proline showed an increment in cumulative yield (p-value<0.05).</p>

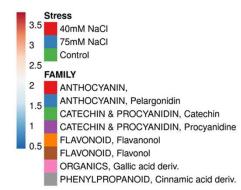

Melatonin content Successful donation


Mel and NaA/Melatonin displayed significantly higher endogenous Melatonin content compared with hydroprimed.



Phytochemical analysis





Metabolomic analysis

- Pre-treatments of melatonin and NaA/proline significantly increased the quercetin-3-glucuronide compound of the flavonoid family under severe stress conditions.
 - A widely consumed flavonoid, that has been shown to inhibit the induction of inflammatory markers and its having a protective role against oxidative damage.

What's next

Dissect the mechanistic action and *modus operandi* of the priming solutions

- Interpretation of RNAseq data (81 samples) from leaves
- Interpretation of RNAseq data (63 samples) from fruits
- Target journal: Horticultural Research

Exploring functionalized biopolymer prototypes towards mitigation of salt stress in strawberry plants

Methodological approach

Aim: Test the efficacy of encapsulated material

Collaboration with material scientists

- Encapsulation of salicylic acid in zein nanoparticles
- Development of graphene oxidefunctionalized hydrogels

1	Hydroprimed
2	0,25 mM salicylic acid (SA)
3	0,5 mM SA
4	1 mM SA
5	2 mM SA
6	5 mM SA
7	5 mg/L Zein
8	10 mg/L Zein
9	25 mg/L Zein
10	50 mg/L Zein
11	5 mg/L Zein-SA
12	10 mg/L Zein-SA
13	25 mg/L Zein-SA
14	50 mg/L Zein-SA
15	6,25 mg/mL sodium alginate (NaA)
16	0,01 mg/mL Graphene oxide (GO)
17	0,02 mg/mL GO
18	0,03 mg/mL GO
19	0,04 mg/mL GO
20	6,25 mg/mL NaA/0,01 mg/mL GO
21	6,25 mg/mL NaA/0,02 mg/mL GO
22	6,25 mg/mL NaA/0,03 mg/mL GO
23	6,25 mg/mL NaA/0,04 mg/mL GO

Plant material

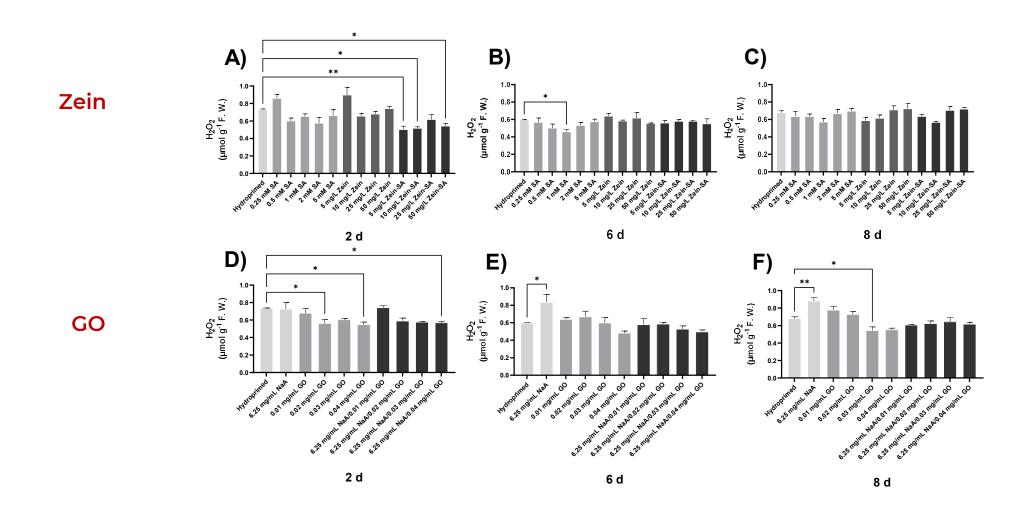
How it started, 03/04/2025

Plant material How it progressed

Methodology: Three successive foliar applications in 230 strawberry plants prior to its imposition to salinity stress conditions (100 mM).

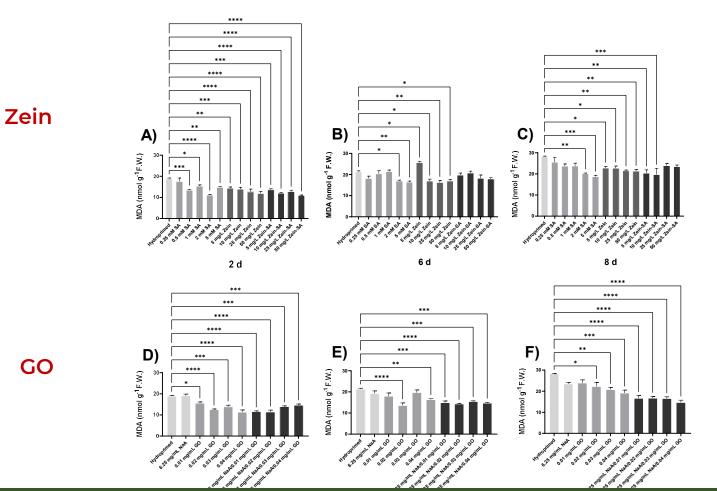
Plant material

Implementation phase

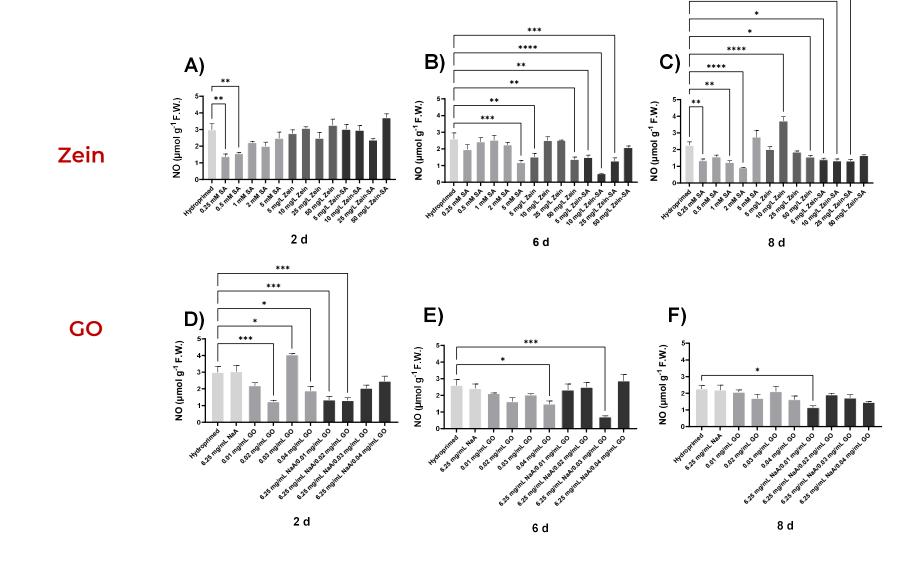

At first glance, this new cultivar selection (cv. Aethra) is apparently particularly resistant to extreme abiotic stress conditions

Cellular damage indicators

- Malondialdehyde (MDA)
- Nitric oxide (NO)
- Proline
- Hydrogen peroxide



Hydrogen peroxide



Malondialdehyde (MDA)

a key biomarker for oxidative stress H₂O₂



Nitric oxide

**

Proline

What's next

Dissect the mechanistic action and *modus operandi* of the priming solutions

- Interpretation of RNAseq data (63 samples) from leaves
- Target journal: Plant Nanobiology

Contributors

George Manganaris

Vasileios Fotopoulos

Fransisco Tomas-Barberan

Post-doctoral researcher
Egli Georgiadou

PhD Student
Nicolas Valanides

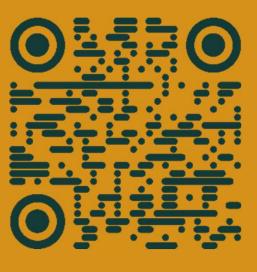
Post-doctoral researcher
Elena Myrtsi

Research Assistant
Sofia Torrado

PhD student
Anna Maria Taliadorou

Take home message

Priming agents is a step forward to enhance strawberry yield efficiency


Open invitation

To join forces towards integration of priming technology in strawberry cultivation under adverse climatic conditions

Any questions?

George Manganaris Professor george.manganaris@cut.ac.cy www.fruitsciences.eu

SCAN ME

Wednesday

Networking Break

- Sponsors & Exhibitors Fair
- Poster Sessions

Sponsored by

