New data & improved models of the solubility of sulphur compounds in liquefied natural gas

Professor Eric F. May

University of Western Australia (UWA)

Future Energy Exports CRC

Acknowledgements

Co-authors

Mark Barwood (UWA)

Rossen Sedev (UWA)

Paul Stanwix (UWA)

Peter Falloon (UWA)

Xiong Xiao (UWA)

Brendan Graham (UWA)

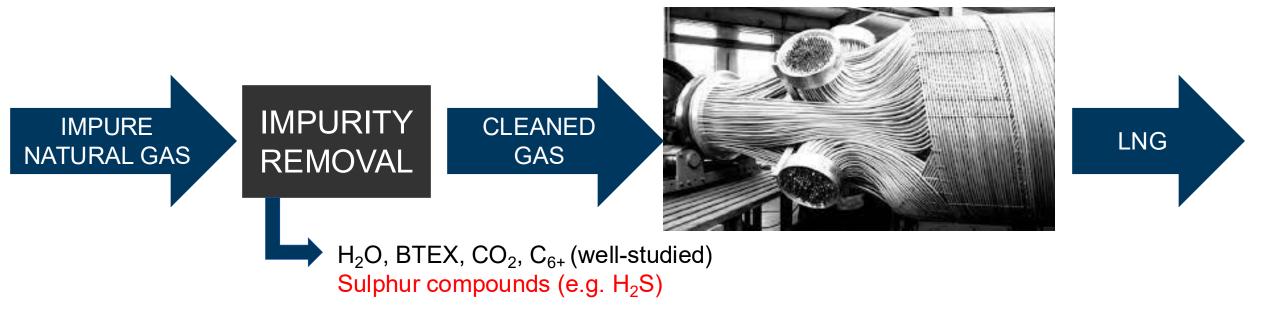
Robert Marriott (U Calgary)

Project 213 Coordinators

Oliver Koch (Linde)

Dale Embry (ConocoPhillips)

Project Funding



Project 213 Background

There are few data available for sulphur compounds

- Ubiquitous contaminants from reservoir (H₂S) or odorants
- Difficult to tune thermodynamic models
- Challenging to assess freeze-out risk associated with contaminants

Project 213 Objectives

- 1. Collect literature data & implement models in free *ThermoFAST* software to predict solubility of 19 S-containing compounds in LNG
- 2. Construct a sulphur-compatible apparatus to measure S-compound freezeout from methane
- 3. Measure H_2S , COS, methanethiol (MeSH) & ethanethiol (EtSH) solubility in CH_4 at (100-140) K [-280 to -207 F] & pressures to 5 MPa [725 psia]
- 4. Tune interaction parameters for these four binary mixtures to improve *ThermoFAST's* solubility predictions to within 0.5 K [0.9 F]
- 5. Establish new methods of predicting solid solubility of impurities in LNG that are more accurate, or need less data, than the current approach

Priority Sulphur-Containing Compounds

Compound Name	CAS	Formula	Priority	$T_t[K]$	Crystals	Measured
tert-Butanethiol	75-66-1	C ₄ H ₉ SH	1	274.42	3 (4)	No
Hydrogen Sulphide	7783-06-4	H_2S	1	190.9	3	Yes
<i>n</i> -Propanethiol	107-03-9	C ₃ H ₇ SH	1	160	2	No
Methanethiol (MeSH)	74-93-1	CH ₃ SH	1	150.1	2	Yes
Ethanethiol (EtSH)	75-08-1	C ₂ H ₅ SH	1	125.2	1	Yes
Diethyl Sulphide	352-93-2	$C_2H_5SC_2H_5$	1	169.2	1	No
Tetrahydrothiophene	110-01-0	C_4H_8S	2	176.98	2	No
Dimethyl disulphide	624-92-0	CH ₃ SSCH ₃	2	188	1	No
Dihydrogen disulphide	13465-07-1	H_2S_2	2	183.6	1	No
Dimethyl sulphide	75-18-3	CH ₃ SCH ₃	2	174.9	1	No
Ethyl methyl sulphide	624-89-5	C ₂ H ₅ SCH ₃	2	167.2	1	No
Carbon disulphide	75-15-0	CS_2	2	161.1	1	No
<i>n</i> -Butanethiol	109-79-5	C ₄ H ₉ SH	2	157.47	1	No
2-Butanethiol	513-53-1	C ₄ H ₉ SH	2	133.01	1	No
iso-Propanethiol	75-33-2	C_3H_7SH	3	142.6	2	No
iso-Propyl methyl sulphide	1551-21-9	C ₃ H ₇ SCH ₃	3	171.65	1	No
Carbonyl Sulphide	463-58-1	COS	3	134.3	1	Yes
Sulphur Dioxide	7446-09-5	SO ₂	3	197.64	1	No
iso-Butanethiol	513-44-0	C ₄ H ₉ SH	3	133	1	No

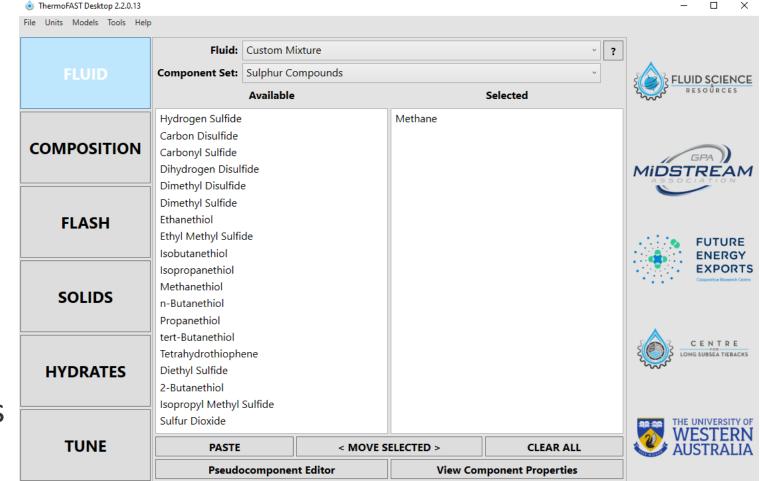
Availability and solubility in CH₄ were practical considerations

Calculating Solid Solubility in LNG

Two thermodynamic models needed to calculate solubility

One for fluid mixture (e.g. $H_2S + CH_4$):

Peng-Robinson EOS


 \longrightarrow Interaction parameter, k_{ij}

One for pure solid (e.g. H₂S):

i) Classical method

Pure substance properties ΔH_f , $\Delta c_{\rm p}^{F \to S}$, $\Delta v^{F \to S}$

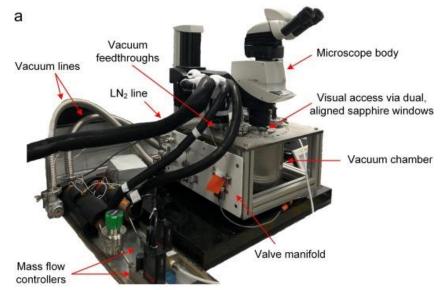
Parameters for predicting solids solubility

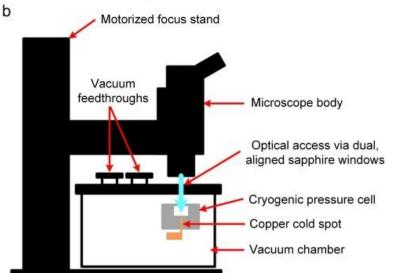
Initial parameters taken from literature data

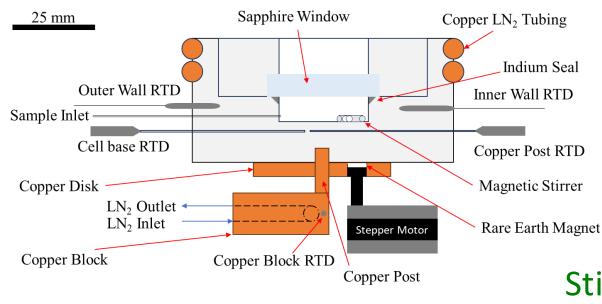
Some pure compounds have solid crystal phase transitions at temperatures down to LNG conditions: these are included

Parameters for 4 compounds then updated based on solubility measurements

Compound	T _t [K]	ΔH_{fus} [J/mol]	$\Delta c_{P,i}^{F o S}$ [J/mol/K]	$\Delta v_i^{F o S}$ [cm 3 /mol]
tert-Butanethiol	274.4	2481.9	-317.1	15.7
Hydrogen Sulphide	190.9	2375	-10	2
<i>n</i> -Propanethiol	160.0	5476.9	46.4	11.5
Methanethiol	150.1	5905.3	-72.2	6.69
Ethanethiol	125.2	4974.8	45.7	8.94
Diethyl Sulphide	169.2	11903.5	54.3	0
Tetrahydrothiophene	176.9	7352.1	81.6	15.0
Dimethyl disulphide	188.0	9192.2	85.1	1.6
Dihydrogen disulphide	183.6	7555.6	60.3	1.12
Dimethyl sulphide	174.9	8286	57.8	1.06
Ethyl methyl sulphide	167.2	9761.3	42.4	11.4
Carbon disulphide	161.1	4389	16	3.48
<i>n</i> -Butanethiol	157.4	10460	60.4	13.8
2-Butanethiol	133.0	6477	69.5	0
iso-Propanethiol	142.6	5736.3	17.0	11.7
iso-Propyl methyl sulphide	171.6	9360	0	0
Carbonyl Sulphide	134.3	4727	8.05	1.07
Sulphur Dioxide	197.6	2063	17.8	0
iso-Butanethiol	133.0	4982.3	61.6	13.4

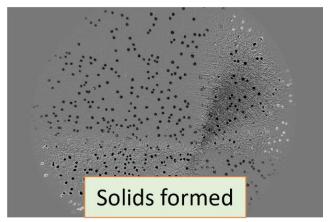





Cryoscope Apparatus

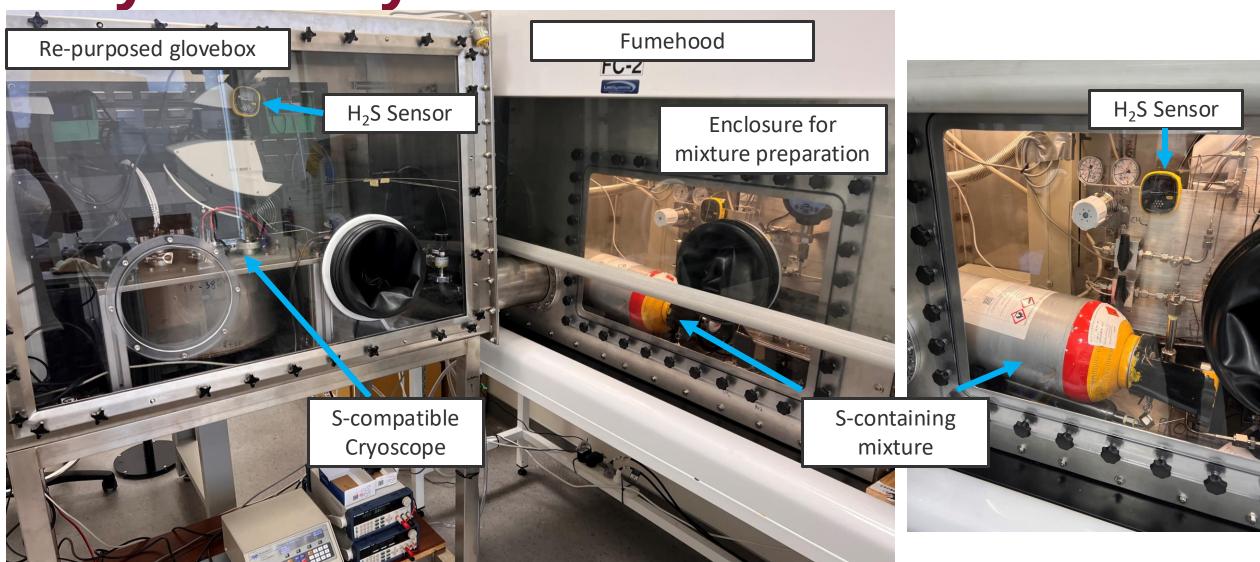
Optical Measurements of Solid Solubility

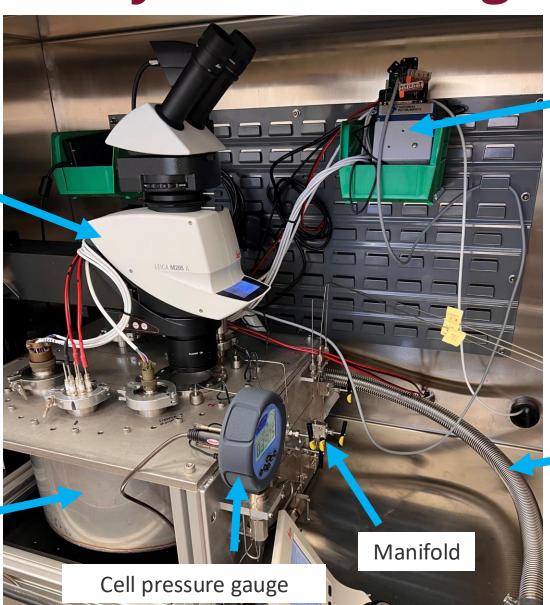
"Cryoscope": Cryogenic Microscopy


Stir bar driven by stepper motor

Optical Measurements of Solid Solubility

Operating range: T > 90 K, p < 20 MPa




System Layout

Measurement system inside glovebox

Stereomicroscope

Data acquisition

Vacuum line

Vacuum chamber

Robust Safety Measures in Place

Both the glovebox and enclosure are air-tight

- Can be purged with compressed air (sent to scrubbing)
- All vent lines also sent to scrubbing

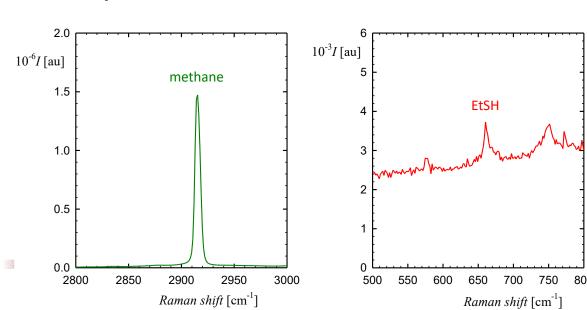
Scrubbing: NaOH solution (2 M), bleach (14% active Cl)

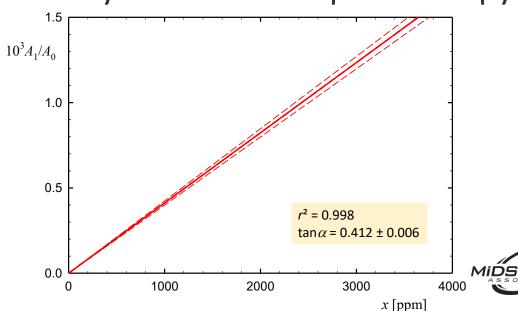
Converts S-compound to SO₄²⁻ ions

H₂S-specific measures

- 1 room gas sensor and 4 portable sensors
- Full-face mask with protection factor of 1000
- Measurements complete with no safety incidents

Solubility Measurements

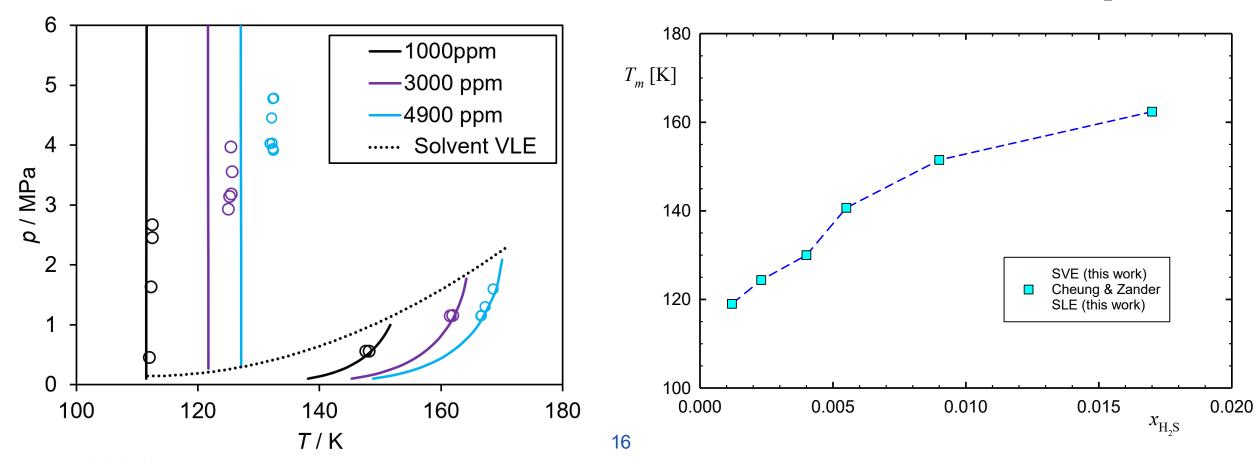

Synthetic binary mixtures


Measurements made using synthetic method. Constant composition Four certified binary gas mixtures purchased

Compound in CH ₄	Formula	<i>x</i> [ppm]	u(x) [ppm]	$u_r(x)$ [%]
Hydrogen Sulphide	H_2S	4,900	50	1.0
Carbonyl Sulphide	COS	49,400	200	0.4
Methanethiol (MeSH)	CH ₃ SH	967	13	1.3
Ethanethiol (EtSH)	C_2H_5SH	3,040	30	1.0

Each binary measured at 3 concentrations, achieved by dilution with pure CH₄ Composition from dilution checked independently with Raman spectroscopy

15

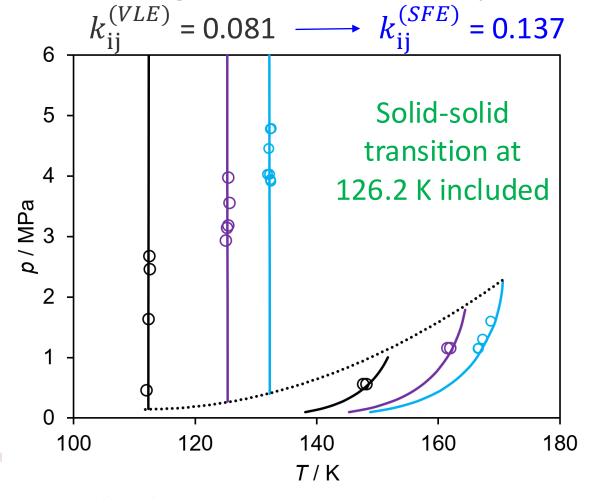


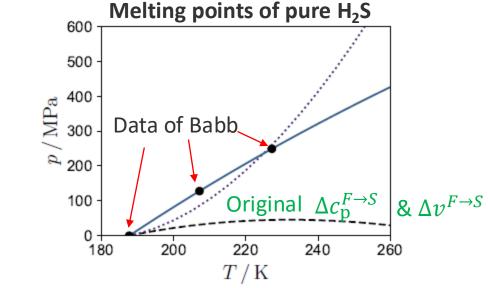
Summary of Data: H₂S in CH₄

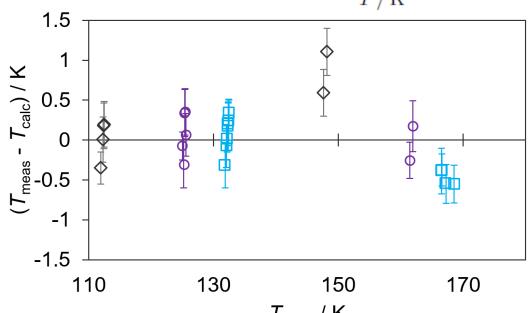
New measurements compared with untuned models & literature data

Two datasets available:

Cheung & Zander (1968), SLE, T = (119-162) K; data relevant: $x_{H2S} = (1200 \text{ to } 1700)$ ppm Kohn & Kurata (1958), SLLE & SLVE, T > 167 K; data not relevant: (> 5.25 mol% H_2S)

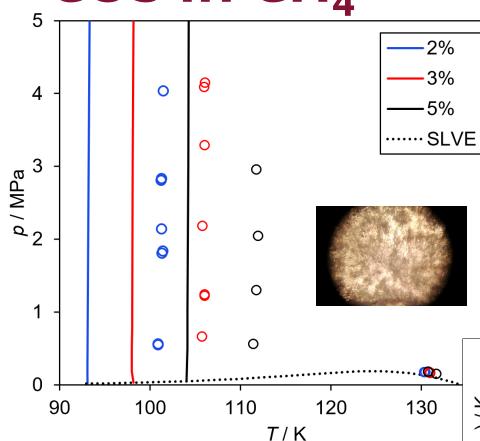


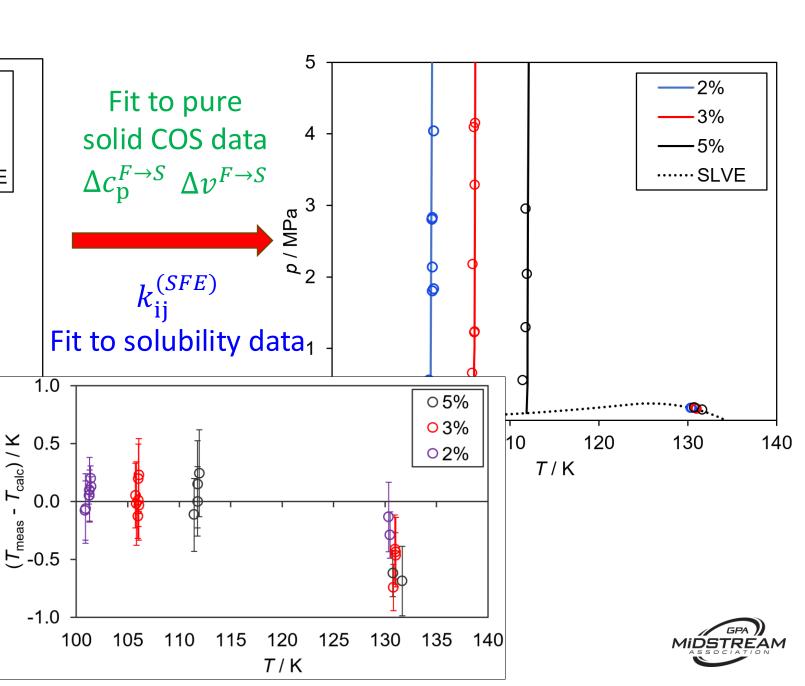

Improved predictions: H₂S in CH₄


17

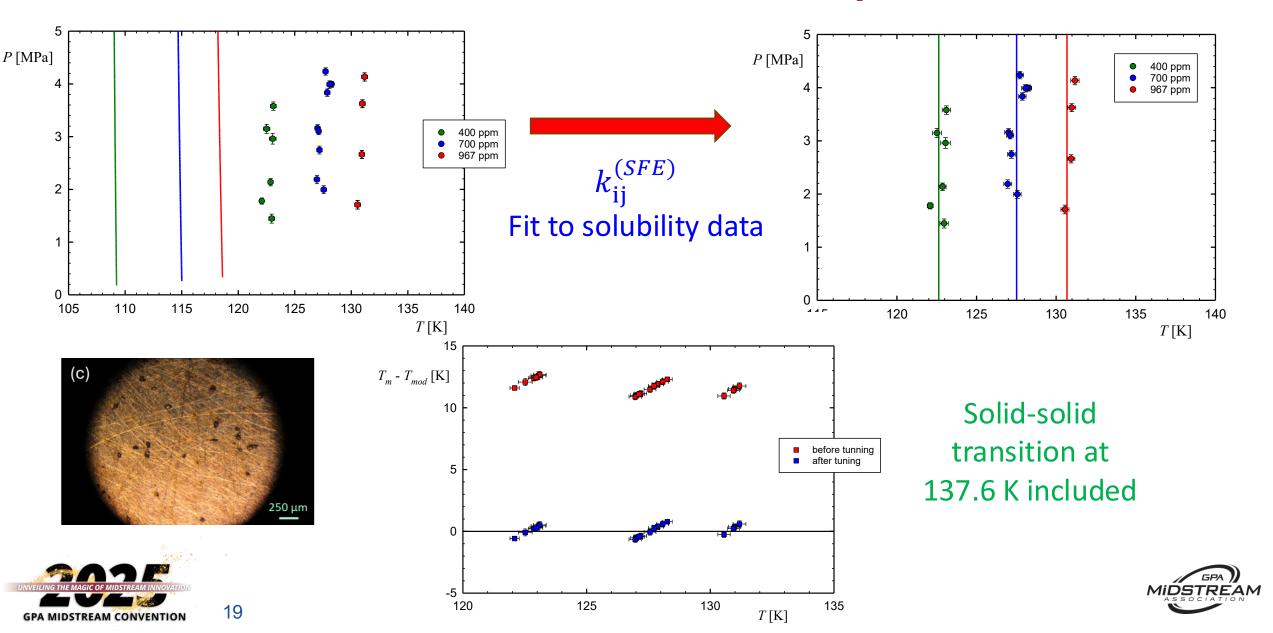
Data & model agreement improved by

- Tuning to pure H_2S data: $\Delta c_p^{F \to S} \Delta v^{F \to S}$
- Fitting PR EOS to solubility data:

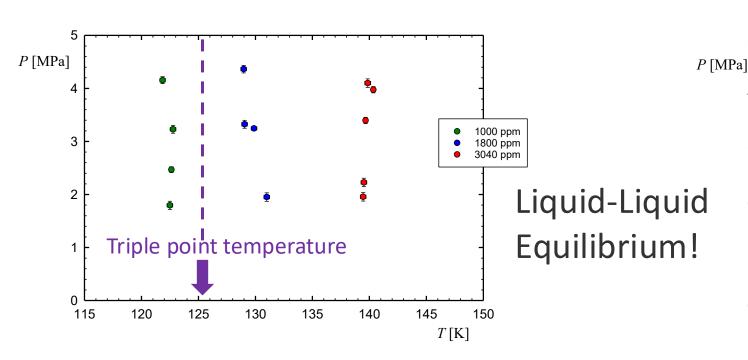


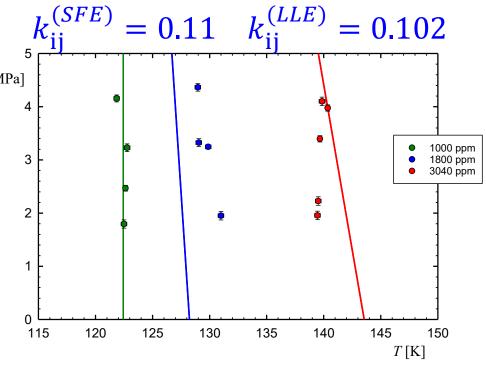


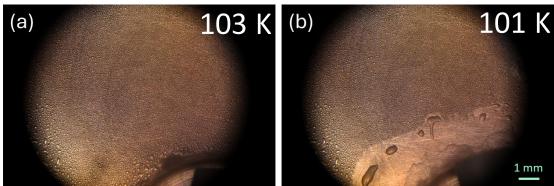
COS in CH₄

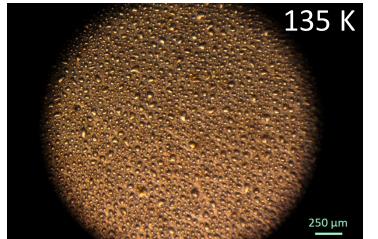


Hydrolysis of COS unlikely since no free H₂O: confirmed by sample analysis

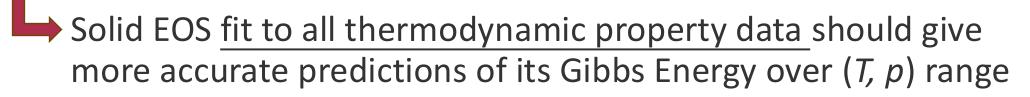





Methanethiol (MeSH) in CH₄



Ethanethiol (EtSH) in CH₄


New Approach: EOS for Solid H₂S

Solid EOS can be more accurate

Classical method describes only 1 property of solid with just 3 parameters

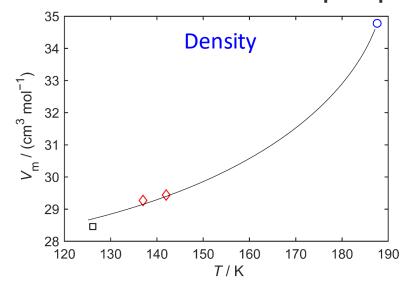
Good if only limited thermodynamic data available for solid

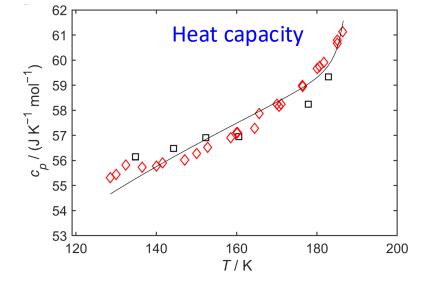
Some solid impurities (H₂O, CO₂, Benzene, H₂S) are well-characterised over wide (T, p) range

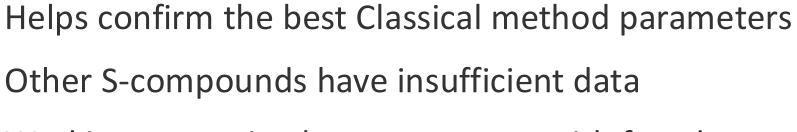
Use a physically-based model to describe energy stored in solid

$$G_{solid}(T,p) = G_{lattice} + G_{internal} + G_{anharmonic}$$
 capacity, phase boundary data Spectroscopy Deviations from ideal solid

Density, heat capacity, phase boundary data


14 parameters fit to 82 data points for solid H₂S





EOS for Solid H₂S Phase I: Results

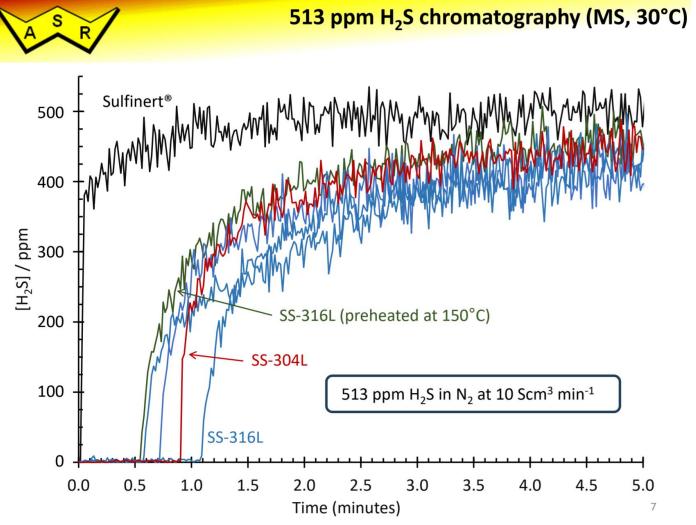
New EOS describes all data for solid H_2S Phase I within their uncertainty from 126.2 K to triple point temperature (190.9 K)

Working on getting better accuracy with few data

Conclusions - Project 213

- 1. Models to predict solubility of 19 S-containing compounds in LNG built and implemented in free *ThermoFAST* software https://thermofastweb.net
- 2. Sulphur-compatible apparatus to measure S-compound freeze-out in LNG demonstrated
- 3. Measured solubility of H_2S , COS, MeSH & EtSH in CH_4 at (100-140) K [-280 to -207 F] & pressures to 5 MPa [725 psia]
- 4. Tuned interaction parameters for these four binary mixtures to improve *ThermoFAST's* solubility predictions to within 0.5 K [0.9 F]
- 5. Developed new, accurate EOS for solid H₂S phase I

2025-26: Extension to Project 213 with solubility of four new S-compounds in CH₄ to be measured



Thank you

H₂S Fade?

H₂S has strong affinity for metal surfaces – permanently chemisorbs

H₂S surface coverage on stainless steel ~ 180 μmol/m²

CryoScope surface area about 0.005 m² (inlet tubing, cell walls, cell base)

Amount of H₂S:

- SLE: (140 to 630) μmol
- SVE: (2 to 10) μmol

H₂S Fade?

Unmitigated H₂S adsorption could reduce the concentration of H₂S in the measurement cell (wetted area 0.005 m², volume 5.3 cm³)

<i>x</i> _{H2S} / ppm	Phase	$n_{ m H2S,ads}$ / $\mu m mol$	H ₂ S loss / ppm	Change in SFE T / K
4900	SLE	0.083	-0.64	0.00
4900	SVE	0.083	-42.2	0.08
3000	SLE	0.083	-0.62	0.00
3000	SVE	0.083	-39.6	0.12
1000	SLE	0.083	-0.60	0.00
1000	SVE	0.083	-36.4	0.27

Fortunately, **passivation** (by exposure to H₂S-containing mix) can mitigate future adsorption

