Grant Code:

New

Title:

Development of In-plant Sap Sensor for Aluminum Toxicity in Wheat and

Lime Treatment evaluation

Personnel:

Johnny Li, Assistant Professor in Precision Agriculture, Soil & Water

Systems

Daniel Strawn, Professor in Environmental Soil Chemistry

Kurt Schroeder, Associate Professor & Cropping Systems Agronomist

Address:

Dept. of SWS, University of Idaho, 875 Perimeter Dr. Moscow, Moscow,

ID 83843; 208-885-1015; liujunl@uidaho.edu

Justification/Rationale:

Globally, about 50% of all arable soils are classified as acidic. According to this meta-analysis from 1570 observations reported in 121 field-based studies worldwide (Wang 2021), liming of agricultural acid soils can significantly increases crop yield by 36.3%, which result in a global increase of upland crop yields by 7.70×10^8 Mg, rice yields by 9.56×10^8 Mg, and grass production by 9.90×10^8 Mg every year. Based on FAOstats data of the average food demand per capita over the world (FAO, 2013), the estimated

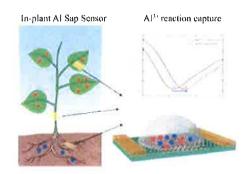


Fig.1 In-plant Al sap sensing for lime treatment

liming-induced increment in crop and biomass production has the potential to feed nearly 1261 million people in the future. Development will empower long-term, high-resolution, costeffective monitoring of soil health, plant-soil-microbial interactions across a range of soil properties and improve the crop development and productivity on soils impacted by soil acidity; approximately 50% of the world's arable land. Application of in-situ plant Al sap sensor for realtime soil acidity and Al toxicity in plant monitoring and plant improvement has not been reported in the available literature. Development of long-term, high-resolution, cost-effective monitoring of soil health, plant-soil-microbial interactions across a range of soil properties and improve the crop development and productivity on soils impacted by soil acidity; approximately 50% of the world's arable land. Currently, available Al for plant uptake is assessed by extraction of soil with KCl or CaCl₂ solutions (Sparks 1996, Yang 2022). However, the actual plant uptake may be quite different than the soil extract predicted bioavailability and depends on the crop cultivar genotype and soil physicochemical conditions. Standard soil test, plant leaf tissue analysis and plant sap test were destructive, labor- and time-intensive and requires periodic leaf samplings over growing season to determine its present nutrient available in plant (Hochmuth 2022, Morita 2004). It is hard for the current leaf sap test to achieve consistent measurement over weather event (dry or rain) or foliar application, which is impossible for in-season soil amendment and crop management. Therefore, it is critical to develop in-plant Al sap sensor to acquire new knowledge and preliminary data related to plant sap sampling, soluble Al agent chemical reaction, in-situ Al toxicity analysis, wireless communication strategy, and their integration for controlled lab condition test and field trials.

Objectives:

This project will address these specific needs in Northwest Palouse region by advancing in-plant Al sap sensor development and testing of wheat plant Al toxicity and lime treatment performance assessment in acid soils. Our three objectives are: (1) Develop and validate an in-plant Al sap sensor based on Hydrogel Ionic Gated MXene-Graphene FET under different Al chemical forms/concentration and pH levels in the laboratory; 2) calibrate in-plant sap sensor using extracted sap samples from wheat grown in various soluble Al concentrations in the greenhouse and compare results to standard soil and plant tests used to predict Al toxicity; and 3) validate the field deployment feasibility of in-plant Al sap sensor for in-field Al toxicity monitoring in an existing soil acidity and lime treatment research trial in Potlatch, ID and at the USDA LTAR Cook Agronomy Farm(CAF). The new in-plant sap sensor will allow for real-time field measurement of Al in plant sap, leading to in-season lime treatment and correction of Al toxicity in an efficient precision manner.

Methods/Plan of Work:

The long-term goal of this project is to increase agricultural crop productivity in acid soil and reduce the aluminum (Al) toxicity by optimizing the lime treatment impact in plants through a novel/transformative in-plant Al sap sensor to real-time monitor soil acidity and Al toxicity in plant continuously and efficiently. The sensor makes direct measurement of signal change (Dirac point shift) caused by the reactions between OH, soluble Al species (Alm⁺) in the sap and the corresponding hydrogel ionic gated agents Ti₃C₂ and (Ti₃C₂O) in the sensor respectively (Fig.1). The in-plant Al sap sensor prototype will be evaluated in Palouse Research, Extension and Ed. Center Greenhouses coordinated by Co-PI Dr. Daniel Strawn at University of Idaho and field trials at the two liming sites at Potlatch and Moscow at ID led by Co-PI Dr. Kurt Schroeder as well as the USDA ARS Long-term Agricultural Research site in Pullman, Washington directed by Dr. Dave Huggins. Soils at these site have become acidified from years of ammoniacal fertilizer application. Tasks for objective 1 including Characterization of Al chemical forms and its reaction. The concentrations of Al3+ species and the total soluble Al in soil, will suffice to predict toxicity (Sparling 1996). These species increase the solubility of total Al in solution, and their concentrations varied at different pH levels. We will characterize and quantify signal change (Dirac point shift) of total Al and its key forms in the plant sap and using controlled standard Al solutions with various hydrolysis species (pH 4.5-7.5) and chelated Al species made with citric acid and oxalic acid as representative model plant sap species. Solution speciation will be modeled using aqueous thermodynamic solubility, hydrolysis, and complexation constants in PHREEQC (Parkhurst 1995). The sensitivity of the corresponding signal change in the hydrogel-ionic-gated MXene-Graphene FET based plant Al sap sensor and its chemical reaction agent will be monitored in the different solutions. The total Al will be detected by the in-plant sap sensor and a calibration equation for signal readout and concentration will be developed for low pH soil (4-5), and mid-range (5.5 to 6) and a high pH (6.5-7.5)) acid soil condition in the greenhouse or field. Tasks for objective 2 includes Sensor calibration of Dirac Point Shift. The chemical agent in the in-plant sap will react with the OH at certain pH level and the different Al forms (Alm⁺), will cause constant voltage and current (VD and VG, IDS) change with the change of charge density on MXene-graphene surface. Moreover, changes in the relative amount of positive and negative charges could cause Dirac point shifting. After signal change (Dirac point

shift) was characterized by the total Al and its key chemical forms concentration at different pH levels for the in-plant Al sap sensor. Based on the signal change, we can infer the concentration of the target chemicals, which can be compared and correlated with the standard soil test and plant sap analysis result for real-time soil acidity and Al toxicity in plant assessment. Point shift (i.e., the valley of the "V-shape" curve) for wheat plant sap and the Al toxicity detection in different pH conditions will be calibrated by investigating the measurement error between the controlled solution and the actual extracted wheat plant sap. The calibration factor/coefficient of the total Al and Al species concentration reading in ppm based on the standard soil test and plant sap test will be measured by Co-PI Strawn on ICP-AES (MDL ~0.001 mg/L). Tasks for objective 3 is to Validation of In-situ plant Al plant sap sensing in the two lime field trail directed by Co-PI Schroeder. The first lime trail was established in the fall of 2016 in Potlatch, ID. The site includes 0, 1, 2 and 3 ton/A lime rates with each treatment being replicated four times. Individual plots measure 8 ft wide x 100 ft long. A second site will be established near Moscow in 2023 using the same experimental design. The soil samples from our trial sites and testing for soil pH, soluble aluminum and a number of other measurements at 3 in increments to a depth of 12 in will be collected to validate the effectiveness of the developed in-plant Al sap sensing. The agronomic measurements such as plant height and tiller count (for cereal crops) and will harvest to obtain grain yield, test weight, and protein content to evaluate the lime treatment performance. The USDA Cook Agronmoy Farm with three pH levels that ranged from low pH soil (4-5) to mid-range (5.5 to 6) and a high pH (6.5-7.5)) acid soil conditions directed by Collaboartor Huggins will be extended for field testing in 2025-2026. The in-situ plant Al sensor will be deployed to the field for testing the optimal power consumption, data collection frequency (diurnal pattern from every 1 second to 1 hour) and the spatial distribution (three pH zones with 5 replicates) and other environmental factors. Thus, the in-plant Al sap sensor will be validated with the in-field lime trial research in different soil acidity conditions, and will provide insights for Al toxicity in plant and its effects on the crop yield and quality and its potential inseason site-specific precision amendment.

Duration: 3 years: 2023-2026. The proposal is intended to produce preliminary data for pursuing federal funds, particularly, develop in-plant sap sensor network and coupling with multimodal aerial imaging for site-specific crop management and crop yield/quality improvement, involve growers and their on-farm trials in Idaho for economic benefit evaluation.

Cooperation/Complementation:

UI: Zachary Kayler, Assistant Professor, Soil and Water Systems. USDA-ARS: Dave Huggins, Northwest Sustainable Agroecosystems Research Soil Scientist. MST: Chenglin Wu, Assistant professor in Nanosensor and Materials Scientist.

Anticipated Benefits/Expected Outcomes and Transfer of Information:

The calibrated in-plant Al sap sensor will be validated with the in-field lime trial research at Idaho and USDA CAF Farm in different soil acidity conditions, thus the in-situ plant Al sensing data and its spatially-correlated total Al over time can be fused with weather data and soil map, multi- and hyperspectral remote sensing data, agronomic data and final yield data in the same filed, which will provide insights for Al toxicity in plant and its effects on the crop yield and quality and its potential in-season site-specific precision lime amendment. The research

outcomes from this study will benefit agronomy, plant biology society and the precision agriculture research community. They will be integrated into education, training and outreach activities as briefly described below to maximize communication of the information obtained from this project nationally and internationally, including 1) written publications (at least 2 manuscripts) to be submitted to quality peer-reviewed journals based on the project findings during the project period and within two years past the ending date of the project; 2) presentations to be made at technical symposia and professional conferences, 3) PI teaches course ASM305 Precision Agriculture. The proposed novel plant sensor technology will be introduced as an examples into the courses; 5) field demonstrations at Dryland field days (DFD) for farmer with new tools for wheat breeding, wheat diseases and Plant Diagnostic. This project, once awarded, will allow us to continue to show the public with new precision Ag technology.

Literature Review:

Soil health is soil's capacity to perform agronomic functions including sustainable production of crops and animals while maintaining and improving the environment (Lal 2021, 2011). Soil health is strongly linked to climate change and human health (Rumpel 2019). Aluminum (Al) is the most abundant metal in earth crust and comprises 7% of it. Under acidic conditions (pH < 5.0), Al is solubilized into a toxic trivalent cation, Al³⁺ (Foy et al., 1978, Taylor, 1991). In many agriculturally important plant species, the presence of only micromolar concentrations of Al³⁺ can result in the inhibition of root growth within minutes or hours (Kochian, 1995). Al toxicity inhibit Root growth inhibition and hinder the water and nutrient uptake in plant (Ca, Mg, P, K, Mn, Fe, B, etc.) and thus reduce the crop yield (Shetty 2021, Sade 2016). Thus, continuous monitoring of nutrient availability in soil responsive to environmental variations and the uptake efficiency during growth of plants is critical for soil amendments and crop management including soil acidity monitoring and remediating plant Al toxicity. The microfluidic and microsystem with integrated sensors has recently been explored for in-situ soil nitrogen sensing (Garland 2018, Xu 2017, Ali, 2016, 2017, 2019), leaf water vapor deficit (Yin 2021), and in planta nitrate Sensor (Ibrahim 2022, Dong 2017, Jiang 2014, 2017) respectively. However, there are soil acidity induced Al toxicity in plants detection for nutrient uptake and plant tolerance impact study has not been reported yet. It is essential to gain the knowledges of soil acidity and Al toxicity in plant before it's 'subclinical' deficiencies or visual symptom occurs for potentially in-season correction of Al toxicity in an efficient precision manner.

References

- Ali, M. A. et al., Novel All-Solid-State Soil Nutrient Sensor Using Nanocomposite of Poly(3-Octyl-Thiophene) and Molybdenum Sulfate," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, pp. 170-173, doi: 10.1109/TRANSDUCERS.2019.8808341.
- Ali, M.A., et al. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sensors and Actuators B. Chemical, 239 (2017): 1289-1299
- Ali, Md Azahar & Jiang, Huawei & Mahal, Navreet & Weber, Robert & Kumar, Ratnesh & Castellano, Michael & Dong, Liang. (2016). Microfluidic Impedimetric Sensor for Soil Nitrate Detection Using Graphene Oxide and Conductive Nanofibers Enabled Sensing Interface. Sensors and Actuators B: Chemical. 239. 10.1016/j.snb.2016.09.101.

Dong, L.Microfluidic plant chips, soil sensors, and nematode assay chips for high-throughput

- plant phenotyping and sustainable agricultural management, IEEE Sensors Conference 2017, October 29-November 1, 2017, Glasgow, Scotland, UK.
- FAO, 2013. Food and Agriculture Organization. FAOSTAT Database Collections FAO. www.FAO.org/faostat/en/#data
- Foy, C.D., Chaney, R.L., White, M.C. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol., 29 (1978), pp. 511-566
- Garland, Nate & Mclamore, Eric & Cavallaro, Nicholas & Mendivelso-Perez, Deyny & Smith, Emily & Jing, Dapeng & Claussen, Jonathan. (2018). Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. ACS Applied Materials & Interfaces. 10. 10.1021/acsami.8b10991.
- Hochmuth, George & Hochmuth, Robert. (2022). Plant Petiole Sap-Testing for Vegetable Crops: CV004/CIR1144, rev. 5/2022. EDIS. 2022. 10.32473/edis-cv004-2022.
- Ibrahim, Hussam & Yin, Shihao & Moru, Dr Satyanarayana & Zhu, Yunjiao & Castellano, Michael & Dong, Liang. (2022). In Planta Nitrate Sensor Using a Photosensitive Epoxy Bioresin. ACS Applied Materials & Interfaces. 14. 10.1021/acsami.2c01988
- Ibrahim, Hussam & Yin, Shihao & Moru, Dr Satyanarayana & Zhu, Yunjiao & Castellano, Michael & Dong, Liang. (2022). In Planta Nitrate Sensor Using a Photosensitive Epoxy Bioresin. ACS Applied Materials & Interfaces. 14. 10.1021/acsami.2c01988
- Jiang, Huawei & Ali, Md Azahar & Jiao, Yueyi & Yang, Bing & Dong, Liang. (2017). In-situ, real-time monitoring of nutrient uptake on plant chip integrated with nutrient sensor. 289-292. 10.1109/TRANSDUCERS.2017.7994045.
- Jiang, Huawei & Xu, Zhen & Aluru, Maneesha & Dong, Liang. (2014). Plant chip for high-throughput phenotyping of Arabidopsis. Lab on a chip. 14. 10.1039/c3lc51326b.
- Jiawei, Yang & Sun, Lin & Shen, Xing & Dai, Min & Ali, Imran & Peng, Changsheng & Naz, Iffat. (2022). An overview of the methods for analyzing the chemical forms of metals in plants. International Journal of Phytoremediation. 10.1080/15226514.2022.2033687.
- Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 46 (1995), pp. 237-260
- Lal, R. (Ed.). (2021). Soil Organic Matter and Feeding the Future: Environmental and Agronomic Impacts (1st ed.). CRC Press. https://doi.org/10.1201/9781003102762 Lal, R. (Ed.). (2021). Soil Organic Matter and Feeding the Future: Environmental and Agronomic Impacts (1st ed.). CRC Press. https://doi.org/10.1201/9781003102762
- Lal, Rattan.Soil Health and Climate Change: An Overview.(2011). Environmental Science. DOI:10.1007/978-3-642-20256-8 1
- Morita, Akio & Horie, Hideki & Fujii, Yousuke & Takatsu, Satoshi & Watanabe, Naoharu & Yagi, Akihito & Yokota, Hiromi. (2004). Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry. 65. 2775-80. 10.1016/j.phytochem.2004.08.043.
- Parkhurst, D.L.. User's guide to PHREEQC, a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations Water-Resources Investigations Report 95-4227. https://doi.org/10.3133/wri954227
- Rumpel, Cornelia. Soils linked to climate change. Nature 572, 442-443 (2019) doi: https://doi.org/10.1038/d41586-019-02450-6
- Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M. S. L., Suravajhala, P., & Kishor, P. K. (2016). Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals, 29(2), 187-210.
- Shetty, R, Vidya, CS, Prakash, NB, Lux, A, Vaculík, M. Aluminum toxicity in plants and its

- possible mitigation in acid soils by biochar: A review. Sci Total Environ. 2021 Apr 15;765:142744. doi: 10.1016/j.scitotenv.2020.142744. Epub 2020 Oct 3. PMID: 33092837.
- Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Bertsch, P. M., & Bloom, P. R. (1996). Aluminum. Methods of Soil Analysis Part 3—Chemical Methods. doi:10.2136/sssabookser5.3.c18
- Taylor, G.J. Current views of the aluminum stress response: the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol., 10 (1991), pp. 57-93
- Wang, Y, Yao, Z, Zhan, Y, Zheng, X, Zhou, M, Yan, G, Wang, L, Werner C, Butterbach-Bahl K. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob Chang Biol. 2021 Jun;27(12):2807-2821. doi: 10.1111/gcb.15607. Epub 2021 Apr 9. PMID: 33742490.
- Xiao, Feng, Zhang, Baojie, Lee, Chery. (2008). Effects of low Temperature on Aluminum(iii) Hydrolysis: Theoretical and Experimental Studies. Journal of environmental sciences (China). 20. 907-14. 10.1016/S1001-0742(08)62185-3.
- Xu, Zhen & Wang, Xinran & Weber, Robert & Kumar, Ratnesh & Dong, Liang. (2017). Nutrient Sensing Using Chip Scale Electrophoresis and In Situ Soil Solution Extraction. IEEE Sensors Journal. PP. 1-1. 10.1109/JSEN.2017.2704918.
- Yang, J. & Sun, Lin & Shen, Xing & Dai, Min & Ali, Imran & Peng, Changsheng & Naz, Iffat. (2022). An overview of the methods for analyzing the chemical forms of metals in plants. International Journal of Phytoremediation. 10.1080/15226514.2022.2033687.
- Yin, S, Ibrahim, H, Schnable, PS, Castellano, MJ, Dong, L. A Field-Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit. Advanced Materials Technologies. 2021 Jun;6(6):2001246. https://doi.org/10.1002/admt.202001246
- Yin, S, Ibrahim, H, Schnable, PS, Castellano, MJ, Dong, L. A Field-Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit. Advanced Materials Technologies. 2021 Jun;6(6):2001246. https://doi.org/10.1002/admt.202001246

FY2024

	COMMODITY COMMISSION BUDGET Principal Investigator: Johnny Li				
Allocated by		during FY2022	S -		
	(Commission/Organization)				
Allocated by		during FY2023	\$		
	(Commission/Organization)				

REQUESTED SUPPORT: Budget Categories	Awarded for	FY2023	Requested for FY2024	
10) Salary (staff, post-docs, et NOTE: Faculty salary/fringe not allowed	\$	-	\$	16,250
12) Temporary Help/IH	\$		\$	1,800
11) Fringe Benefits	\$	-	\$	742
20) Travel	\$	9.0	\$	472
30) Other Expenses	\$	-	\$	3,200
40) Capital Outlay >\$5k	\$	-	\$	
45) Capital Outlay <\$5k 70) Graduate Student	\$		\$:•:
Fuition/Fees	\$	-	\$	7,896
TOTALS	\$	V (0.27.25	\$	30,360

			-		_		Season and	
BREAKDOWN FOR N	AULTIPLE IN	DEXE	S:		1		1	
Budget Categories	Li			Strawn		Schroeder	(Ins	ert Co-PI Name)
(10) Salary (staff, post-docs, e	<i>i</i> \$	16,250	\$	340	\$	(#2	\$	(#X)
(12) Temporary Help	\$	-	\$	1,800	\$		\$	(*):
(11) Fringe Benefits	\$	585	\$	157	\$	***	\$	900
(20) Travel	\$	472	\$	-	\$	-	\$	(m)
(30) Other Expenses	\$	1,200	\$	2,000	\$	-	\$	343
(40) Capital Outlay >\$5k	\$	-	\$.	\$	2/	\$	90
(45) Capital Outlay <\$5k	\$	370	\$	-	\$	-	\$	-
(70) Graduate Student								
Tuition/Fees	\$	7,896	\$	-	\$	-	\$	3
TOTALS	\$	26,403	\$	3,957	\$		\$	
						Total Sub-budgets	\$	30,360
Budget Justification			Alkio.		(ki)		能力	的是[4][6][6][6][7]
\$ 16,250	10-Graduate Stud	lent: 65%	of gra	duate stipend				
\$ 1,800	12-IH summer fie	ld help s	upervi	sed by Dr. Strawn: (\$15	/hr x 120 hrs/worker =	\$1,800)
			_	8.7%; Student= 3.6				
\$ 742	U	11-Graduate student @ 3.6%= \$585; IH @ 8.7%= \$157						
	Per Diem= \$55/a	_		_				
\$ 472	20-) Field trial sit	20-) Field trial site visits: 60 mi/trip @ \$0.655/mile x 12 = \$472						
						nsor with in-lab calibra	tion b)	\$2000 for PI
\$ 3,200	Strawn's greenhouse cultivation and sample analysis: \$ 10/sample x 20 = \$200 for soil KCl extractions							
	and analysis; c) \$	25/sampl	le x 20	= \$500 for Plant dig	gest	and analysis; d) Green!	iouse s	tudy is about
\$	(40-Insert Capital Equipment description)							
\$	(45-Insert Capital Equipment under \$5K description)							
\$ 7,896	70- 65% Graduate student tuition							
	\$12,050/YR= Tui	tion, Fee	s and S	SHIP				