

GAV 91

rejilla de transferencia con aletas rectangulares fijas

INFORMACIÓN GENERAL

Ventajas

Aletas en forma de V, efecto anti-visión. Fácil de instalar.

Gama

- 9 dimensiones disponibles (tarifas).
- Dimensiones límite de fabricación: 200 x 100 mm / 1200 x 600 mm.
- Caudales indicativos de 50 a 1000 m³/h.

Denominación

GAV	91	200×100
TIPO	MODELO	DIMENSIONES EN MM
G: REJILLA	91: Rejilla de transferencia	B (Ancho) x H (altura) mm
A: ALUMINIO	RECTANGULAR	
V: FIJACIÓN POR TORNILLOS		

Aplicación / Utilización

• Rejilla de transferencia anti-visión para montaje en pared o puerta.

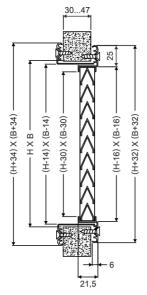
Construcción / Composición

- Marco y aletas en aluminio extruído
- Construcción en 2 bloques.
- Fijación mediante tornillos visibles en pared o en la puerta.
- Acabado: aluminio anodizado o pintura blanca mate RAL 9003.

Opciones

• Para dimensiones no estándar, póngase en contacto con nosotros.

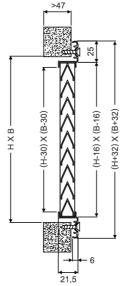
Embalaje


• Vendido por unidad.

DESCRIPCIÓN TÉCNICA

DIMENSIONES

Espesor de las paredes / puertas:


• Mínimo: 30 mm; máximo: 47 mm

Dimensiones en mm.

Rejilla frontal GAV 91 para paredes o puertas:

• Con grosor superior a 47 mm

Dimensiones en mm.

Neste caso serão necessárias duas grelhas frontais; consulte-nos para mais informações.

MONTAJE Y CONEXIÓN

INSTALACIÓN DE GAV 91

• Fijación mediante tornillos en la puerta o en la pared.

TABLA DE SELECCIÓN PARA GAV 91

Caudal [m³/h]	B x H [mm]	200 x 100	300 x 150	400 x 200	300 x 300	600 x 200 400 x 300	500 x 300	600 x 300	600 x 400
[m³/ n]	Aeff [m²]	0,0099	0,0245	0,0447	0,0507	0,0681	0,0856	0, 1031	0, 138
50	Lw [dB(A)]	30							
	P [Pa]	10							
40	Lw [dB(A)]	35	< 20						
60	P [Pa]	14	2						
70	Lw [dB(A)]	39	< 20						
	P [Pa]	19	3						
80	Lw [dB(A)]	42	< 20						
	P [Pa]	24	4						
90	Lw [dB(A)]	45	23	< 20					
	P [Pa]	31	5	2					
100	Lw [dB(A)]	48	25	< 20					
	P [Pa]	38	6	2					
125	Lw [dB(A)]		31	< 20	< 20				
	P [Pa]		10	3	2				
150	Lw [dB(A)]		35	20	< 20				
	P [Pa]		14	4	3				
175	Lw [dB(A)]		39	24	21	< 20			
	P [Pa]		19	6	5	2			
200	Lw [dB(A)]		43	28	25	< 20	< 20		
	P [Pa]		25	8	6	3	2		
250	Lw [dB(A)]		48	33	30	23	< 20	< 20	
	P [Pa]		39	12	9	5	3	2	
300	Lw [dB(A)]			38	35	27	22	< 20	
	P [Pa]			17	13	7	5	3	
350	Lw [dB(A)]			42	38	31	26	21	< 20
	P [Pa]			23	18	10	6	4	2
400	Lw [dB(A)]			45	42	34	29	24	< 20
	P [Pa]			30	24	13	8	6	3
500	Lw [dB(A)]			50	47	40	34	30	23
	P [Pa]			47	37	20	13	9	5
600	Lw [dB(A)]				52	45	39	34	27
	P [Pa]				53	29	19	13	7
700	Lw [dB(A)]					48	43	38	31
	P [Pa]					40	25	17	10
800	Lw [dB(A)]						46	41	34
	P [Pa]						33	23	13
900	Lw [dB(A)]						49	44	37
	P [Pa]						42	29	16
1000	Lw [dB(A)]							47	40
	P [Pa]							36	20

Lw < 25 25 < Lw < 35 35 < Lw < 45 Lw > 45

Lw: potencia acústica sin atenuación del local [dB(A)]. Aeff: área útil [m²]; P: pérdida de carga [Pa]. Ensayo realizado con $\Delta T^{\text{o}} = 0$.