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Problem Statement

WHP/WHT exist but not
used in ML model

Background

= Retrofitted Multilateral wells (rMLTSs) are Gas Lift Wellhead
increasingly common, targeting different reservoir . - o A \
sections (Branch 3: Main Wellbore | Branch 3: Main Wellbore

= Flow estimates from each branch is important for | @ - o
reservoir modelling and production optimization (
= Multiphase flow meter (MPFM) is only available T

topside, measuring commingled production

= Branch chokes (DIACS) controls branch flow and PTs triplegauge ow predictio

()]
adds complexity to commingled flow 5 -
= MLT Branches
= Attempts to use analytical solutions (e.g. Bernoulli’s) ~
have not been successful with current pressure .
. Branch 1: Mainbore
d rop Bottomhole Tubing
= Machine learning methods can be applied to L Branch 3: Main Wellbore @ ° o ectio
capture the complex and non-linear relationships l

present in these conditions

Proposed Solution Branch 2: Lateral /
S Reservoir
= Develop a semi-supervised deep learning model to @ ° °

predict the multiphase flow for each individual
branch in one rMLT well, using 3 other MLTs in the
training set

rMLT: New lateral branch added from original single lateral well

™ varenergi
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Data Analysis

. Pressure (bara) Sensor outages
The available data has several problems: o — SHP Tubing
- Sensor drifting, sensor mapping, sensor !

outages and sensor measurement error O J’/‘\‘ﬂ_jk:;: ;
= Years of time series data available from4 s

wells, but with limited variation, such as % — ames /m

static DIACS settings o — :

. 325 Al —\r o 1 ;R‘

= Minor pressure sensor offset/error » S ¥ i —F -

becomes large during pressure drop Combined MPEM Flow Rates (m3/h)

calculations, especially for fully open 0 Mol

DIACS 20 —— MPFM-Water | |
Measures taken to address problems: ¢ | . |‘ |
- Sensor remapping DIACS & Choke Settings

5 DIACS Mainbore S = ‘ g S

= Remove time interval of outages 2 o |
- Imputing missing data . A‘ 1 S
= Filter out sensor measurements to be ap

within sensible operating limits o Limited change in DIACS /M ﬁ

200 —— dp Mainbore
. . . o — dPBranches AJ—\JM T -e——" = I

= Apply moving median filter to smooth \A/\/

out unstable sensor readings

: ™ varenergi
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Numerical Modelling in GAP

Background

= Sr. Reservoir Engineer (ENI), Claudio Cannone, developed a static numerical simulation of individual branch flow contribution in rMLTs
Method

= Completion schematic simplified into 3 parts, one for each branch and one for the main wellbore

= By adjusting oil rates, Gas-oil ratio (GOR) and water cut (WCT), each parts pressures and temperatures are matched

= The new adjusted oil rates, GOR and WCT obtained are corrected for the MPFMs measurement error

= Obtain corrected comingled production flow rates for calculating the branch contribution ratios

Results

= Gap Model returns a branch split for a specific combination of choke and DIACS settings

= Model results only valid for present GOR, WCT, pressures, temperatur

High mainbore
= Water rates are not included gas MPFM
mMmeasurement

Slggels ibution

Gas Rate [%]

Wellbore / Oil Rate [%]
date

Lateral (2 DIACS)

Mainbore (14 DIACS)

Qainbore (14 DIACS) Lateral (2 DIACS)

Mainbore MPFM error /19th May 2024 96% 0% \\ 216% 0%
Lateral MPFM error /16t Jun 2024 0% 100% 0% M4%

i i th (o) (o) (o) (o)
Commingle Branch Split / 29th July 2024 26% > 74% 68% > 32%

; Lateral flow contribution: 74% oil and 32% gas %Vér energi



Methods

WK var energi



Var Energi - Internal

Deep Learning Model

Graph Autoencoder (GAE)

An autoencoder based on a graph neural
network with node attention

Branches communicate with the main
wellbore unilaterally

Nodes are defined with a set of features
(column of data, e.g. pressure)

Data is transformed to a latent space
using a Graph Attention (GAT) encoder
with various heads

Data is transformed back to the input
dimension with 3 additional features per
branch using the Multilayer Perceptron
(MLP) decoder

Main Wellbore predictions are used for
evaluation only

Results are clipped to be >0

Predictions are processed in the loss
function

GAE version 2:

Check how good the predictions are

= Global data processing using additional linear transformations in

the encoder

« Allows the mo{aEiaislin some mathemati-cal UERBPIRERRES 3t once
to find a pattern in the data

Node 1: Mainbore

Node 3: Main Wellbore

»| GatConv(64, 32, 2)

Graph Autoencoder

A

l,r\

GatConv(3, 16, 4)
RelLU()

Node 2: Lateral

Give data to model

AN J

ReLU()
GatConv(64, 64, 1)
ReLU()
GatConv(64, 32, 1)

J»»/

-

J

—

AN

32 Dimensions

J

-

Al
Linear(32, 64)

ReLu()
Linear(64, 3)

\

AN J

Mainbore Predictions

Y

(Main Wellbore Predictions]

|

i

Lateral Predictions

v

Y

~v

Node definition

v

Encoder (GAT)

v

Latent Space

~

Decoder (MLP)

~

Predictions

Model returns a result based on the pattern it has found

-
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Loss Function

Learning

= The GAE model learns by minimizing the loss function and
updating the model weights and biases (parameters)

= Defined as the mean squared error (MSE) between the actual
(MPFM) and predicted using two different methods (1 & 2)

1. Semi-supervised target (Some answer exist):

= Branch flow is unknown, but the commingled flow is assumed
to be accurate (MPFM)

= Quprm = 01 + Q3
= The model learns to predict a multiphase flow sum equal to the

measured (MPFM)

2. Supervised target (Answer exist):
- If the lateral is closed: Qupry = 01 + 0
= If the mainbore is closed: Qupry = 0 + Q5

= The model learns the contribution of each branch when one
branch is producing

for i in range(batch_size):
k_main[i]

k_lat[i]

dp m = dp_main[i]

dp_ 1 = dp_lat[i]

# Extract predictions from model

o _bl, o_b2 = pred_oil bi[i], pred_oil b2[i]
g bl, g b2 = pred_gas_b1[i], pred_gas_b2[i]
w_bl, w_b2 = pred_water_bl[i], pred_water_b2[i]

# Get targets Labels from actual measured MPFM

t o, t_ g, t_w = target_oil[i], target_gas[i], target_water[i]

# 2. Supervised Loss (one branch is closed)

if km == 8: # Mainbore closed -> all flow through Lateral

total loss += ( # MSE loss

loss fn{o b2, t o) + loss_fn(g_ b2, t g) + loss fn{w b2, t w)

)

elif kl == 8: # Lateral closed -> all flow through Mainbore

total loss += ( # MSE loss

loss fn{o bl, t o) + loss_fn(g_bl, t g) + loss fn{w bl, t w)

)

# 1. Semi supervised Learning (both branches flow)
else:

# MSE loss on total flows

o_total = o_ bl + o_b2

g total = g b1l + g_b2

w_total = w_bl + w_b2

mse_loss total += {

loss fn{o_total, t o) + loss_fn(g_total, t g) + loss_fn{w_total, t _w)

)

™ varenergi
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Graph Autoencoder (GAE) Predictions

30 ......

25

20
(1]
o

Production decline on
mainbore over time

14000

12000

Gas rate and GOR
Increasing over time

4000

2000

=~ 100% water rate from |
mainbore (14-2)

Topside choke

Topside choke increases
reduces total flow

lateral fFlow

Topside choke increases mainbore flow

Predicted Main
Predicted Latel
Original Total g
Predicted Total
DIACS Mainbore
DIACS Lateral

Choke Scaled

Steady oil flow from

lateral reservoir
Increase in lateral DIACS

and topside choke allows
the lateral to contribute
more, slightly backing out
mainbore

Predicted Mainbore Gas Rate
Predicted Lateral Gas Rate
Original Total Gas Rate
Predicted Total Gas Rate (sum)
DIACS Mainbore scaled

DIACS Lateral scaled

oke Scaled

DIACS lateral 2-4
should increase lateral
flow share of total

Predicted Mainbore Water Rate
Predicted Lateral Water Rate
Original Total Water Rate
Predicted Total Water Rate (sum)
DIACS Mainbore scaled

DIACS Lateral scaled
Choke Scaled

Model attempts to capture
water slugging at correct
times

W S

7000
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Graph Autoencoder (GAE) Predictions — Version 2

Oil Rates (Branches 1 & 2)

0 —— Predicted Mainbore Oil Rate
25 —— Predicted Lateral Oil Rate 4 N n [ o —s—s— e -
""" el 2 36 i Less branch separation than expected
20 --- DIACS Mainbore
) —=- DIACS Lateral
E 15 —" Choke Scaled
5
10
5
o S s e O ) B A S s DIACS lateral 2-4 increases
Gas Rates (Branches 1 & 2) lateral flow share of total
14000 —— Predicted Mainbore Gas Rate
—— Predicted Lateral Gas Rate
12000 ..., Original Total Gas Rate
10000 Predicted Total Gas Rate {sum) . : 3 4 :
. S e ; : bl : Mainbore gas rate ratio increases
5 8ooo Choke Scaled ':‘ R 5 L .
= cono 5 - s ard Eo over time, not the lateral
© H 3 1 : n W . :
= : : L Wy
4000
2000
0
—— Predicted Mainbore Water Rate
4 = Predicted Lateral Water Rate
------ Original Total Water Rate . o °
. Predicted Total Water ate (sum) No water slugging predictions

—=-- DIACS Mainbore scaled
—==- DIACS Lateral scaled ) L e
—-- Choke Scaled il

e
|
f
|
|
4

srsrsesesennnne

Water Rate
N

prisans

Lateral water contribution
remains = 0%

iy STEEY

0 1000 2000 3000 4000 5000 6000 7000
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Graph Autoencoder (GAE) Metrics

Loss function MSE (Mean
Squared Error)

= Smooth and decreasing loss
curve with MSE: 0.968 to 0.075

= Proves the model is guided
towards the correct solution

= Efficient loss function 1and 2

Contribution Ratios

= Lateral contribution at (14-2):
64% Oil and 53% Gas

= Aligns with GAP model
results although GAE
predicts higher gas and less
oil.

L0

0.8

0.6

0.4

0.2

Loss

— loss

0 100 200 300 400 500

epoch

Evaluation Scores

= OQutput reconstruction error: 1.11% (MPFM

prediction)

= Good mean average percentage error (MAPE)

for oil and gas, poor for water

= R2score shows the model fails to capture
fluctuations in the oil and water rates

= MAPE and R? calculated using sum of branch

flow
Model Metrics
a 0.12 0.08
é b !
o 0.71
Total Qil Total Gas Total Water

- 1.0
- 0.8
0.6
0.4
0.2

0.0
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Model Performance

GAE model sensitivity GAE Version 2 - global processing effects:
Best results obtained with: = More even branch split (55% lateral oil rate at 14-2)
- 8e-5 step learning rate /64 hidden dim /32 dim = Improved responsiveness to chokes
latent space /128 batch size - Improved metrics
= Changes in model hyperparameters caused: = Reconstruction error: 0.7%
- Even branch split ratio = Indicates a trade-off between correct branch
= Overfitting/underfitting ratio, or better responses to choke settings

= No mainbore production decline predicted

= Less responsive to changes in DIACS chokes Model Metrics

- 1.0

- 0.8

= Model is struggling to predict > O for all phases
— a frequent occurrence during development

0.10 0.08

MAPE

0.6

= Training on multiple wells caused more
responsive results

0.4
0.74

RE

0.2

0.0
Total Oil Total Gas Total Water

v ™ varenergi
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Conclusion

Data quality and Preprocessing

= The results have been highly sensitive to the quality of the training data and preprocessing, as expected

= Even a small training set size (4 wells) with little variation generated valuable predictions for oil and gas flow
Modelling

= Node learning and attention mechanisms has proven to be effective for predicting branch flow

= Additional global processing in the encoder is beneficial, but reduces branch separations

= All model versions have been highly sensitive to the hyperparameters, and features chosen for training
Evaluation

= Predicting branch flow without labels adds uncertainty to the evaluation methods (no real answer available)
= Existing GAP results comparison and petroleum production analysis have been the most important evaluation methods
Usage

= The GAE branch flow predictions provide a dynamic insight into multilateral well performance and can be used for
reservoir management and production optimization

= The next step will be to investigate zero valued water phase predictions for the lateral branch, compensate for MPFM
measurement errors and to create a generalized model capable of predicting on unseen data

s ™ varenergi
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Machine Learning Definition

CLASSICAL MACHINE LEARNING

Data is pre-categorized Data is not labeled
or numerical in any way

o SUPERVISED UNSUPERVISED

«———— Creating intelligent machines Divi
oo fa . . pred;ct vide
mimicking human intelligence. a category Predict by similarity
a number
Machine Learning ———— Algorithms enabling computers to

|dentify sequences

learn from data. CLASS":‘CA'”ON CLUSTER|NG

il - ey gand hoi‘ddey\
«Divide the socks by color» e3Pt M Smiar € othvng apsvnences
Computational models with into stacks»
interconnected artificial neurons. b o [4/3 ASSOC‘ATK)N
S ) (e~ «Find What clothis | often
Learning Neural networks with multiple ) REGRESSION ) i S
layers for hierarchical «Divide the ties by length» 5. B
representation learning. . :*':
gy s DIMENSION
REDUCTION
N (generalization)

«MaKe the best outfits from the given clothes»

24
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Loss function — How does the model learn?

Gradient Descent

= Calculates the gradient (direction) to find the
“road” to the lowest MSE in the loss function
(loss space)

= If MSE increases, it adjusts its weights and biases
to find a new “road”

= If MSE decreases, it adjusts its weights and
biases to continue down this “road”

= Finally, the MSE can not be reduced further, and
the model has been trained with the optimal
weights and biases

2s ™ varenergi
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Neural Networks — What does the model learn?

~>0VTPLT
AN %\l .

W OF .
o Loyer\ L2 L3 L4
?\ ¢ (-'\ EA %Q’S (p”\‘b \ '\o‘\ oS '\~ ¢ ,k-‘r;v‘.*(‘ '\:\. '
\)‘3 (_r\\\c\k& & (4&%(5 e o U e ON
yoN O
d&u}eu\ \ (xm\-\g\

P varenergi
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Convolutional Transforms

CONVOLUTION

Center element of the kernel is
placed over the source pixel.
The source pixel is then
replaced with a weighted sum
of itself and nearby pixels.

/
/
P

Source
Pixel

Convolution - e 3
kernel (a.ka. o 7 § 4 A
filter) New pixelvalue | | CNN GCN
(destination L I <l B - —a
pixel) E i = e
{ = [
be | et
{ el B
» a7 8, Sem

2 ™ varenergi
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Cleaned Data

Sensor readings clipped to

Sensor outages manually removed Changes in DIACS

sensible operating range

and filled using last value still scarce

Pressure (bara)

200 DIACS and k-factor
— BHPTubing - he - 0.007 B DIACS main scaled
150 = m— e — — R R
—— BHP Lateral A T N = 0006 —— DIACS lat scaled
100 — BHPMainbore . S W . o ---- Choke scaled
—= 1 [ v 0.005
— WHP ||'m
50 FLP — — o e — — »  —— _ ) 0.004
o 0.003 . : ——
"""" -
Temperature (K) 0.002 '% r;
30— BHT Tubing 0.001 E
320 —— BHT Lateral 0.000 |— i
300 e . . — S S d
WHT [ v .‘ » P
280 | |
— FLT —— dP Choke scaled
260 30

dP Branches scaled
25 —— dP Lateral

MPFM Flow Rates (m3/h) —— dP Mainbore

— MPFM-Oil
MPFM-Gas scaled 5
—— MPFM-Water 10
5
o TSI NS
N
&
al
0

Curve smoothed with median
average to dampen outliers

Result of forward filling pressure

20 ™ varenergi
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Exploratory Data Analysis

FIOW Correlations Pressure Drop (dP) vs. Commingled Rates, per DIACS setting for Flow & dP > 0

Mainbore dP at Fully Open with Lateral DIACS Groupings (Plot 1): Lateral dP with Lateral DIACS Groupings (Plot 2):
1 1 1 atera 35 atera
= Expecting quadratic correlations DIACS lateral . DIACS lateral
. . e 2.0 ° e 40

= Combined, dP correlates quadratic . w0 . Lateral dP with Lateral DIACS Groupings (Plot 2):

with flow rates, approximately y DIACS lateral
=  Wide range of measurements at 2 i . 50

. . . * 14.0
DIACS 2, displaying clear correlation . .8 N
o . 5 e .
= DIACS 4 jump due to topside choke T st
. ‘@ 15 S

adjustments v z
= Measurement errors, outliers, 10

potential complex flow patterns o : Ny

prevents perfect quadratic curve fit 3 . e ’

. 5 %

= |ndividual oil, gas and water rates . "% 20 " &

d . I d . t- ;é;. Commingled Rates: Oil + Water + Gas

Isp aye Va rylng’ Cao IC Or no 05 o Lateral dP with Lateral DIACS Groupings (Plot 2): .

correlations | DIACS atera .
Plot1: 0.4 E iﬁo
= DIACS 8 almost no correlation due 02 . )

to few measurements g ,gsig% °,
Plot 2: %02 g .

. ¢ L ] 5 .%' %

+ Some correlation at DIACS 8 N o emiomsim o ¢
- DIACS 14 distorted as topside choke  »= . . . .

increases and Sensor error present 0.0 . 2 0 I " Commingled Rates: Oil + Water + Gas

Commingled Rates: Oil + Water + Gas
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EDA: Choke Correlations

dP Mainbore vs MPFM-0il (hue: Choke) dP Lateral vs MPFM-0il (hue: Choke)

35
Choke
4 e 210
a 22.5 30
s 24.0
£ 25.5
e 27.0 25
3
[4F]
2 ) B 20
= - g
© @ L ®
=2 g 15
o -é he]
o &
10
1
5 22.5
b o 24.0
25.5
0 0 i3 @ 27.0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
MPFM-Oil (m3/h) MPFM-Oil (m3/h)

™ varenergi
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31

Bernoulli’s

Sandnes et al.,, (2021) derived an analytical
model from Bernoulli’'s equation:

P1 _PZ Anders T. Sandnes, Bjarne Grimstad, and Odd
Q = A C -_— Kolbjgrnsen. Multi-task learning for virtual flow
P metering. Knowledge-Based Systems,

232:107458, 2021.
A - effective valve opening | C — Coefficient | P — Pressure | p — fluid density

SLB derived an analytical model for Bernoulli’s, fitted to DIACS
branch valve openings (unpublished):

C A2
p (P — Py)

N - number of nozzles | A - Area of Nozzles | C4 - Coefficient | P - Pressure | p — fluid density

Q2 =N

= Multiple assumptions are made: Uniform velocity profiles, horizontal, inviscid, steady and incompressible single-phase flow

= Flow control chokes, multiphase flow behavior, friction forces and commingled flow makes these assumptions invalid

= The well of interest is a special case - Bernoulli's results are poor due to comparing extremely restricted DIACS with fully

open, and pressure sensor errors

= Bernoulli's in the loss can work as a regularizer, for some wells, to guide the model to learn which branch should flow more

3 —— Bernoullis Lateral
Bernoullis Mainbore
20
[ w
’ hd—
. Fr— r I
1] 1000 2000 4000 5000 6000 7000

™ varenergi
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Preprocessing

Transformation methods:

Clean Data

Choke (%) BHP Lateral (bara) BHP Mainbore (bara) MPFM-0il (m3/h)
2000
2000
f . 2000 1000
= Log transform non-gaussian 000 o
f - — L -
0 0 0 0
ea t u res 0 5 10 15 20 25 150 155 160 165 170 175 180 130 140 150 160 170 0 5 10 15 20 25 30 35

- EXCI u d i n g M p F M _Oi I’ M p F M G as, 2000 BHP Tubing (bara) BHT Lateral (°C) BHT Mainbore (°C) 1000 MPFM-Gas (m3/h)

DIACS, Choke and k-factor 1000 :Zzz 500 ' H 500
——— 0 .lj 0 - ‘L—_

0 0
H 130 140 150 160 170 290 300 310 320 330 320.5 321.0 321.5 322.0 322.5 323.0 0 2000 4000 6000 8000 100001200014000
= Apply min-max scaler: _ _ 220
BHT Tubing (°C) DIACS lat (setting) DIACS main (setting) MPFM-Water (m3/h)
2000 3000 5000 2000
2500 2500
0 0 - = o = 0
(x - xmln) 307.5 310.0 312.5 315.0 317.5 320.0 322.5 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12
Xscaler = ( —xX)
Xmax Xmln Transformed Data
Choke (%) BHP Lateral (bara) BHP Mainbore (bara) MPFM-0il (m3/h)
. .
= Provides faster learning and 2000
. . . 2500 1000 1000
improved predictions i " i — . N
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
M BHP Tubing (bara) BHT Lateral (°C) BHT Mainbore (°C) MPFM-Gas (m3/h)
Data assumptions:
4000
1000 500 2000
2000
= No sensor measurements error . | , . N I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
. M BHT Tubing (°C) DIACS Lateral (setting) DIACS Mainbore (setting) MPFM-Water (m3/h)
= No sensor drifting
2000 5000 5000 1000
1000 2500 2500 500
0 0 = = o = 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.8 1.0
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33

Deep Learning Model

Feed Forward Autoencoder

= A simpler model, FFA, was developed
for comparison

= Stacked features for global
processing

= I[gnhores relationships between nodes

= FFA contains a 3 layered MLP in the
encoder, and the same decoder

Minimum branch contribution

= Model cheats by predicting one
branch to be O

= Minimum branch flow is enforced to
avoid predicting commingled flow

o Mainbore Predictions
<) ° Feed Forward Autoencoder
.g —
‘T S > = &
= =
: O 3
- =]
Q o
@
@ | 9
st . =
3 Linear(3;128) Main Wellbore Predictions o s
—l = ReLuf() © =
I < _| Linear(128,128) Linear(32, 128) I kS g
] g ReLU() 32 Dimensions ReLu() g ™ 2
p Linear(128, 128) Linear(128, 9) = 2
s o 2 S
o @ Rel u() Py jo}
2 3 Linear(128, 64) >
| z — =X
& Lateral Predictions b3
=
@ |
3 L ~ 1 §
z } z
J AN J AN J AN J AN J AN
Y A4 Y hd hd hd
Stack Features Encoder (MLP) Latent Space Decoder (MLP) Predictions Physics Informed

Constraints

# Minimum ratic penalty (k > @)
min_ratio_loss = 8.2
if min_ratio_lambda > @a:
both_open_mask = (k_main > 8} & (k_lat » @) # [batch_size]
if both_open_mask.sum{) > @: # Only if both walves open
open_flows = flows[both_open_mask] # [num_open_samples, 2, 2]
total flows open = open_flows[:, @, :] + open_flows[:, 1, :] + 1le-8 # [num_open_samples, 2]

# Calculate proportions
prop_bl _open = open_flows[:, &, :] / total flows_open
prop_b2 open = open_flows[:, 1, :] / total flows_open

# Apply penalty

penalty bl = F.relu(min_ratic - prop_bl_open)
penalty b2 = F.relu(min_ratic - prop_b2 open)
min_ratio loss = torch.mean(penalty bl + penalty_ b2}

™ varenergi
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Feed-Forward Autoencoder

Comparison
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GAE - Training on one well
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Graph Autoencoder (GAE) Flow Correlations

Flow Correlations

= The predicted rates
generates dispersed
correlations

= Correlation patterns have
changed, but remains
approximately
linear/quadratic

= Stronger correlation on
DIACS 8

= Predicting commingled at
DIACS 14
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Pressure Drop (dP) vs. Commingled Rates, per DIACS setting for Flow & dP > 0
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