

Data-Driven Estimation of Individual Branch Flow in Multilateral Wells

Author: Tord Aarø, Petroleum Engineer & Student

MSc Research Project at Imperial College London & Vår Energi

EWPF Stavanger, August 2025

Table of Contents

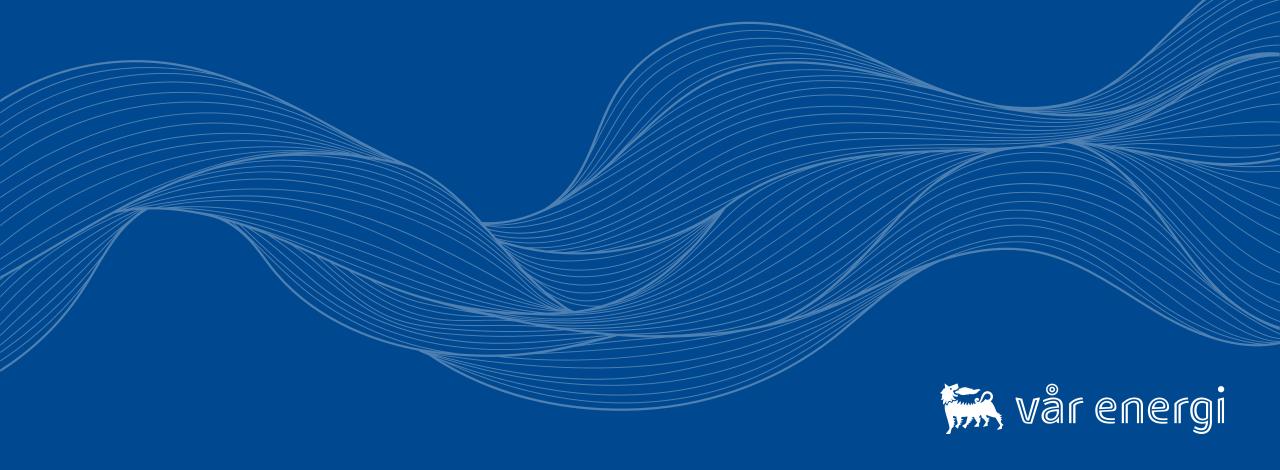
Introduction ≺

Previous Work

Machine Learning

- Problem Statement
- Data Analysis
- · Numerical Modelling (GAP)
- Methods
- Results
- Evaluation
- Discussion
- Conclusion
- Acknowledgement
- · Q&A

Introduction



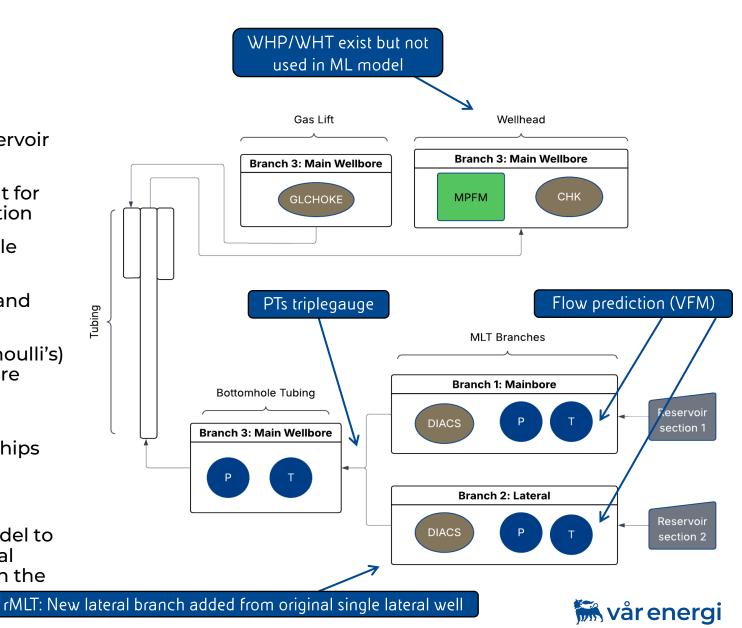
Problem Statement

Background

- Retrofitted Multilateral wells (rMLTs) are increasingly common, targeting different reservoir sections
- Flow estimates from each branch is important for reservoir modelling and production optimization
- Multiphase flow meter (MPFM) is only available topside, measuring commingled production
- Branch chokes (DIACS) controls branch flow and adds complexity to commingled flow
- Attempts to use analytical solutions (e.g. Bernoulli's) have not been successful with current pressure drop
- Machine learning methods can be applied to capture the complex and non-linear relationships present in these conditions

Proposed Solution

 Develop a semi-supervised deep learning model to predict the multiphase flow for each individual branch in one rMLT well, using 3 other MLTs in the training set



Data Analysis

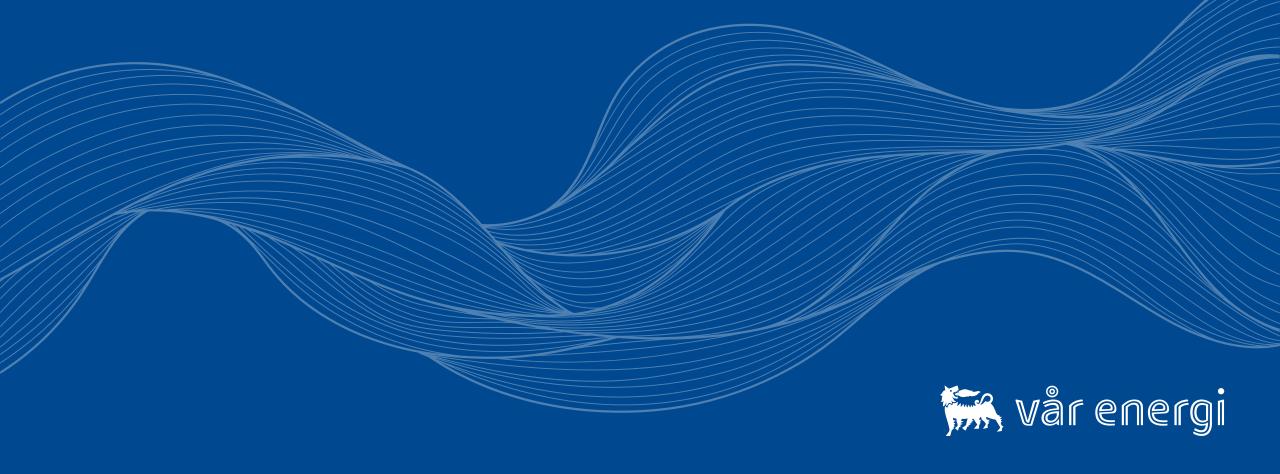
The available data has several problems:

- Sensor drifting, sensor mapping, sensor outages and sensor measurement error
- Years of time series data available from 4 wells, but with limited variation, such as static DIACS settings
- Minor pressure sensor offset/error becomes large during pressure drop calculations, especially for fully open DIACS

Measures taken to address problems:

- Sensor remapping
- Remove time interval of outages
- Imputing missing data
- Filter out sensor measurements to be within sensible operating limits
- Apply moving median filter to smooth out unstable sensor readings

Previous Work



Numerical Modelling in GAP

Background

• Sr. Reservoir Engineer (ENI), Claudio Cannone, developed a static numerical simulation of individual branch flow contribution in rMLTs

Method

- Completion schematic simplified into 3 parts, one for each branch and one for the main wellbore
- By adjusting oil rates, Gas-oil ratio (GOR) and water cut (WCT), each parts pressures and temperatures are matched
- The new adjusted oil rates, GOR and WCT obtained are corrected for the MPFMs measurement error
- Obtain corrected comingled production flow rates for calculating the branch contribution ratios

Results

Gap Model returns a branch split for a specific combination of choke and DIACS settings

Model results only valid for present GOR, WCT, pressures, temperatur

Water rates are not included

High mainbore gas MPFM measurement

Wellbore / date	error ibution			
	Oil Rate [%]		Gas Rate [%]	
	Mainbore (14 DIACS)	<u>Lateral (2 DIACS)</u>	Mainbore (14 DIACS)	Lateral (2 DIACS)
Mainbore MPFM error / 19th May 2024	96%	0%	216%	0%
Lateral MPFM error / 16th Jun 2024	0%	100%	0%	114%
Commingle Branch Split / 29 th July 2024	26%	7 74%	68%	32%

Methods

Deep Learning Model

Graph Autoencoder (GAE)

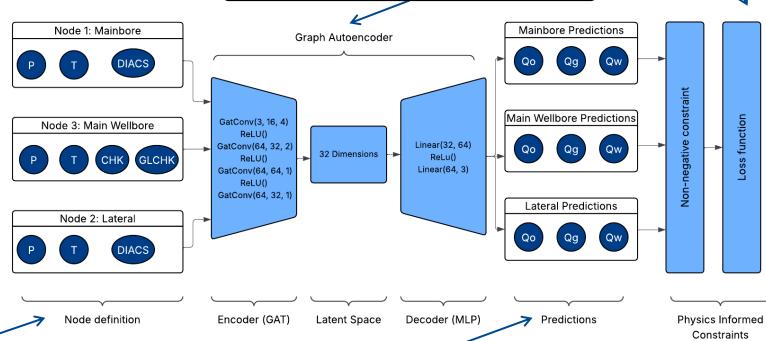
- An autoencoder based on a graph neural network with node attention
- Branches communicate with the main wellbore unilaterally
- Nodes are defined with a set of features (column of data, e.g. pressure)
- Data is transformed to a latent space using a Graph Attention (GAT) encoder with various heads
- Data is transformed back to the input dimension with 3 additional features per branch using the Multilayer Perceptron (MLP) decoder
- Main Wellbore predictions are used for evaluation only
- Results are clipped to be > 0
- Predictions are processed in the loss function

Give data to model

GAE version 2:

Check how good the predictions are

- Global data processing using additional linear transformations in the encoder
- Allows the mo Perform some mathematical transformations a, at once to find a pattern in the data



Model returns a result based on the pattern it has found

Loss Function

Learning

- The GAE model learns by minimizing the loss function and updating the model weights and biases (parameters)
- Defined as the mean squared error (MSE) between the actual (MPFM) and predicted using two different methods (1 & 2)

1. Semi-supervised target (Some answer exist):

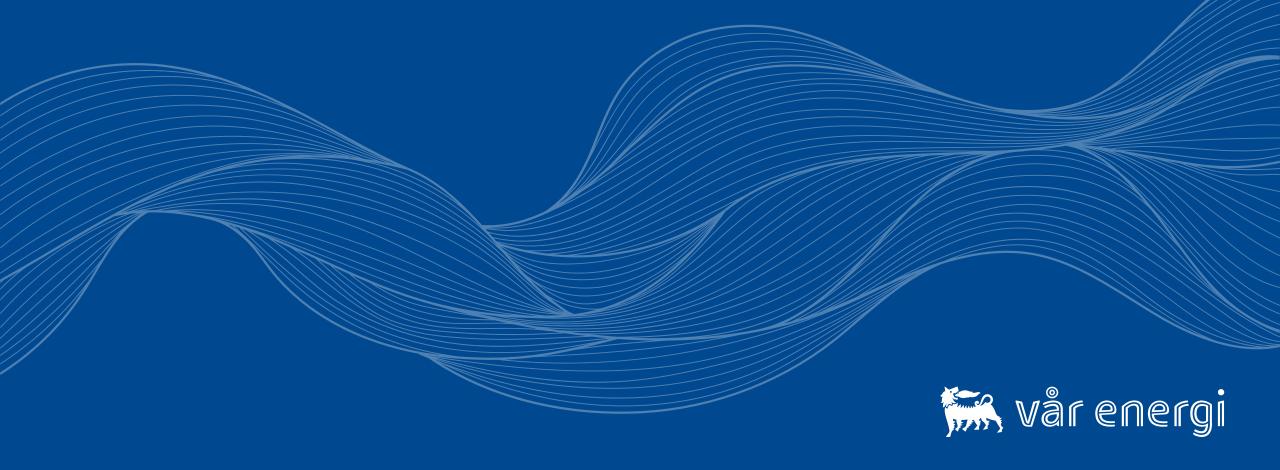
- Branch flow is unknown, but the commingled flow is assumed to be accurate (MPFM)
- $Q_{MPFM} = \widehat{Q_1} + \widehat{Q_2}$
- The model learns to predict a multiphase flow sum equal to the measured (MPFM)

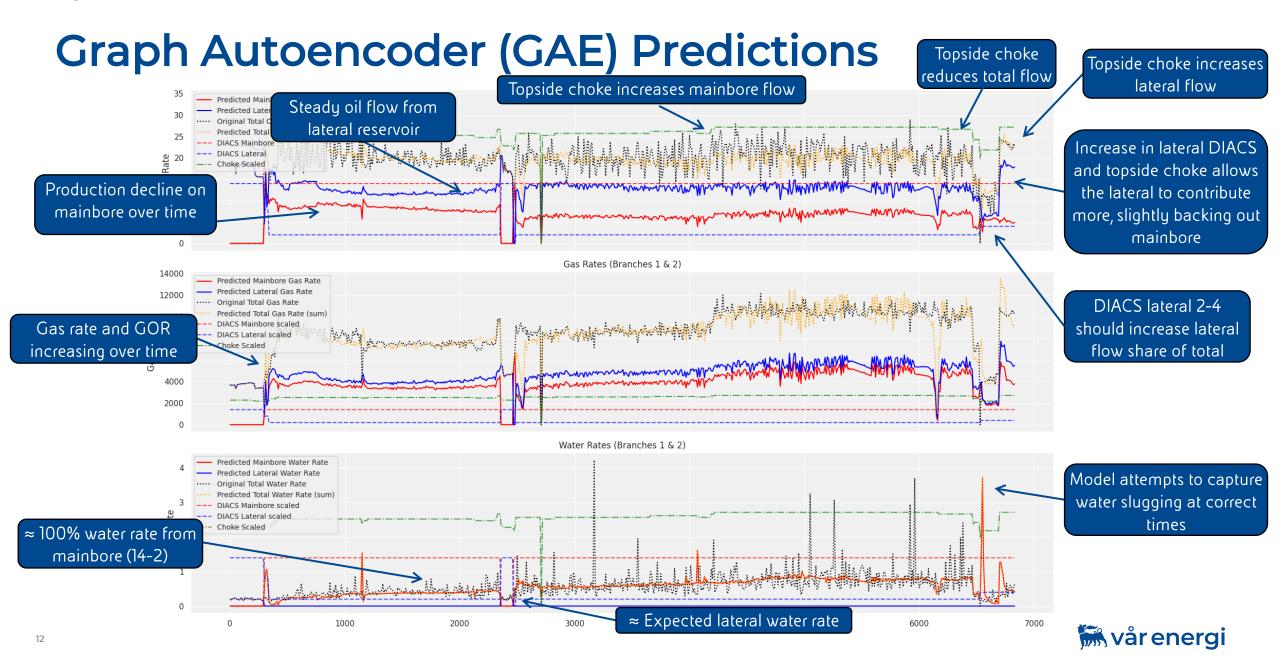
2. Supervised target (Answer exist):

- If the lateral is closed: $Q_{MPFM} = \widehat{Q_1} + 0$
- If the mainbore is closed: $Q_{MPFM} = 0 + \widehat{Q}_2$
- The model learns the contribution of each branch when one branch is producing

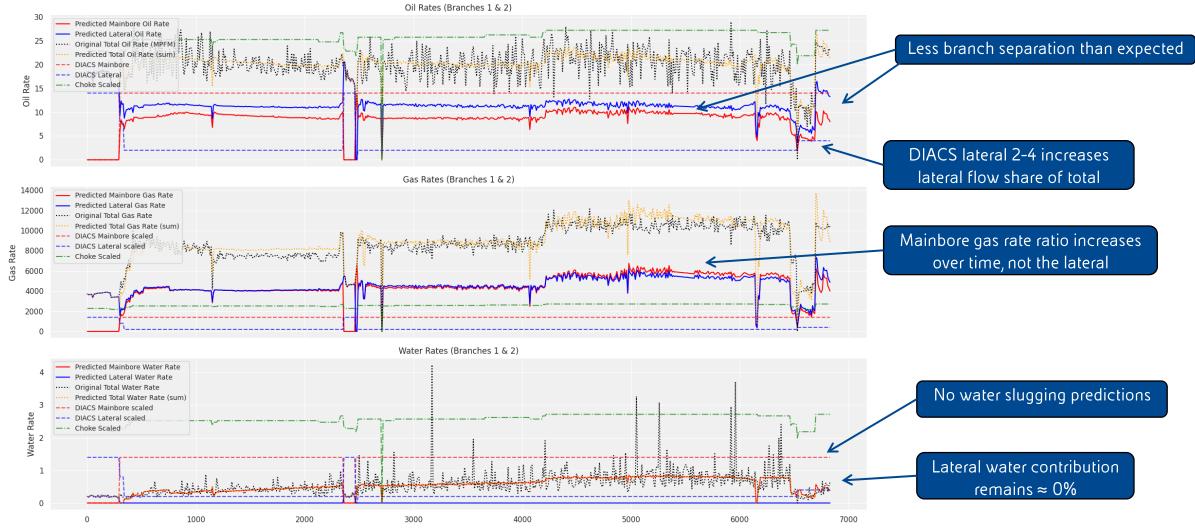
```
for i in range(batch size):
 km = k main[i]
kl = k lat[i]
dp m = dp main[i]
dp_l = dp_lat[i]
 # Extract predictions from model
o b1, o b2 = pred oil b1[i], pred oil b2[i]
 g b1, g b2 = pred gas b1[i], pred gas b2[i]
w_b1, w_b2 = pred_water_b1[i], pred_water_b2[i]
# Get targets labels from actual measured MPFM
t o, t g, t w = target oil[i], target gas[i], target water[i]
 # 2. Supervised loss (one branch is closed)
if km == 0: # Mainbore closed -> all flow through Lateral
     total loss += ( # MSE loss
         loss_fn(o_b2, t_o) + loss_fn(g_b2, t_g) + loss_fn(w_b2, t_w)
elif kl == 0: # Lateral closed -> all flow through Mainbore
     total loss += ( # MSE Loss
         loss_fn(o_b1, t_o) + loss_fn(g_b1, t_g) + loss_fn(w_b1, t_w)
# 1. Semi supervised learning (both branches flow)
 else:
     # MSE loss on total flows
    o total = o b1 + o b2
     g total = g b1 + g b2
     w \text{ total} = w \text{ b1} + w \text{ b2}
     mse loss total += (
         loss fn(o total, t o) + loss fn(g total, t g) + loss fn(w total, t w)
```


Results

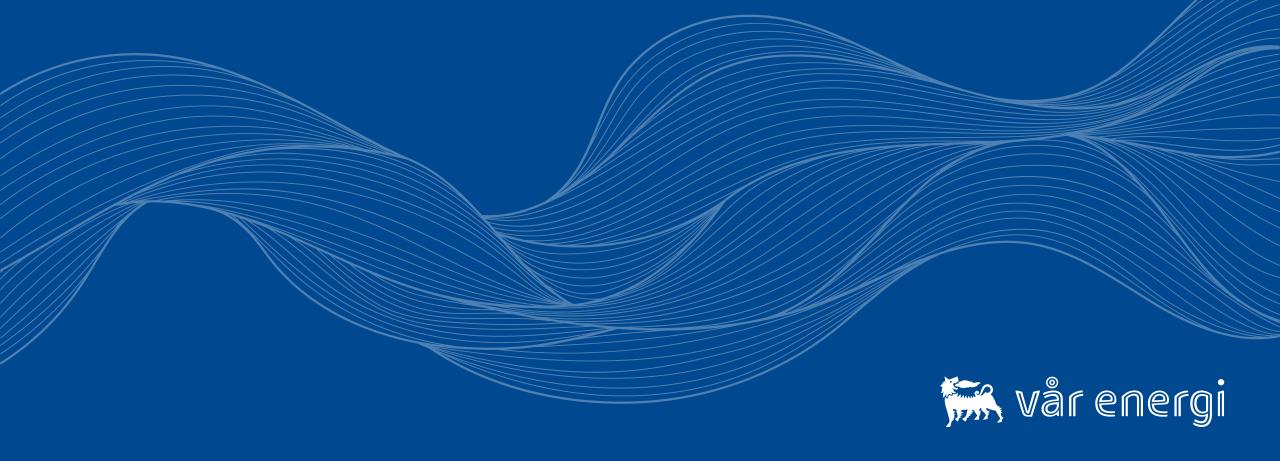




Graph Autoencoder (GAE) Predictions – Version 2



Evaluation



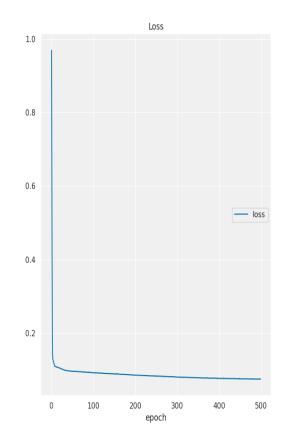
Graph Autoencoder (GAE) Metrics

Loss function MSE (Mean Squared Error)

- Smooth and decreasing loss curve with MSE: 0.968 to 0.075
- Proves the model is guided towards the correct solution
- Efficient loss function 1 and 2

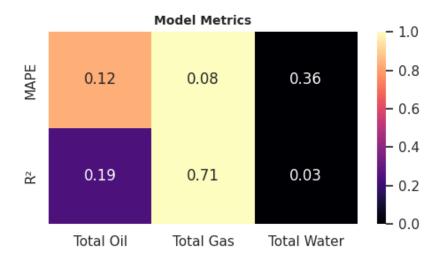
Contribution Ratios

- Lateral contribution at (14-2): 64% Oil and 53% Gas
- Aligns with GAP model results although GAE predicts higher gas and less oil.

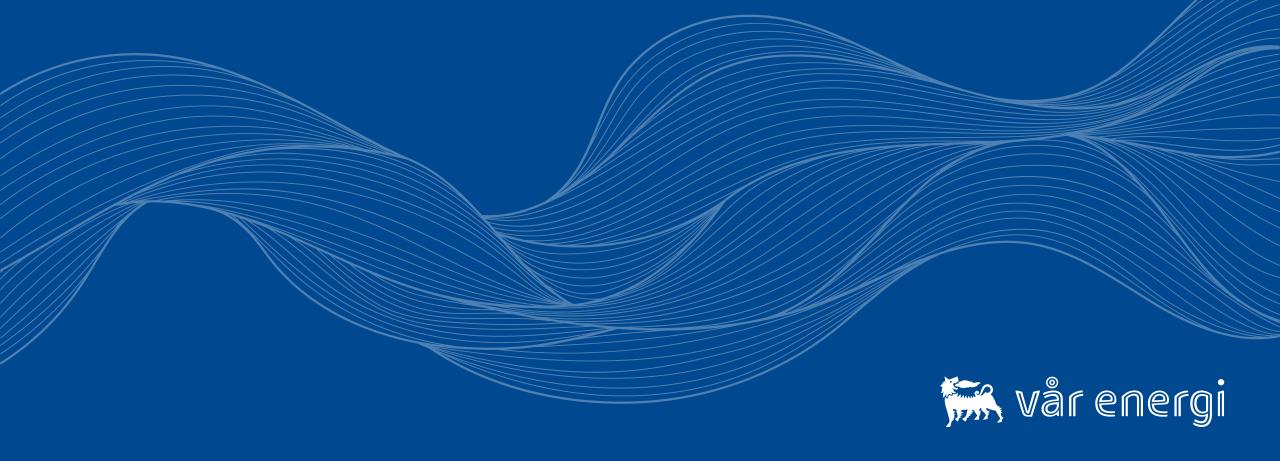


Evaluation Scores

- Output reconstruction error: 1.11% (MPFM prediction)
- Good mean average percentage error (MAPE) for oil and gas, poor for water
- R² score shows the model fails to capture fluctuations in the oil and water rates
- MAPE and R² calculated using sum of branch flow



Discussion



Model Performance

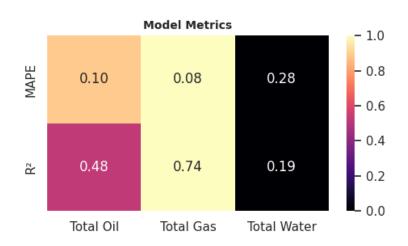
GAE model sensitivity

Best results obtained with:

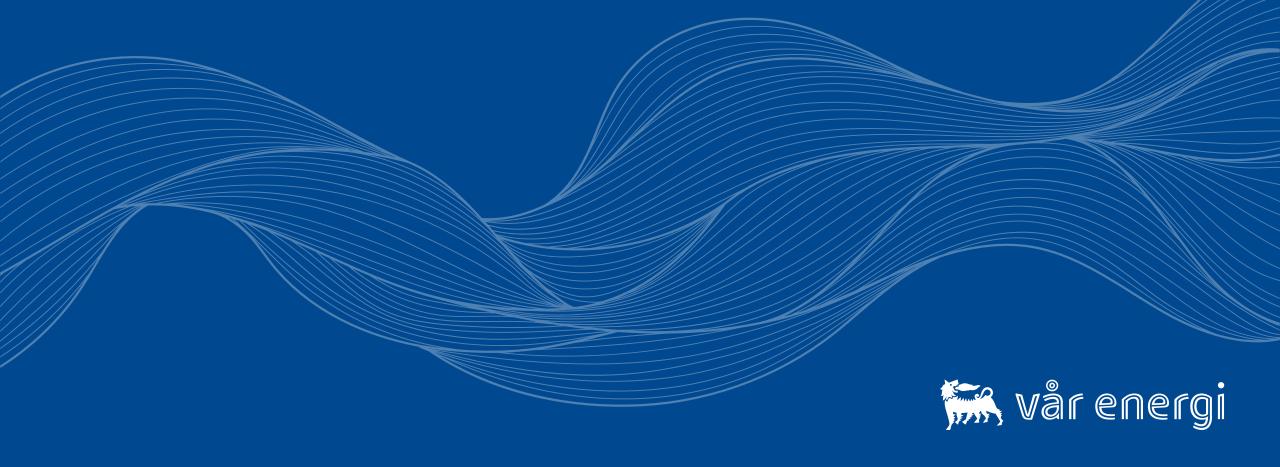
- 8e-5 step learning rate / 64 hidden dim / 32 dim latent space / 128 batch size
- Changes in model hyperparameters caused:
 - Even branch split ratio
 - Overfitting/underfitting
 - No mainbore production decline predicted
 - Less responsive to changes in DIACS chokes
- Model is struggling to predict > 0 for all phases
 a frequent occurrence during development
- Training on multiple wells caused more responsive results

GAE Version 2 – global processing effects:

- More even branch split (55% lateral oil rate at 14-2)
- Improved responsiveness to chokes
- Improved metrics
- Reconstruction error: 0.7%
- Indicates a trade-off between correct branch ratio, or better responses to choke settings



Conclusion



Conclusion

Data quality and Preprocessing

- The results have been highly sensitive to the quality of the training data and preprocessing, as expected
- Even a small training set size (4 wells) with little variation generated valuable predictions for oil and gas flow

Modelling

- Node learning and attention mechanisms has proven to be effective for predicting branch flow
- Additional global processing in the encoder is beneficial, but reduces branch separations
- All model versions have been highly sensitive to the hyperparameters, and features chosen for training

Evaluation

- Predicting branch flow without labels adds uncertainty to the evaluation methods (no real answer available)
- Existing GAP results comparison and petroleum production analysis have been the most important evaluation methods

Usage

- The GAE branch flow predictions provide a dynamic insight into multilateral well performance and can be used for reservoir management and production optimization
- The next step will be to investigate zero valued water phase predictions for the lateral branch, compensate for MPFM measurement errors and to create a generalized model capable of predicting on unseen data

Acknowledgement

I would like to thank,

Main Supervisor & Mentor: Marius Stene - Principal Petroleum Engineer at Var Energi

Second Supervisor: Dr. Samuel Krevor - Professor of Subsurface Carbon Storage at Imperial College London

Support and Guidance: Erik Brøndbo - Senior Principal Petroleum Engineer at Var Energi

Support and Guidance: Kristoffer Sæby - Senior Petroleum Engineer at Vår Energi

Support and Guidance: Mohammad Sohrab Hossain - Senior Petroleum Engineer at Vår Energi

Gap Model: Claudio Cannone - Senior Reservoir Engineer at ENI

Q&A

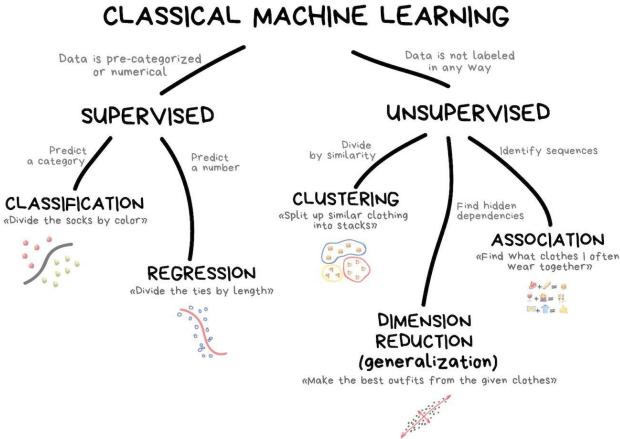
References

- 1. Khemani, B., Patil, S., Kotecha, K. and Tanwar, S., 2024. A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions. Journal of Big Data, 11(1), p.18.
- 2. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks. arXiv preprint arXiv:1710.10903.
- 3. Sandnes, A.T., Grimstad, B. and Kolbjørnsen, O., 2021. Multi-task learning for virtual flow metering. Knowledge-Based Systems, 232, p.107458.
- 4. Bikmukhametov, T. and Jäschke, J., 2020. First principles and machine learning virtual flow metering: a literature review. Journal of Petroleum Science and Engineering, 184, p.106487.
- 5. Claudio Cannone's work on GAP model for branch contributions (Unpublished)
- 6. SLB's work on the Bernoulli's equation for retrofitted MLT's (unpublished)

Appendix

Machine Learning Definition

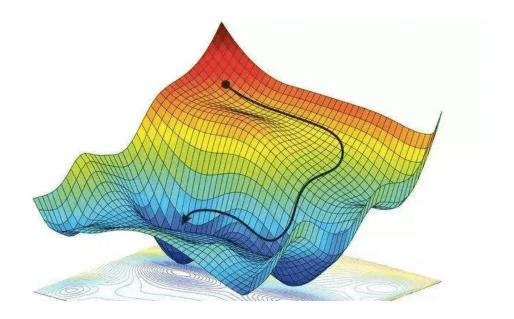




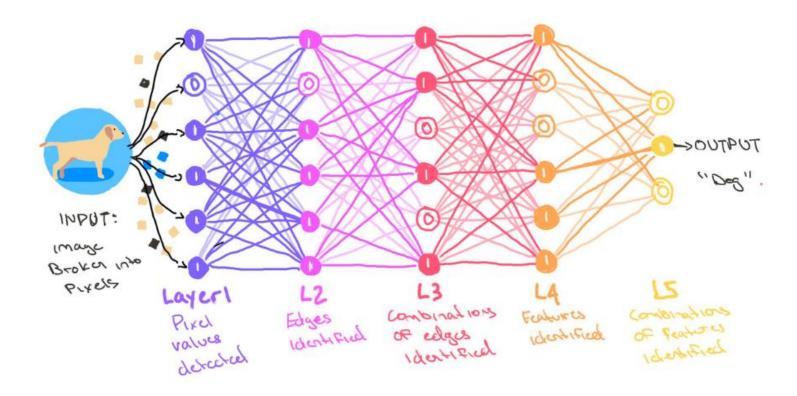
Loss function – How does the model learn?

Gradient Descent

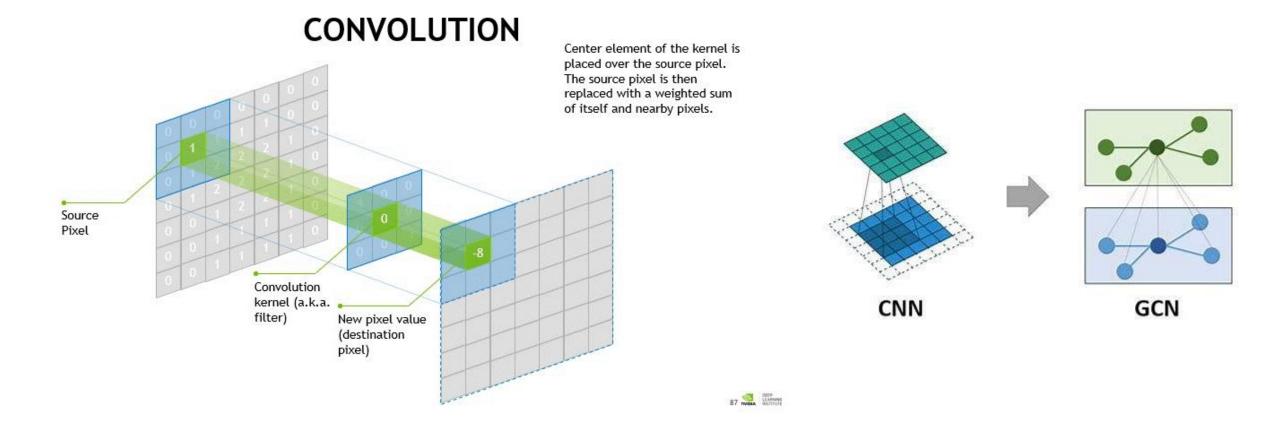
- Calculates the gradient (direction) to find the "road" to the lowest MSE in the loss function (loss space)
- If MSE increases, it adjusts its weights and biases to find a new "road"
- If MSE decreases, it adjusts its weights and biases to continue down this "road"
- Finally, the MSE can not be reduced further, and the model has been trained with the optimal weights and biases



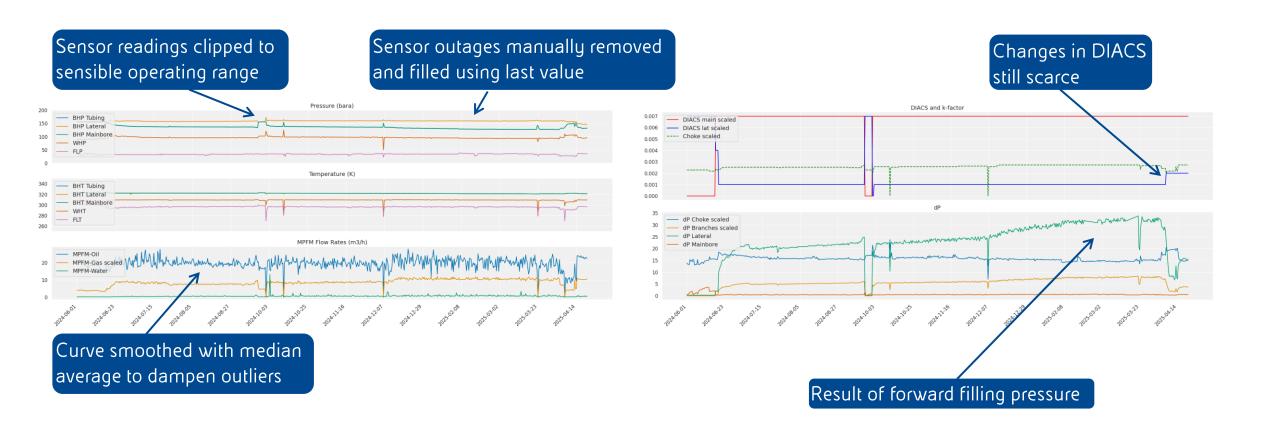
Neural Networks - What does the model learn?



Convolutional Transforms



Cleaned Data



Exploratory Data Analysis

Flow Correlations

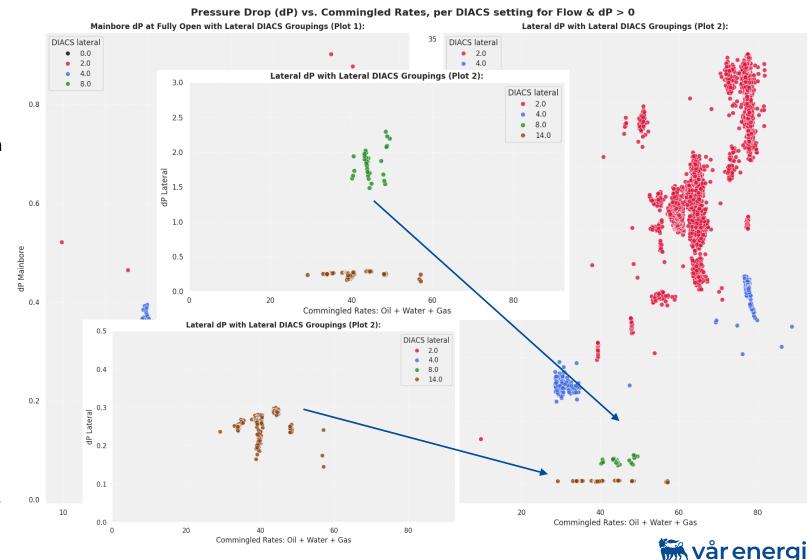
- Expecting quadratic correlations
- Combined, dP correlates quadratic with flow rates, approximately
- Wide range of measurements at DIACS 2, displaying clear correlation
- DIACS 4 jump due to topside choke adjustments
- Measurement errors, outliers, potential complex flow patterns prevents perfect quadratic curve fit
- Individual oil, gas and water rates displayed varying, caotic or no correlations

Plot 1:

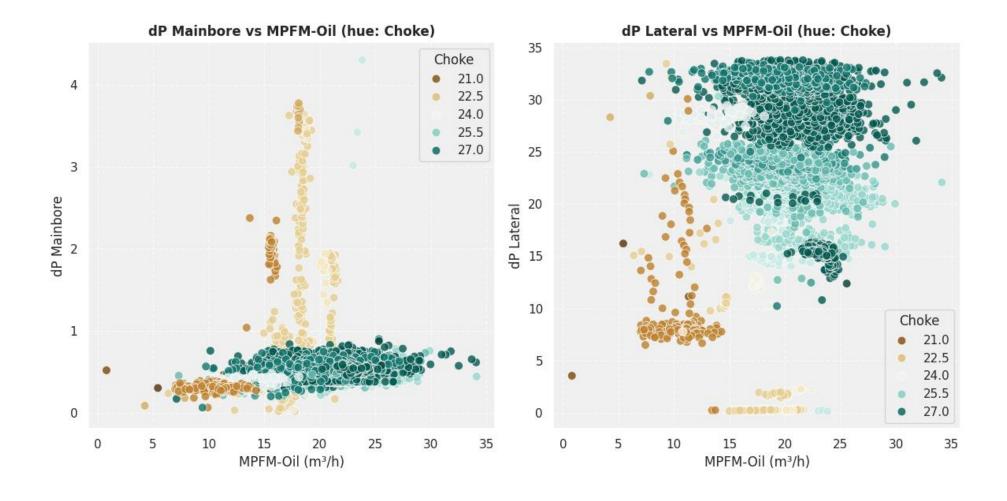
 DIACS 8 almost no correlation due to few measurements

Plot 2:

- Some correlation at DIACS 8
- DIACS 14 distorted as topside choke increases and sensor error present



EDA: Choke Correlations



Bernoulli's

Sandnes et al., (2021) derived an analytical model from Bernoulli's equation:

$$Q = AC\sqrt{\frac{P_1 - P_2}{\rho}}$$

Anders T. Sandnes, Bjarne Grimstad, and Odd Kolbjørnsen. Multi-task learning for virtual flow metering. Knowledge-Based Systems, 232:107458, 2021.

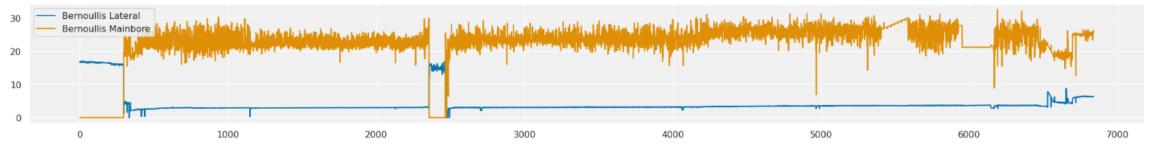
A – effective valve opening | C – Coefficient | P – Pressure | ρ – fluid density

SLB derived an analytical model for Bernoulli's, fitted to DIACS branch valve openings (unpublished):

$$Q^2 = N \; \frac{C_d A^2}{\rho} \; (P_1 - P_2)$$

N - number of nozzles | A - Area of Nozzles | C_d - Coefficient | P - Pressure | ρ - fluid density

- Multiple assumptions are made: Uniform velocity profiles, horizontal, inviscid, steady and incompressible single-phase flow
- Flow control chokes, multiphase flow behavior, friction forces and commingled flow makes these assumptions invalid
- The well of interest is a special case Bernoulli's results are poor due to comparing extremely restricted DIACS with fully open, and pressure sensor errors
- Bernoulli's in the loss can work as a regularizer, for some wells, to guide the model to learn which branch should flow more



Preprocessing

Transformation methods:

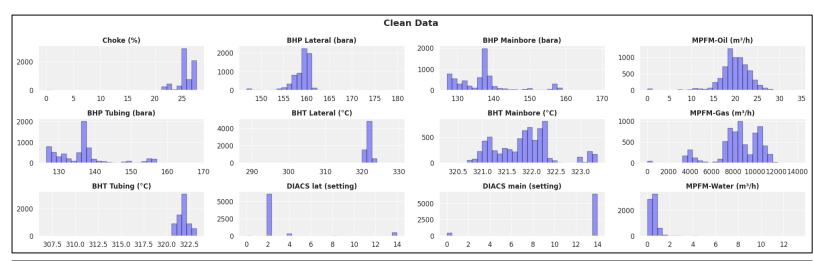
- Log transform non-gaussian features
 - Excluding MPFM-Oil, MPFM Gas, DIACS, Choke and k-factor
- Apply min-max scaler:

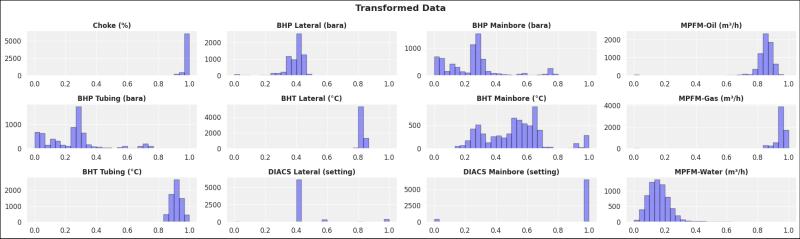
$$x_{scaler} = \frac{(x - x_{min})}{(x_{max} - x_{min})}$$

 Provides faster learning and improved predictions

Data assumptions:

- No sensor measurements error
- No sensor drifting





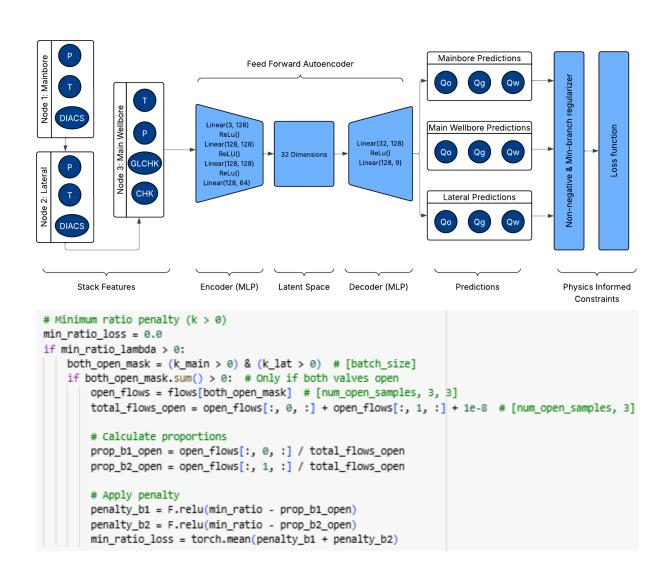
Deep Learning Model

Feed Forward Autoencoder

- A simpler model, FFA, was developed for comparison
- Stacked features for global processing
- Ignores relationships between nodes
- FFA contains a 3 layered MLP in the encoder, and the same decoder

Minimum branch contribution

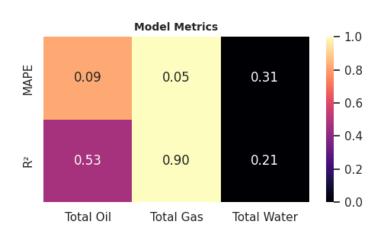
- Model cheats by predicting one branch to be 0
- Minimum branch flow is enforced to avoid predicting commingled flow

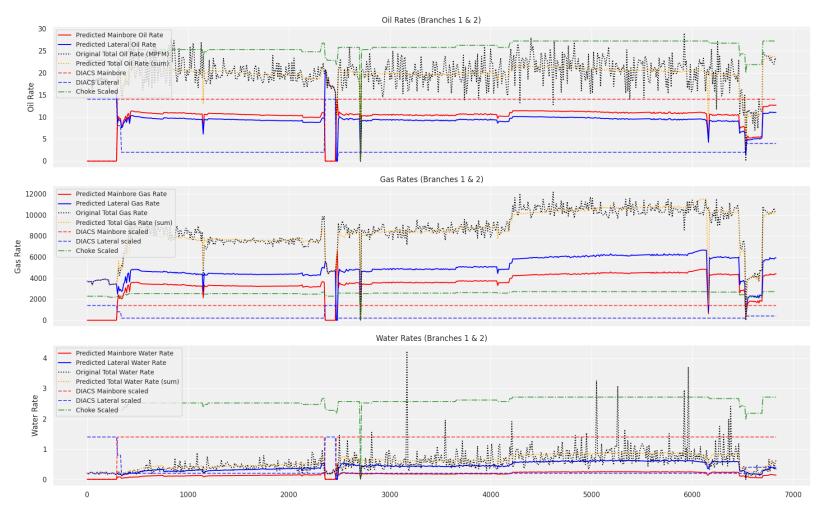


Feed-Forward Autoencoder

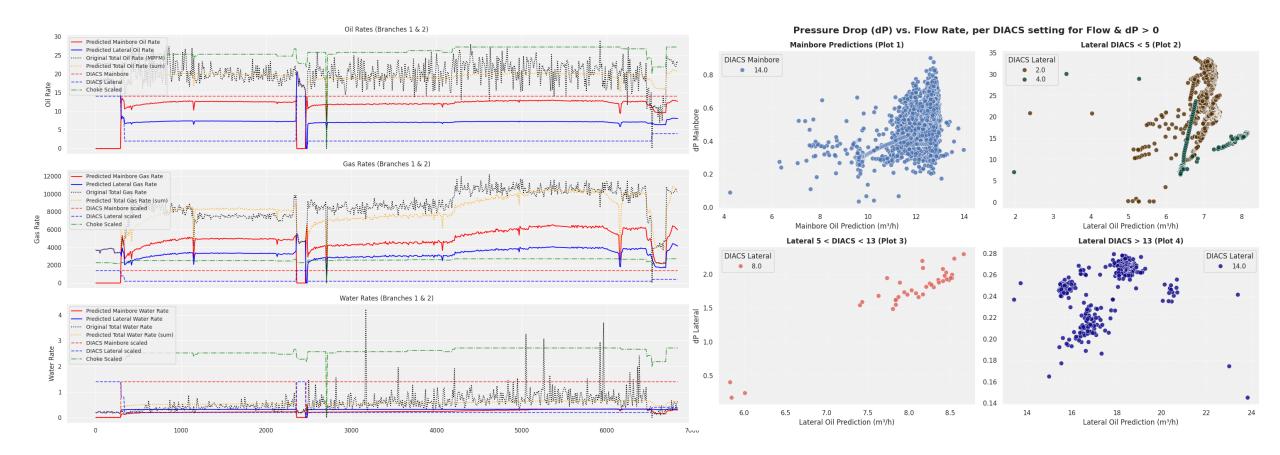
Comparison

- Predicts unexpected rates
- No mainbore production decline predicted
- Poor response to Lateral DIACS increase
- Topside choke adjustment causes equal branch rate change
- Improved metrics
- Water rate branch predictions > 0





GAE – Training on one well



Graph Autoencoder (GAE) Flow Correlations

Flow Correlations

- The predicted rates generates dispersed correlations
- Correlation patterns have changed, but remains approximately linear/quadratic
- Stronger correlation on DIACS 8
- Predicting commingled at DIACS 14

