R&D - The Future of Software Development

Problem Standpoint & Framing

| initially approached the problem from my
industry experience as a frontend-focused

software engineer for the past 5 years.

How might we go from design to technical

implementation more efficiently, with less
cognitive labor, while recognizing the

iterative (and often improvisational) nature

of the development process?

Market Research

After extensive market research, |
discovered 3 major categories that aim to
address the pain at this interface between
design and development, offering
additional insight into the problem space
and the limitations of current solutions.

1. Visual App/Site Builder (10 examples)

2. Design-to-Code (12 examples)

3. Al Code Suggestions (1 example)

While | initially focused on visual builders
and design-to-code solutions, | quickly
realized that they're limited in scope
compared to the highly expressive,
multilayered reality of software systems.

Al-powered code suggestions are an
unconventional approach to improving the
developer experience, broadly useful to
developers working in any context. Due to
the dependence on "hard tech” this
solution is currently limited to a single
industry contender: GitHub's Copilot.

Insights & Opportunities

Copilot flips the problem on its head,
honoring natural developer workflows
without forcing anyone into a rigid
structure or complicated toolchain. The Al
is constantly trained by developers across
a variety of contexts and domains—similar
to the training of self-driving cars.

How might we upskill the Al to move
beyond isolated functions to instead
perform end-to-end feature development
autonomously, with human supervision?

Users

o %— App or Website

Visual Builder

ul
APIs
Data

Intended User

Individuals & Small Teams

Strengths & Uses

Accessible to non-technical contributors
Low-code, build visually

Create and publish fully functional apps
Prototypes, MVPs

Marketing Sites

Internal Tools

Limitations

Does not fit with technical requirements
of scaling business contexts

Lack of customization across the
technical stack

Locked into basic Ul primitives
Significant manual labor

01 - Prior Art & Insights

Design Tool

Design-to-Code

ul

Intended User

- Designers & Developers

Strengths & Uses

- Reduces translation labor for developers

- Maintain a single-source of truth—
production matches design

- Al-powered solutions automatically infer
component hierarchy and interactivity

Limitations

- Generated code is decontextualized from
local dialects across codebases

- Fragile, sophisticated toolchain

- Only supports presentational aspects—no
application behavior

02 - Knowledge Work Context

03 -

.

.

From Copilot to Autopilot 04 - Self-Writing Software

<=2 s —— Code Editor

Current Context

Copilot: Al Code Suggestions

Intended User

Developers

Strengths & Uses

Highly expressive—Al code suggestions
are contextually relevant

Conventional, familiar interaction pattern
Reduces cognitive labor for focused
tasks—keeps developers in flow

Works across the entire stack

Improves with use over time

Limitations

Must provide instructions as code-
comments or function signature to
trigger suggestions

Isolated to function-level micro-tasks—
unaware of the higher level developer
intent or task context

Unaware of other tools and artifacts—-we
still must manually translate design to
code since the Al cannot “see” the
design or requirements

16

R&D - The Future of Software Development

01 - Prior Art & Insights 02 - Knowledge Work Context 03 - From Copilot to Autopilot

Contextualizing Software Development

Knowledge workers typically emit artifacts such as schedules, plans, priorities, designs, and
communications while collaborating across all phases of development. Rules, norms, and industry
standards structure the way the work gets down and how the product gets built. All of this is
juggled by the modern knowledge-worker as a sort of high level supervisory activity that guides
their actions. To make our Al-powered software development assistant more useful, it will need
awareness of these activities, and access to the knowledge distributed across these artifacts.

9 Feature Flag-Driven Development

04 - Self-Writing Software

@ Pre-Development Alignment vi.0 vi.1 V2.0 TR © Post-Development Monitoring

@!ﬁ——l—ﬂ@!

Main O O O
Feature A @

: : : : RELEASE!
Collaborative Workstreams T
= === : : : : !
—_ : — E & o
— 1 : —> ' - Ready? N—>--.
— 1 . N~ S "
E — (To T, T. Ta T, :
1 1 !
1 1 i Begin work on feature : Incremental progress Ship current progress Toggle feature flag for QA
! E E (tasks selected for sprint) \ (wrapped in feature flags) (unblock collaborators) (verify end-to-end integration)
! .
1 1 1 ‘,'
e+ 0
Requirements 1 1 . . S .
! (LEELEEEEETELEEELEEEELLEE E Iterate until Launch Readiness Criteria is satisfied
=0 i Technical =)
E,/ : Design
& E N
1
O v @
1
1
1
:
UI/UX Design MENTAL MODELS
~
\
[7] N
’0
1
J
J
A High Cognitive Demand on Knowledge Worker Y,

17

R&D - The Future of Software Development 01 - Prior Art & Insights 02 - Knowledge Work Context 03 - From Copilot to Autopilot 04 - Self-Writing Software

Role-Reversal

GitHub's Copilot is valuable insofar as it helps to shortcut some extra lines of code as you work-it
disappears into the background until it can make itself useful. But you're still in charge. That means
you're still holding all the knowledge and references in your head as you navigate a complex
codebase to build whatever it is you're building. What if the Al knew what it was you were planning to
build from the start, and could build it out before your eyes?

Copilot

[sentiment.ts

Next 1 | Previous <~[| Accept Tab

1

2

3 import { fetch } from "fetch-h2";

u

5 // Determine whether the sentiment of text is positive

6 // Use a web service

7 async function isPositive(text: string): Promise<boolean> {
8 | const response = await fetch(http://text-processing.com/api/sentiment/", {
9 method: "POST",
10 body: ‘text=${text}",
11 headers: {
12 "Content-Type": "application/x-www—form-urlencoded",
13 },
14 1),
15| const json = await response.json();
16 | return json.label === "pos";
17 |}

GitHub's Al pair programming assistant

That's exactly the type of role-reversal we should borrow from Tesla’'s Autopilot, where you're in
the driver's seat, but mostly tagging along for the ride as you go from A to B. And since writing
code isn't bound by time or space in the same way as driving, applying this technology to the
software development context not only frees up cognitive space for knowledge workers, but
may also improve development velocity by an order of magnitude.

Autopilot
& 1218PM 720F YV

64 o Upcoming lane change
MPH

247 mi R r @ 0.4 mi SOUTH

SOUTH

San Jose

speco Fremont
MAX
NAVIGATE ON AUTOPILOT

CANCEL L

8.3 mi 10 min 12:28 PM

ge to follow route

gear stalk to confirm

Patterson House (2)

‘47 Ardenwood 0

Historic Farm

CA-84 E Newark, CA

CNADD Terain —

Tesla's self-driving interface

18

R&D - The Future of Software Development

Informs

Goal State —— >
R

Determine

Govern

(Not exhaustive)

Autopilot
(Self-Writing Software)

—— Environmental Observation

« Product requirement documents

« UI/UX design artifacts

- Technical design documents

+ Project communications (e.g. Slack channels)
- Project workstream (backlog, sprint tasks)

- Code repositories -
- Code editor context

- Interactive Ul scenarios (app/web context))
- Anonymized, sanitized telemetry

“—> Planning & Instructions

« Current system behavior - :
- New feature/system behavior = -wwwmsemeemeeeesd
- Prioritized tasks (acknowledges dependencies)
- Pivot/iterate/scope-change as needed

~—— Policies (Rules & Norms)

01 - Prior Art

Isomorphic Problem Structure

“Let’'s build feature X"

Helps to clarify the
criteria for determining
when the goal state
has been reached

Passively detect
. Focused/background applications/tabs —IV developer intent

Detect invalid assumptions
1 about the current system

Inform

- Code compiles and runs

- Ul matches design intent

« Complies with lint rules

- Complies with code coverage thresholds
« All unit/integration tests pass

- Follows local conventions

- Ontologically relevant code

« No insecure code

« No unsafe (or harmful) code

- Wrapped with feature flags (incremental ship, avoi
- Meets non-functional requirements

- Require human approval before merging code

- Limit/sandbox allowable terminal commands

- Complies with global governance standards/policies

d bugs)

“—» Higher Order Actions (Ensemble)

« Create/modify Ul components (based on design artifact)

- Modify app navigation

- Modify database schema

- Define/modify data models

- Define/modify/expose APls/endpoints

- Structure and manage local state

- Implement business logic for expected behavior
- Make use of available dependencies

« Write/modify unit/integration tests

Composed of

Low Level Actions (Input Controls) <

« Accept/cycle through code suggestions
« Manually modify code (human input)

« Run git commands (e.g. branch, commit, PR, etc)
- Run unit/integration tests

- Start/stop a service/application

- Execute commands/jobs exposed by configuration

Action-feedback loop
for validating code
changes with human
supervision

Informs

Goal State ——p
S

- Directions (rerouting as needed)
Inform
—— Policies (Rules & Norms)

Determine

Govern

(Not exhaustive)

While these problem domains appear completely unrelated on the
surface, the underlying problem structures are highly
isomorphic—we can look at software development activities as
wayfinding and terrain traversal across a technical substrate akin to
self-driving navigation across roadways in the built environment.

& Insights

Autopilot
(Self-Driving Car)

Environmental Observation

- Sensors (GPS/LiDAR/video)
- Real-time traffic data/alerts
- Street maps (w/ metadata)

Planning & Instructions

« Current location
- Destination address/geolocation

+ Obey state driving rules

« Obey speed limits

- Obey local signage

+ Improvise to match traffic

- Avoid safety incidents

- Require human confirmation
for certain actions

“—» Higher Order Actions (Ensemble) ——

- Navigate intersection
+ Merge onto freeway
+ Flow with traffic

« Change lanes

- Exit freeway

+ Turn onto street

- Proceed along route
« Cross train tracks

- Navigate obstacle

- Pullover/Park

Low Level Actions (Input Controls) ¢~

+ Accelerate

- Brake

- Signal for turn/stop

. Steer

- Shift to Park/Reverse/Neutral/Drive
- Toggle exterior lights

02 - Knowledge Work Context

Composed of

03 - From Copilot to Autopilot

04 - Self-Writing Software

“Take me to the office”

19

