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Problem Statement
Background

▪ Retrofitted Multilateral wells (rMLTs) are 
increasingly common, targeting different reservoir 
sections

▪ Flow estimates from each branch is important for 
reservoir modelling and production optimization

▪ Multiphase flow meter (MPFM) is only available 
topside, measuring commingled production

▪ Branch chokes (DIACS) controls branch flow and 
adds complexity to commingled flow

▪ Attempts to use analytical solutions (e.g. Bernoulli’s) 
have not been successful with current pressure 
drop

▪ Machine learning methods can be applied to 
capture the complex and non-linear relationships 
present in these conditions

Proposed Solution

▪ Develop a semi-supervised deep learning model to 
predict the multiphase flow for each individual 
branch in one rMLT well, using 3 other MLTs in the 
training set
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PTs triplegauge

rMLT: New lateral branch added from original single lateral well

WHP/WHT exist but not 
used in ML model

Flow prediction (VFM)
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The available data has several problems:

▪ Sensor drifting, sensor mapping, sensor 
outages and sensor measurement error 

▪ Years of time series data available from 4 
wells, but with limited variation, such as 
static DIACS settings

▪ Minor pressure sensor offset/error 
becomes large during pressure drop 
calculations, especially for fully open 
DIACS

Measures taken to address problems:

▪ Sensor remapping

▪ Remove time interval of outages

▪ Imputing missing data

▪ Filter out sensor measurements to be 
within sensible operating limits

▪ Apply moving median filter to smooth 
out unstable sensor readings

5

Data Analysis
Sensor outages

Outliers

Limited change in DIACS
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Numerical Modelling in GAP
Background

▪ Sr. Reservoir Engineer (ENI), Claudio Cannone, developed a static numerical simulation of individual branch flow contribution in rMLTs

Method

▪ Completion schematic simplified into 3 parts, one for each branch and one for the main wellbore

▪ By adjusting oil rates, Gas-oil ratio (GOR) and water cut (WCT), each parts pressures and temperatures are matched

▪ The new adjusted oil rates, GOR and WCT obtained are corrected for the MPFMs measurement error

▪ Obtain corrected comingled production flow rates for calculating the branch contribution ratios

Results

▪ Gap Model returns a branch split for a specific combination of choke and DIACS settings

▪ Model results only valid for present GOR, WCT, pressures, temperatures and flows

▪ Water rates are not included
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Wellbore / 
date

Branches’ contribution 

Oil Rate [%] Gas Rate [%]

Mainbore (14 DIACS) Lateral (2 DIACS) Mainbore (14 DIACS) Lateral (2 DIACS)

Mainbore MPFM error / 19th May 2024 96% 0% 216% 0%

Lateral MPFM error / 16th Jun 2024 0% 100% 0% 114%

Commingle Branch Split / 29th July 2024 26% 74% 68% 32%

High mainbore
gas MPFM 

measurement 
error

Lateral flow contribution: 74% oil and 32% gas
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Methods
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Graph Autoencoder (GAE)

▪ An autoencoder based on a graph neural 
network with node attention

▪ Branches communicate with the main 
wellbore unilaterally

▪ Nodes are defined with a set of features 
(column of data, e.g. pressure)

▪ Data is transformed to a latent space 
using a Graph Attention (GAT) encoder 
with various heads

▪ Data is transformed back to the input 
dimension with 3 additional features per 
branch using the Multilayer Perceptron 
(MLP) decoder

▪ Main Wellbore predictions are used for 
evaluation only

▪ Results are clipped to be > 0

▪ Predictions are processed in the loss 
function
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Deep Learning Model
GAE version 2:

▪ Global data processing using additional linear transformations in 
the encoder

▪ Allows the model to find correlations across all the data, at once

Give data to model

Perform some mathematical transformations 
to find a pattern in the data

Model returns a result based on the pattern it has found

Check how good the predictions are
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Learning

▪ The GAE model learns by minimizing the loss function and 
updating the model weights and biases (parameters)

▪ Defined as the mean squared error (MSE) between the actual 
(MPFM) and predicted using two different methods (1 & 2)

1. Semi-supervised target (Some answer exist):
▪ Branch flow is unknown, but the commingled flow is assumed 

to be accurate (MPFM)

▪ 𝑄𝑀𝑃𝐹𝑀 = ෢𝑄1 + ෢𝑄2

▪ The model learns to predict a multiphase flow sum equal to the 
measured (MPFM)

2. Supervised target (Answer exist):
▪ If the lateral is closed: 𝑄𝑀𝑃𝐹𝑀 = ෢𝑄1 + 0

▪ If the mainbore is closed: 𝑄𝑀𝑃𝐹𝑀 = 0 + ෢𝑄2

▪ The model learns the contribution of each branch when one 
branch is producing

10

Loss Function



Use                             to sample   colours

Results
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Graph Autoencoder (GAE) Predictions

DIACS lateral 2-4 
should increase lateral 

flow share of total

Topside choke 
reduces total flow

Topside choke increases 
lateral flow

Increase in lateral DIACS 
and topside choke allows 
the lateral to contribute 

more, slightly backing out  
mainbore

Production decline on 
mainboreover time

Gas rate and GOR 
increasing over time

Steady oil flow from 
lateral reservoir

≈ 100% water rate from 
mainbore(14-2)

Model attempts to capture 
water slugging at correct 

times

≈ Expected lateral water rate

Topside choke increases mainboreflow
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Graph Autoencoder (GAE) Predictions – Version 2

DIACS lateral 2-4 increases 
lateral flow share of total

Less branch separation than expected

Mainboregas rate ratio increases 
over time, not the lateral

No water slugging predictions

Lateral water contribution 
remains ≈ 0%
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Evaluation
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Graph Autoencoder (GAE) Metrics
Loss function MSE (Mean 
Squared Error)

▪ Smooth and decreasing loss 
curve with MSE: 0.968 to 0.075

▪ Proves the model is guided 
towards the correct solution

▪ Efficient loss function 1 and 2

Contribution Ratios
▪ Lateral contribution at (14-2): 

64% Oil and 53% Gas
▪ Aligns with GAP model 

results although GAE 
predicts higher gas and less 
oil.

Evaluation Scores

▪ Output reconstruction error: 1.11% (MPFM 
prediction)

▪ Good mean average percentage error (MAPE) 
for oil and gas, poor for water

▪ R2 score shows the model fails to capture 
fluctuations in the oil and water rates

▪ MAPE and R2 calculated using sum of branch 
flow
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Discussion
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GAE model sensitivity

Best results obtained with:
▪ 8e-5 step learning rate  / 64 hidden dim / 32 dim 

latent space / 128 batch size 

▪ Changes in model hyperparameters caused:
▪ Even branch split ratio
▪ Overfitting/underfitting
▪ No mainbore production decline predicted
▪ Less responsive to changes in DIACS chokes

▪ Model is struggling to predict > 0 for all phases 
– a frequent occurrence during development

▪ Training on multiple wells caused more 
responsive results
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Model Performance
GAE Version 2 – global processing effects:
▪ More even branch split (55% lateral oil rate at 14-2) 

▪ Improved responsiveness to chokes

▪ Improved metrics

▪ Reconstruction error: 0.7%

▪ Indicates a trade-off between correct branch 
ratio, or better responses to choke settings
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Conclusion
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Data quality and Preprocessing

▪ The results have been highly sensitive to the quality of the training data and preprocessing, as expected

▪ Even a small training set size (4 wells) with little variation generated valuable predictions for oil and gas flow

Modelling

▪ Node learning and attention mechanisms has proven to be effective for predicting branch flow

▪ Additional global processing in the encoder is beneficial, but reduces branch separations

▪ All model versions have been highly sensitive to the hyperparameters, and features chosen for training

Evaluation

▪ Predicting branch flow without labels adds uncertainty to the evaluation methods (no real answer available)

▪ Existing GAP results comparison and petroleum production analysis have been the most important evaluation methods

Usage

▪ The GAE branch flow predictions provide a dynamic insight into multilateral well performance and can be used for 
reservoir management and production optimization

▪ The next step will be to investigate zero valued water phase predictions for the lateral branch, compensate for MPFM 
measurement errors and to create a generalized model capable of predicting on unseen data

19

Conclusion
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Machine Learning Definition
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Loss function – How does the model learn?

25

Gradient Descent

▪ Calculates the gradient (direction) to find the 
“road” to the lowest MSE in the loss function 
(loss space)

▪ If MSE increases, it adjusts its weights and biases 
to find a new “road”

▪ If MSE decreases, it adjusts its weights and 
biases to continue down this “road”

▪ Finally, the MSE can not be reduced further, and 
the model has been trained with the optimal 
weights and biases



Use                             to sample   colours

Neural Networks – What does the model learn?

26
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Convolutional Transforms

27
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Cleaned Data

Curve smoothed with median 
average to dampen outliers

Sensor outages manually removed 
and filled using last value

Sensor readings clipped to 
sensible operating range

Changes in DIACS 
still scarce

Result of forward filling pressure
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Exploratory Data Analysis
Flow Correlations
▪ Expecting quadratic correlations
▪ Combined, dP correlates quadratic 

with flow rates, approximately
▪ Wide range of measurements at 

DIACS 2, displaying clear correlation
▪ DIACS 4 jump due to topside choke 

adjustments
▪ Measurement errors, outliers, 

potential complex flow patterns 
prevents perfect quadratic curve fit

▪ Individual oil, gas and water rates 
displayed varying, caotic or no 
correlations

Plot 1:
▪ DIACS 8 almost no correlation due 

to few measurements
Plot 2:
• Some correlation at DIACS 8
• DIACS 14 distorted as topside choke 

increases and sensor error present
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EDA: Choke Correlations

30
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Bernoulli’s
Sandnes et al., (2021) derived an analytical 
model from Bernoulli’s equation:

𝑄 = 𝐴𝐶
𝑃1−𝑃2

𝜌

A – effective valve opening | C – Coefficient | P – Pressure | 𝜌 – fluid density

31

Anders T. Sandnes, Bjarne Grimstad, and Odd 
Kolbjørnsen. Multi-task learning for virtual flow 
metering. Knowledge-Based Systems, 
232:107458, 2021.

SLB derived an analytical model for Bernoulli’s, fitted to DIACS 
branch valve openings (unpublished):

𝑄2 = 𝑁
𝐶𝑑𝐴

2

𝜌
(𝑃1 − 𝑃2)

N – number of nozzles |A – Area of Nozzles | 𝐶𝑑 – Coefficient | P – Pressure | 𝜌 – fluid density

▪ Multiple assumptions are made: Uniform velocity profiles, horizontal, inviscid, steady and incompressible single-phase flow

▪ Flow control chokes, multiphase flow behavior, friction forces and commingled flow makes these assumptions invalid

▪ The well of interest is a special case –Bernoulli’s results are poor due to comparing extremely restricted DIACSwith fully 
open, and pressure sensor errors

▪ Bernoulli’s in the loss can work as a regularizer, for some wells, to guide the model to learn which branch should flow more
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Transformation methods:

▪ Log transform non-gaussian 
features
▪ Excluding MPFM-Oil, MPFM Gas, 

DIACS, Choke and k-factor

▪ Apply min-max scaler:

𝑥𝑠𝑐𝑎𝑙𝑒𝑟 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

▪ Provides faster learning and 
improved predictions

Data assumptions:

▪ No sensor measurements error

▪ No sensor drifting

32

Preprocessing
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Deep Learning Model
Feed Forward Autoencoder

▪ A simpler model, FFA, was developed 
for comparison

▪ Stacked features for global 
processing

▪ Ignores relationships between nodes

▪ FFA contains a 3 layered MLP in the 
encoder, and the same decoder

Minimum branch contribution

▪ Model cheats by predicting one 
branch to be 0 

▪ Minimum branch flow is enforced to 
avoid predicting commingled flow

33
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Feed-Forward Autoencoder 

Comparison

▪ Predicts unexpected rates

▪ No mainbore production decline 
predicted

▪ Poor response to Lateral DIACS 
increase

▪ Topside choke adjustment causes 
equal branch rate change

▪ Improved metrics

▪ Water rate branch predictions > 0
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GAE – Training on one well

35
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Graph Autoencoder (GAE) Flow Correlations
Flow Correlations

▪ The predicted rates 
generates dispersed 
correlations

▪ Correlation patterns have 
changed, but remains 
approximately 
linear/quadratic

▪ Stronger correlation on 
DIACS 8

▪ Predicting commingled at 
DIACS 14

36
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