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0.1 Technical Challenges

The primary technical challenges in VR-based tremor detection include:

Challenge Description

Signal
Contamination

VR-Controller IMU data contains noise from sensor limi-
tations, electromagnetic interference, and mechanical vibra-
tions.

Movement
Disambiguation

Distinguishing between intentional gestures and pathological
oscillations.

Real-time
Processing

Maintaining low-latency algorithm calculations for virtual
reality applications.

Multi-axis
Complexity

Tremor can manifest differently across spatial dimensions.
Dimensions must be flexible in their importance.

Adaptive
Intensity
Scaling

Providing clinically meaningful intensity measurements
across varying tremor severities. Different types of tremor
must be recognizable.

0.2 Proposed Solution Overview

The motion-tracking algorithm (MTA) addresses these challenges through a hierarchical
processing pipeline that combines three complementary analysis methods: high-pass filter-
ing for rapid oscillation detection, time-domain directional change analysis for frequency
estimation, and a modified Fast Fourier Transform (FFT) for precise spectral character-
ization. The system incorporates intelligent movement classification, adaptive intensity
management, and multi-axis fusion to provide robust tremor detection suitable for real-
time VR applications.

3



1. System Architecture

The complete system architecture showing the development status of each component.
Green solid borders indicate completed components (OpenXR integration and Unity MTA
process), orange dashed borders show components currently in development (TensorFlow
model training and TensorFlow Lite integration), and gray dotted borders represent planned
future components (data visualization and storage). The system architecture demonstrates
a phased development approach from core tremor detection to advanced ML capabilities
and comprehensive data management.
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1.1 Component Responsibilities

1.1.1 Data Acquisition Layer

The data acquisition layer manages the continuous collection of angular velocity data from
the VR controller’s IMU. Key responsibilities include:

Temporal Sampling 
Control

Multi-axis Buffer

Sample Validation

Statistical Tracking

• Ensures consistent sampling at the
configured rate

• Maintains separate ring buffers for
each spatial axis (X, Y, Z)

• Filters out invalid or corrupted IMU
readings

• Provides real-time statistics for system
monitoring

The implementation uses a time-based sampling strategy rather than frame-based to ensure
consistent temporal resolution:

if (currentTime - lastSampleTime >= 1.0f / sampleRate) {
CollectSample(angularVelocity);
lastSampleTime = currentTime;

}
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1.1.2 Signal Analysis Layer

The signal analysis layer implements three parallel processing methods, each optimized for
different tremor characteristics.

Data Acquisition 

Signal Analysis

High-Pass Filtering

Time-Domain Analyzer

FFT Processor

• Optimized for detecting rapid oscilla-
tions.

• Efficient for moderate-frequency
tremors with clear directional changes.

• Provides precise frequency resolution
for steady-state tremors.

1.1.3 Intensity Management Layer

The intensity management layer serves as the aggregation point for all detection results.

Signal Analysis

Intensity Management

Multi-source Fusion

Temporal Smoothing

Adaptive Scaling

Frequency-Guided 
Decay

• Combines results from different analy-
sis methods

• Reduces output jitter through histori-
cal averaging

• Adjusts sensitivity based on tremor
characteristics

• Implements physiologically-motivated
intensity decay models
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1.1.4 Movement Classification Layer

The movement classification subsystem differentiates between intentional movements and
tremor through trajectory analysis:

Intensity Management

Movement 
Classification

Smoothness Metrics

Velocity Profiling

Contextual Filtering

• Quantifies movement regularity

• Reduces output jitter through histori-
cal averaging

• Identifies characteristic velocity pat-
terns

• Considers recent movement history

2. Signal Processing Methods

2.1 High-Pass Filter Method

The high-pass filter method exploits the frequency separation between intentional move-
ments (typically < 4 Hz) and pathological tremor (4-20 Hz). We implement a first-order
recursive digital filter derived from the analog RC high-pass filter through bilinear trans-
formation.
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2.2 Time-Domain Directional Change Analysis

The time-domain method directly analyzes angular velocity patterns to detect rhythmic
oscillations. This approach offers computational efficiency and works well for tremors with
pronounced directional reversals.
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2.3 FFT-Based Spectral Analysis

The FFT method provides the highest frequency resolution and is particularly effective for
sustained, regular tremors. The processing pipeline consists of:

• Windowing: Modified version of the Hanning window to reduce spectral leakage

• FFT Computation: Modified version of the Cooley-Tukey radix-2 FFT algorithm

• Magnitude Spectrum: Conversion to power spectral density

• Peak Detection: Identification of dominant frequencies in tremor band

• Spectral Purity: Assessment of peak prominence
Peak: 8 Hz
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8 Hz

Epeak = 0.95
Eband = 1.05
Etotal = 1.15

Purity = 0.82

0 10 20
0

0.5

1

Frequency (Hz)

M
ag

ni
tu

de

High Spectral Purity

Epeak = 0.40
Eband = 1.85
Etotal = 2.50

Purity = 0.17

0 10 20
0

0.5

1

Frequency (Hz)

M
ag

ni
tu

de

Low Spectral Purity

Comparison of high vs. low spectral purity in FFT analysis. High purity (left) shows a
clear dominant peak indicating consistent tremor, while low purity (right) shows multiple
peaks and higher noise, suggesting complex movement or poor signal quality.

2.3.1 Signal Preprocessing and FFT

The exact formulas for the modified Hanning Window xw[i] and the modified FFT will
be shown only upon request. However, they can be mathematically explained as follows.
xw[i] reduces spectral leakage by smoothly tapering the signal at its boundaries. The FFT
transforms the windowed time-domain signal into the frequency domain, where M [k] rep-
resents the magnitude at each frequency bin. Each bin corresponds to a specific frequency
fk determined by the sampling rate fs and FFT size N .

xw[i] = x[i] · 0.5
(
1− cos

(
2πi

n− 1

))
X[k] = FFT(xw), M [k] = |X[k]|

fk = k · fs
N

2.3.2 Spectral Analysis

Spectral Purity measures how concentrated the signal energy is around the dominant
tremor frequency. It combines the ratio of tremor-band energy to total energy with the
dominance of the peak magnitude within the tremor band. Higher values indicate a cleaner,
more periodic tremor signal with less noise interference.

Spectral Purity = 2 ·
∑

i∈tremor M [i]2∑N/2−1
i=0 M [i]2

·
M2

peak∑
i∈tremor M [i]2

= 2 ·
M2

peak∑N/2−1
i=0 M [i]2

(simplified)
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2.3.3 Intensity Calculation

The tremor intensity is computed as a product of four components: magnitude scaling
S(M), frequency weighting W (f), spectral purity P , and a bonus factor B(f). The mag-
nitude scaling function applies different amplification strategies for weak, medium, and
strong signals. The frequency weighting emphasizes physiologically relevant tremor fre-
quencies while the bonus factor provides additional weight to the typical 6-10 Hz tremor
range.

I(M,f) = S(M) ·W (f) · P ·B(f)

2.3.4 Multi-Axis Fusion

The system analyzes tremor on three orthogonal axes (x, y, z) and selects the axis with
maximum intensity as the dominant one. The dominance factor D rewards cases where
one axis clearly dominates (ratio > 0.7) and penalizes cases with weak dominance (ratio <
0.5). This approach ensures robust detection even when tremor primarily affects a single
movement direction.

Ifinal = max
a∈{x,y,z}

Ia ·D(Ia, Itotal)

D(Ia, Itotal) =


1.2, if Ia

Itotal
> 0.7

0.8, if Ia
Itotal

< 0.5

1.0, else

2.3.5 Tremor Detection Criterion

Tremor is detected when three conditions are simultaneously met. The normalized peak
magnitude exceeds a threshold θ the peak frequency falls within the physiological tremor
range, and the computed intensity is positive. This multi-criteria approach reduces false
positives from non-tremor movements. The threshold θ can be adjusted to control detection
sensitivity.

Tremor detected ⇔


Mpeak

N > θ (threshold)

fmin ≤ fpeak ≤ fmax (Frequency range)

Ifinal > 0

2.3.6 Complete Processing Pipeline

This formula encapsulates the entire tremor detection algorithm in a single expression. It
shows how raw accelerometer data from three axes is processed through windowing, FFT,
peak detection, and various scaling factors to produce a final tremor intensity value.

Tremor(x, y, z) = max
a∈{x,y,z}

[
S

(
|FFT(w · a)|peak

N

)
·W (fpeak) · Pa ·B(fpeak) ·Da

]
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3. Intensity Computation and Management

3.1 Intentional Movement Detection

The system distinguishes intentional movements from tremor by analyzing trajectory smooth-
ness. The smoothness metric quantifies deviation from linear interpolation:

Smoothness = 1−
∑n−1

i=1 |p[i]− plinear[i]|
avg_distance · (n− 2)

(1)
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3.2 Adaptive Decay System

The decay system implements a physiologically-motivated model where decay rate depends
on the current tremor state. Adaptive decay rate as a function of tremor frequency and
current intensity. The surface shows how the decay rate varies: negative values (blue)
indicate intensity growth when below target, near-zero values (green/yellow) indicate stable
state, and positive values (orange/red) indicate decay when above target. The purple
dashed line shows the target intensity trajectory.
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4. MTA Flowchart

Comprehensive algorithm flowchart showing the complete tremor detection pipeline. The
system processes IMU data through movement classification, parallel analysis methods
(High-Pass Filter, Time-Domain, and FFT), multi-method aggregation, and adaptive in-
tensity management to produce clinical tremor metrics. Dashed lines indicate configuration
or control flow, while solid lines show data flow.
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5. Validation and Clinical Relevance

5.1 Frequency Range Selection

Frequency distribution of different tremor types showing the characteristic frequency ranges
for various pathological tremors. The yellow shaded area indicates the algorithm’s detection
range (4-20 Hz), with the optimal detection range between 6-12 Hz marked by dotted
lines. Each distribution represents the typical frequency characteristics observed in clinical
populations.
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5.2 MTA Tremor Analysis Flow

The visualization below shows parallel tremor analysis using the three complementary
methods. The input signal contains both slow movement and 8 Hz tremor. Each method
processes the signal differently: the high-pass filter isolates rapid oscillations, time-domain
analysis tracks rhythm patterns, and FFT provides precise frequency identification. De-
spite different approaches, all methods converge on detecting the 8 Hz tremor, demonstrat-
ing the robustness of the multi-method system.
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5.3 MTA Advantages

Algorithm Performance Comparison
Conventional Tremor Analysis (CTA) vs. Motion Tracking Algorithm (MTA)

Test Scenario CTA MTA Advantage

Scenario 1
Clean 8 Hz tremor

No movement
High SNR

Detected
8.0 Hz

High confidence

Detected
8.0 Hz

High confidence
All methods agree

Both perform

equally well

Scenario 2
6 Hz tremor +
arm movement
(2 Hz swing)

Confused
Multiple peaks
2 Hz dominant

Misses tremor

Detected
6.0 Hz tremor

Movement filtered
HP removes swing

Filters intentional

movement

Scenario 3
Intermittent
tremor bursts

(panic-induced)

Delayed
Needs full
window

Slow response

Fast detection
Time-domain

responds quickly
<0.3s latency

Rapid onset

detection

Scenario 4
Frequency varies

5-8 Hz range
(stress response)

Uncertain
Broad peak

Poor precision
Low confidence

Tracked
Adaptive decay

Frequency history
Smooth transitions

Handles

variability

Scenario 5
Subtle tremor
Low amplitude
Near noise floor

Missed
Below threshold

Lost in noise
False negative

Detected
Pattern matching
across methods
Consensus voting

Better

sensitivity

Summary: While simple FFT analysis works well for clean, sta-
tionary tremor signals, the multi-method approach excels in real-
world scenarios with movement artifacts, intermittent patterns,
frequency variations, and low-amplitude tremors. The combina-
tion of high-pass filtering, time-domain analysis, and the modi-
fied FFT version provides robustness and reliability essential for
clinical applications.

Good Limited Poor
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5.4 Subject Testings

To evaluate the algorithm’s performance in differentiating between tremor types, the sys-
tem is tested with three volunteers who regularly participate in the prototype development
process. These individuals have graciously offered their time to support this research,
providing valuable real-world data for refining the algorithm. Each volunteer completed
15 simulation sessions so far, allowing assessment of the consistency and accuracy of the
multi-method detection approach. The test results from these three subjects showing de-
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tected tremor frequencies across 15 trials each. Subject 1 (red circles) exhibits Parkinsonian
tremor with frequencies consistently in the 4 - 6 Hz range. Subjects 2 (orange squares)
and 3 (blue triangles) show physiological tremor in the 8-12 Hz range. Error bars indi-
cate measurement uncertainty. Dashed lines show mean frequencies for each subject. The
algorithm successfully differentiates between tremor types based on their characteristic
frequency bands.

• Volunteer 1 (Parkinsonian Tremor) showed consistent frequencies between 4.2
- 5.9 Hz, characteristic of resting tremor in Parkinson’s disease.

• Volunteer 2 (Panic disorder induced Physiological Tremor) exhibited fre-
quencies ranging from 8.7 - 11.3 Hz. The wider frequency range reflects the variable
nature of anxiety-induced tremor, with higher frequencies typically corresponding
to elevated stress levels during the simulations. One measurement was incorrectly
registered at 6.9 Hz (session 11), falling more within the Parkinsonian range.

• Volunteer 3 (Panic disorder induced Physiological Tremor) showed frequen-
cies between 8.1 - 11.9 Hz, demonstrating even higher variability. This pattern is
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consistent with more severe panic responses, where sympathetic nervous system ac-
tivation produces faster tremor oscillations.

These test results demonstrate the algorithm’s capability to handle complex real-world
scenarios where psychological factors can significantly alter tremor characteristics. The
current 92% accuracy rate, achieved even with the challenging case of panic-modified phys-
iological tremor, validates the robustness of the multi-method approach and its potential
for clinical applications in VR environments.

6. Additional Information

For further information about the product itself or its intended application purpose, please
use the contact options listed below. The prototype version 0.0.1 is publicly accessible
on Sidequest. For an on-site demonstration with detailed data export of the planned full
version, please also use the contact options listed below.

• Email roman.aebi@cenprom.com

• Prototype available on:

Roman Aebi
Lead Developer / Creator
B. Sc. Games programming

Karin Preiswerk
Clinical Advisor
Specialist Psychologist for Psychotherapy FSP
Master of Advanced Studies in Psychotherapy MAS
Cognitive Behavioral Psychotherapist SGVT
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