wood.

Carbon Neutral LNG: A Case Study for a New Baseload Export Facility Using Green Hydrogen and CO₂ from Direct Air Capture

David Mitchell, Simon Albo and John Woods

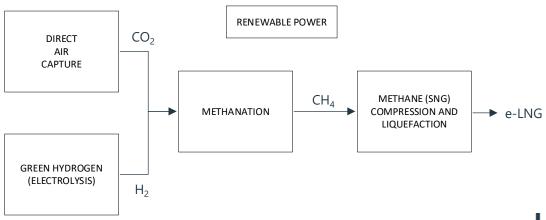
2025 GPA Midstream Convention September, 2025

Agenda

- 1 Introduction
- 2 Technology Overview
 - Direct Air Capture
 - Green Hydrogen
 - Methanation
 - LNG
- 3 Facility Design

4 Cost Overview

5 Wrap-Up


6 Q&A

Introduction

Overview

- Carbon removal is essential to limit global temperature rise to 1.5°C
- Direct air capture will play a role in a truly circular carbon economy
- Carbon neutral LNG could be utilized in existing infrastructure (shipping and gas pipeline systems)
- <u>Case</u>: One million ton per annum (1 MTPA) carbon neutral synthetic LNG:
 - CO₂ from Direct Air Capture
 - Green Hydrogen (from electrolysis using renewable power)
 - Methanation (Sabatier reaction)

Technology Overview

Direct Air Capture (DAC)

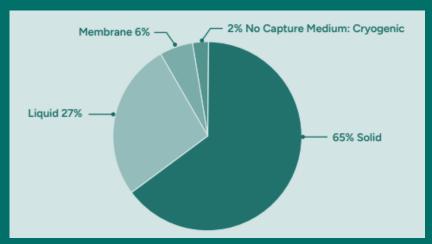
Why capture CO_2 from the air (~420 ppm)?

- Solution for legacy emissions
- Balance hard to avoid emissions

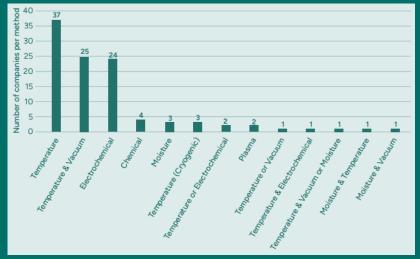
Current deployment state:

- >30 plants around the world, total ~60 kta
- Capacity of plants increasing:
 - Climeworks Mammoth (2024): 36 kta
 - Carbon Engineering Stratos (under construction): 500 kta

Wide range of reported cost estimates:


- Current estimates: \$300 \$1,000/tonne
- Future projections: \$90 \$230/tonne

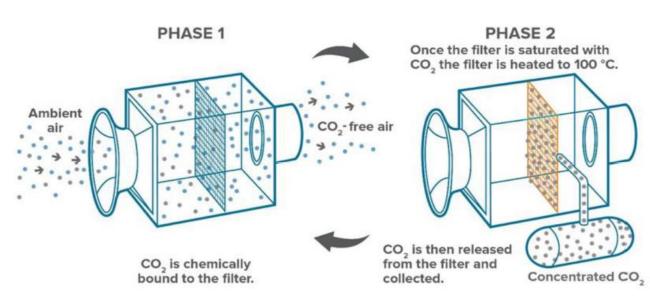
Current IRA Credits:


- DAC + Sequestration: \$180/tonne
- DAC + Utilization: \$135/tonne

DAC Approaches

Capture Media

Regeneration Approach



DAC Approach: Solid Adsorbents

- Adsorbents: zeolites, silica-based, activated carbon, MOFs, etc.
- Adsorption at ambient conditions
- Regeneration at higher temperature, > 80 °C (use steam, residual heat, electricity)
- Many companies: different adsorbents and approaches for regeneration
- Modular deployment
- Main utilities, representative values:
 - Power: 150 300 kWh/ton CO₂
 - Heat: 1000 2000 kWh/ton CO₂
 - Cooling (air/water)

Solid adsorbents chosen as representative of DAC due to its current and expected deployment

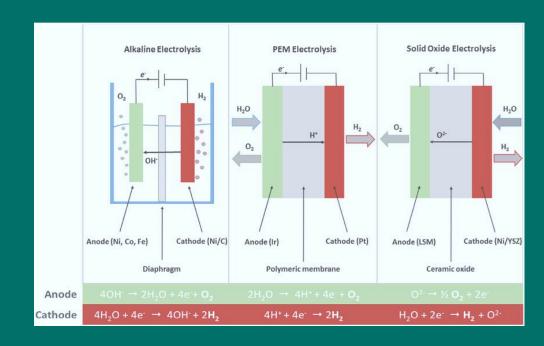
Climeworks.com

Green Hydrogen

H₂ produced from water electrolysis using Renewable Power (from Solar, Wind, Hydroelectric):

Water is split into hydrogen and oxygen using an electric current.

- Water undergoes a reaction at the electrodes
- Hydrogen is collected at the Cathode
- Oxygen is released from the Anode

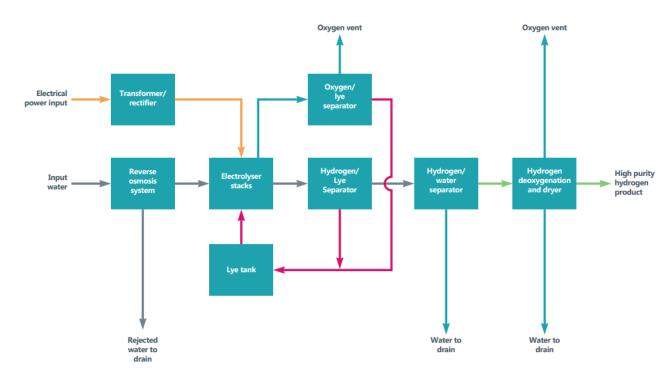

Water Electrolysis Reaction $2H_2O \rightarrow 2H_2 + O_2$

Range of reported cost estimates:

- Current estimates: \$4-7/kg H₂

- Future projections: \$1-3/kg H₂

Current IRA Credits: up to \$3 /kg H₂

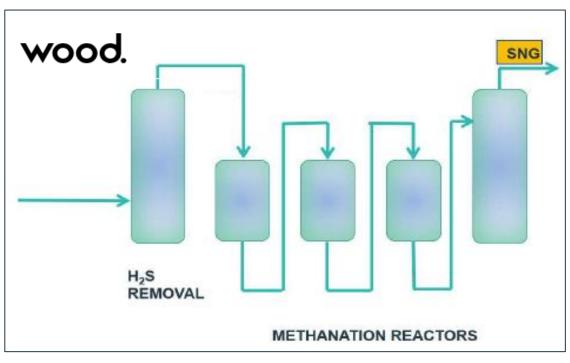

Types of Electrolyzers:

- Alkaline Electrolyzers
- Proton Exchange Membrane (PEM) Electrolyzers
- Solid Oxide Electrolyzers

Green Hydrogen: Alkaline Water Electrolizers (AWE)

AWE chosen due to technology maturity and lower cost

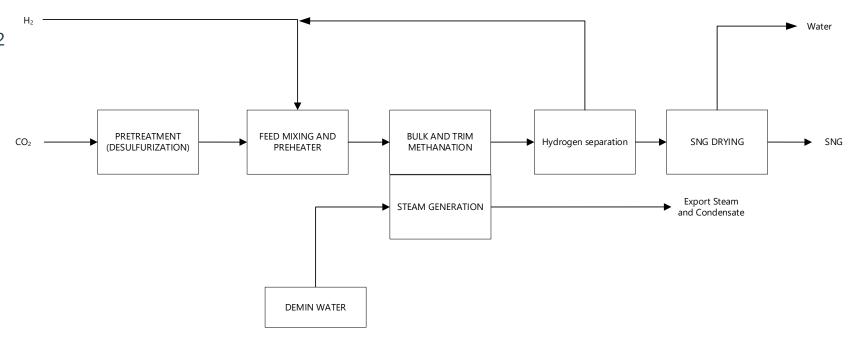
- Efficiency: ~50 -55 kWh/kg H₂
- Modular deployment
- Main utilities, representative values:
 - Power: 50 -55 kWh/kg H₂
 - Water: ~11 kg water/kg H₂ (9 lts is the stoichiometric ratio)
 - Cooling: ~20% of power consumed needs to be removed as heat


Simplified AWE Block Flow Diagram

Methanation

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O$$

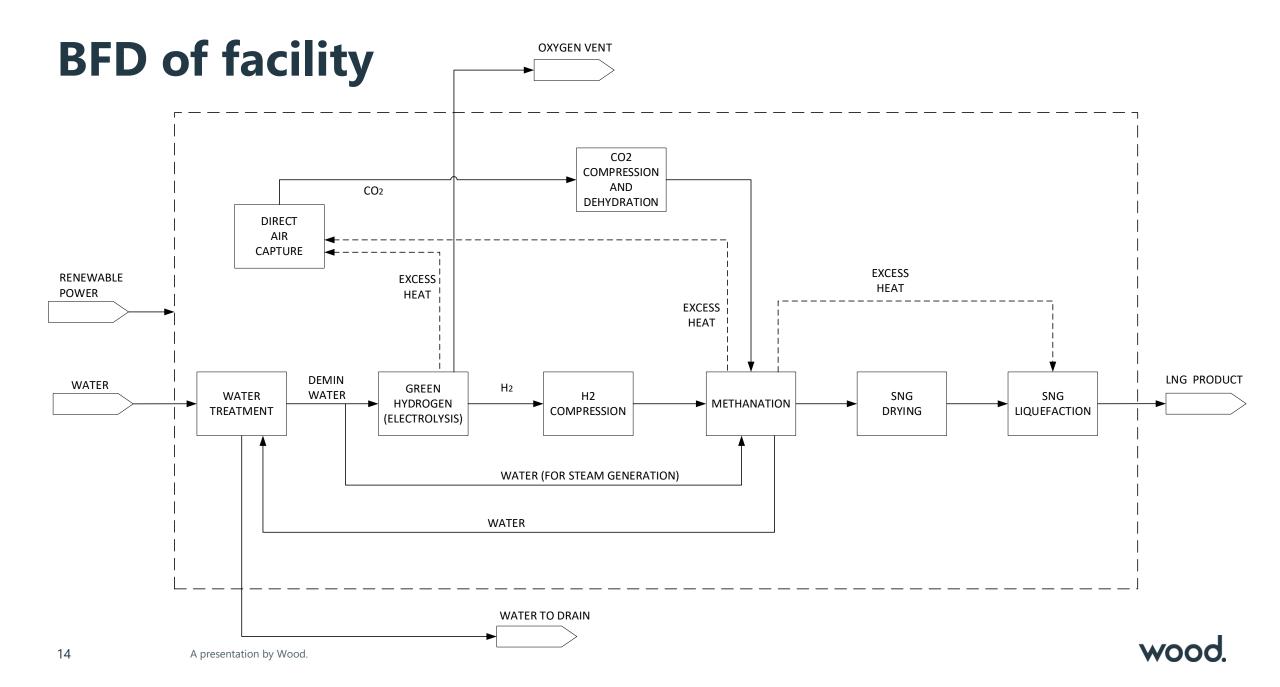
- Methanation from CO₂ is based on process used for biomass or coal, but it is simpler (no gasification, cleaner gas, less steps)
- Highly exothermic
- Heat removal is critical in design
- Multiple stages (catalyst beds) typically used to reach high conversions (>99% possible)
- Multiple licensors


woodplc.com

Wood Vesta Methanation Diagram

Methanation: Process


- Product > 98% CH₄
- Balance is mostly CO₂ and H₂
 (will also have impurities from H₂ or CO₂ feed)
- Reaction water produced
- Excess hydrogen recovered and recycled
- Utilities:
 - Power
 - Demin water for steam generation
 - Cooling water


LNG Plant Overview

- Single Mixed Refrigerant (SMR)
- Simplification: feed is SNG, already pretreated
- <50ppm mol CO₂ assumed in SNG feed
- <1 ppm mol H₂O assumed (already dried)
- No requirement for gas pre-treatment units or heavy hydrocarbon removal
- Assumes refrigerant is imported
- SNG boosted in pressure >70 barg for liquefaction efficiency
- LNG flashed in storage
- 1x LNG storage tank 150,000 m³
- Electric drive refrigerant compressors with minimal fuel usage
- Terminal and storage included

Facility Design

Unit Capacities

	Ton/yr	kmol/yr
CH ₄ (from methanation)	1,000,000	62,344,140
H ₂ (from electrolyzers)	517,825	256,857,855
CO ₂ (from DAC)	2,826,079	64,214,464

Note: 3% excess in H_2 and CO_2 to cover inefficiencies/losses

Utilities Requirements

	DAC	Green H ₂ (electrolysis)	Methanation	LNG	Total (Net)
Capacity (MTPA)	2.83	0.52	1.00	1.00	
Power (MWh)	636,000	28,435,000	409,000	367,000	29,847,000
Heat Requirement (MWh)	4,381,000			92,000	4,473,000
Excess Heat (MWh)		6,325,000	4,303,000		10,628,000
Process water (tons)		5,780,000	(2,247,000) (produced)		3,533,000

Integration Opportunities

Heat

- Excess heat, conditions:
 - Electrolyzers: 6,325 GWh at 60-80 °C
 - Methanation: 4,303 GWh can be recovered as a mix of HP and LP steam
- <u>Heat users</u>, requirements:
 - DAC: 4,381 GWh at ~80–100 °C
 - LNG: 92 GWh ~half at 160 °C and half at 300 °C
- Summary:
 - Heat requirements from DAC and LNG can be fully satisfied by heat integration
 - Assumed: ~45% of electrolyzers' excess heat can be used in DAC together with ~35% of (higher grade) excess heat from methanation to supplement DAC requirements.
 - LNG heat requirements can be satisfied with excess heat from methanation

Water:

 Water produced in the methanation reaction can be recovered and used to feed the electrolyzers, thus lowering the net water demand

Power – Commentary

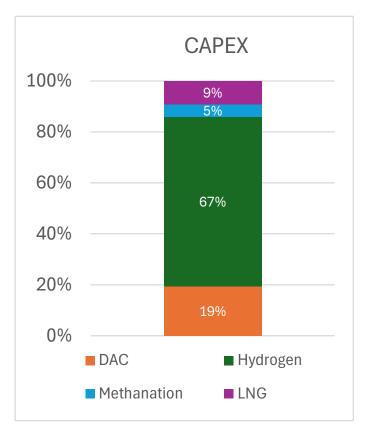
- Renewable power production can be on or off site
- It was assumed that renewable electrical power is available 24 h (via PPA)
 - Accounting for renewable variability by adding batteries and/or large storage of H₂ would have a large impact on project cost
- For the cost estimate, power was accounted as an Opex
- If the renewable power assets were to be included in the project:
 - Expected Capacity required: 12,000 14,000 MW (This assumes a 25% capacity factor)
- Land area required, if all solar: Aprox 350 km²

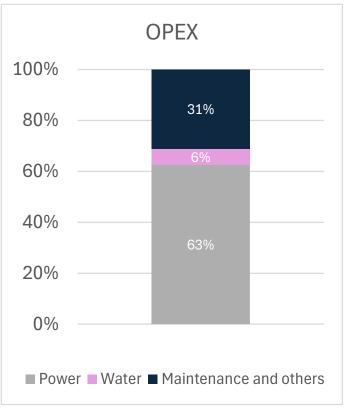
Cost Overview

High level Cost: CAPEX and OPEX

	DAC	Green H ₂ (electrolysis)	Methanation	LNG	Total Capex (\$MM)
Capex (TIC) (\$MM)	2,000	6,860	500	950	10,310

Орех	DAC	Green H ₂ (electrolysis)	Methanation	LNG	Total (net)	Cost per Unit	Yearly Opex (\$MM/pa)
Power (MWh)	636,000	28,435,000	409,000	367,000	29,847,000	35	1,045
Heat Requirement (MWh)	4,381,000			92,000	4,473,000		
Excess Heat (MWh)		6,325,000	4,303,000		10,628,000		
Process water (tons)		5,780,000	(2,247,000)		3,533,000	30	106
Maintenance and other fixed Opex (\$MM)	70	340	20	30	460		460
Total							1,611

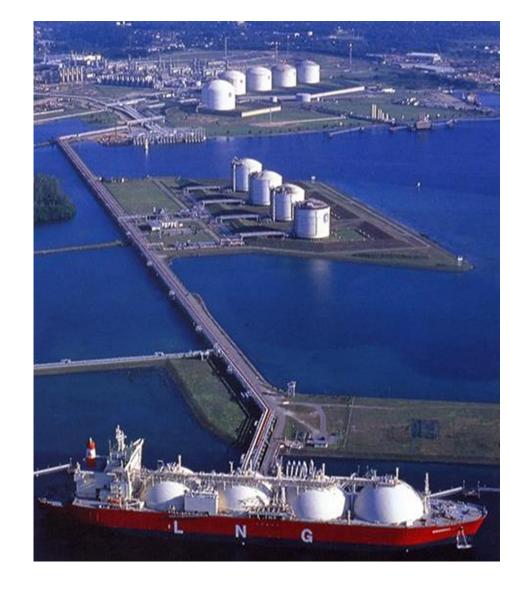

Cost estimated from public data from multiple sources



Cost Summary

	\$/ton SNG	\$/ MMBTU SNG
Levelized cost (*), without tax credits	2,882	54.7
Levelized cost (*) with tax credits (**) for Green H2 and DAC	947	18.0

(*) 20 years plant life. 10% Capital recovery rate. (**) Assumed tax credits for life of plant: 3\$ /kg H_2 and 135\$/ton DAC CO_2


- Cost, without tax credits, considerably higher than LNG (fossil fuel based) market price (~\$12-14/MMBtu to East Asia)
- Largest contributors (higher sensitivity):
 - Capex: Hydrogen production
 - Opex: Power
- Feasible with tax credits attracting a premium price for LNG being truly carbon-neutral

Wrap-Up

Conclusions

- 1 MTPA LNG plant design using DAC, green hydrogen and renewable power would have near-zero on-site emissions and be able to provide LNG for existing infrastructure
- Levelized cost calculated at ~55 \$/MMBTU
- Significant impact on cost from tax credits, possibly lowering the levelized cost to ~18 \$/MMBTU
- Power generation and hydrogen production were identified as the largest cost contributors
- Great potential in the future as the cost of production of green hydrogen reduces
- A viable solution to a true circular carbon economy

Q&A and discussion

