
Page 1 of 33

Engineering Secure
Software with End-to-End
Application Protection

Page 2 of 33

Contents

Executive Summary

Why AppSec Demands Board Level Attention ������������������4

Threat Landscape–What Keeps CISOs Awake at Night
��4

Business Impact – Translating Technical Risk into
Financial Language ���5

Compliance & Legal Alignment ��5

The Four Principles of Secure by Design ��������������������������������5

Secure Development & DevSecOps Operating Model �6

Governance, Risk, and Compliance (GRC) �����������������������������6

Tooling & Architecture – Building a Defense-in-Depth
Stack ��6

Key Metrics ��6

180 Day Action Plan – From Strategy to Execution ���������7

Investment & ROI – Making the Business Case �����������������7

Culture, Talent, and Operating Model ��������������������������������������7

Future Threat Horizons & Technology Shifts ������������������������7

Board Oversight & Cyber Resilience Governance �������������8

Post Merger Integration & Supply Chain AppSec�������������8

Conclusion – Executive Imperatives ���8

Executive Cheat Sheet – 10 High Impact Actions for
the Next 12 Months ��9

1� Introduction and Overview to AppSec

1�1 Definition and Importance of Application Security
(AppSec) ��10

1�2 Evolution of AppSec and Current Trends ����������������������10

1�3 The Case for AppSec in the Modern Enterprise ��������� 11

2� Key Concepts and Principles of
AppSec

2�1 Confidentiality, Integrity, and Availability (CIA Triad)
�� 12

2�2 Security by Design and Default ��� 12

2�3 Least Privilege and Defense in Depth����������������������������� 13

3� Emerging Threats and Trends in
AppSec

3�1 OWASP Top Ten 2021 Vulnerabilities ���������������������������������14

3�2 Emerging Attack Surface��� 15

4� Best Practices in AppSec

4�1 Secure Coding Practices ��� 16

4�2 Authentication and Authorization ������������������������������������ 16

4�3 Security Testing and Assessment �������������������������������������� 17

4�4 Areas Covered in Security Testing ������������������������������������� 17

5� AppSec and Zero Trust

5�1 How AppSec Enables Zero Trust �� 18

6� AppSec and Cybersecurity Supply
Chain Risk Management (C-SCRM)

6�1 How AppSec Enables C-SCRM �� 19

7� AppSec vs� Other Security Testing
Approaches

7�1 AppSec vs� Network Penetration Testing ����������������������� 21

7�2 Red Team/Purple Team Exercises vs� AppSec ����������� 21

7�3 Crowd Sourced Penetration Testing vs� AppSec ����� 22

7�4 Bug Bounty Programs vs� AppSec ����������������������������������� 22

8� How to Develop and Mature an
AppSec Program

8�1 Getting Started with an AppSec Program ������������������ 23

8�2 Maturing an AppSec Program ��24

Page 3 of 33

9� Tools and Technologies in AppSec

9�1 Overview of Key Security Tools ��� 26

9�2 Integrating Security into CI/CD Pipelines �������������������� 26

9�3 Automation and DevSecOps Practices ������������������������� 27

10� Legal and Compliance Considerations
in AppSec

10�1 Relevant Regulations and Standards ����������������������������28

10�2 Privacy by Design and Data Protection Principles
��� 29

11�1 AI and Machine Learning in AppSec �������������������������������30

11�2 Quantum Computing and Cryptographic
Implications ���30

11�3 Supply Chain Security and SBOM Evolution ������������� 31

11�4 Cloud-Native and API Security Challenges ���������������� 31

12� How can we help you with AppSec?

12�1 How InterSec can help you with Application
Security? ��� 32

Page 4 of 33

Executive Summary

Why AppSec Demands Board Level
Attention

Digital transformation has propelled software
from a supporting role to the core value creation
engine in nearly every industry�

Whether you’re shipping fintech micro services,
patient care portals, or AI-driven supply chain
optimizers, the applications your teams
write and deploy determine revenue velocity,
customer trust, and regulatory standing�

Yet those same applications have become the
number one attack surface: analyst data shows
that application vulnerabilities now account
for 54% of initial breach vectors, eclipsing
both phishing and credential theft� Against
this backdrop, application security (AppSec)
can no longer reside solely within engineering
silos� It requires explicit C-Suite sponsorship and
measurable governance—on par with financial
audit or health and safety programs�

This executive summary distills key insights
into a 360 degree playbook that equips Chief
Information Security Officers (CISOs) and their
peers to defend revenue, satisfy regulators, and
deepen competitive advantage�

Threat Landscape–What Keeps CISOs
Awake at Night

Attackers have industrialized exploitation,
leveraging low cost cloud compute, stolen
credentials, and generative AI to scan,
weaponize, and monetize vulnerabilities within
hours of disclosure� Eight categories dominate
the vulnerability categories:

1. Injection (SQL, OS, LDAP, NoSQL).
Automated scanners locate poorly sanitized
inputs and exfiltrate entire databases, adding
ransomware for double extortion�

2. Broken Authentication & Session
Management. Credential stuffing, session
fixation, and token replay undermine identity
assurance across SaaS estates�

3. Sensitive Data Exposure. Mis-encrypted
fields, hard-coded secrets, or verbose logs
leak PII, PCI, and trade secrets—fuel for
regulatory fines and brand erosion�

4. Security Misconfiguration. Default
credentials, open S3 buckets, overly
permissive Kubernetes manifests, and
forgotten debug endpoints create low
friction entry points�

5. Cross-site Scripting (XSS) & Cross-site
Request Forgery (CSRF). Drive-by payloads
hijack user sessions, deface brands, and pivot
laterally via stolen cookies�

6. XML External Entities (XXE) & Insecure
De-serialization. Legacy parsers transform
benign XML into remote code execution
footholds�

7. Broken Access Control. Insecure direct
object references (IDOR) expose multi-tenant
data, violating privacy statutes and SLA
commitments�

8. Insufficient Logging & Monitoring. Mean-
time- to-detect (MTTD) exceeds 200 days
when telemetry is siloed or nonexistent,
amplifying legal, forensic, and reputational
fallout�

Gartner forecasts that by 2026, 80% of
successful attacks will exploit application layer
weaknesses—a fourfold increase from 2020�
Regulatory fines and class action settlements
routinely exceed 4 % of annual revenue, while

Page 5 of 33

equity research indicates median share price
declines of 5–7 % within 30 days of breach
disclosure� A resilient AppSec program protects
valuation, market share, and reputation�

Business Impact – Translating Technical
Risk into Financial Language

Every executive priority—revenue growth, cost
efficiency, compliance, and brand equity—relies
on trustworthy software� A single breach triggers
four cost vectors:

 • Revenue Loss. Customer churn, abandoned
carts, and delayed product launches directly
erode top line growth�

 • Operational Disruption. Ransomware or
data integrity attacks cuts into EBITDA by
freezing production lines, trading desks, or
clinical workflows�

 • Legal & Regulatory Exposure. GDPR, HIPAA,
PCI DSS, NYDFS 500, and emerging AI
regulations mandate ‘state-of-the-art’
security, with fines starting at USD 20 million
or 4 % of global turnover�

 • Brand Erosion. Trust once lost is expensive to
reacquire; Customer Acquisition Cost (CAC)
rises and Net Promoter Score (NPS) falls long
after the technical issue is closed�

Quantitative risk analysis (e�g�, FAIR) shows that
mitigating high likelihood, high impact AppSec
scenarios yields an 8–10× Return on Security
Investment (ROSI) within 18 months, dwarfing
typical capital project IRRs�

Compliance & Legal Alignment

Regulation AppSec
Relevance

Non‑
Compliance
Exposure

GDPR Articles 25 & 32:
‘state-of-art’
security,
data-protection
-by-design

Up to 4 % global
turnover

PCI DSS 4�0 Secure SDLC,
code reviews,
quarterly
scans, network
segmentation

Card-brand fines,
loss of processing
rights

HIPAA &
HITECH

Encryption,
audit controls,
60-day breach
notice

Civil penalties,
corrective
-action plans

NYDFS 500 Annual risk
assessments,
CISO attestation

USD 250 k/violation,
personal liability

SEC Cyber
Disclosure

4-day material
incident
reporting
for public
companies

Investor lawsuits,
enforcement
actions

The Four Principles of Secure by Design

1. Shift Left & Shield Right. Embed controls
early in the SDLC while maintaining runtime
defenses for zero-day coverage� Automate
Relentlessly. Replace spot audits with
pipeline native, continuous testing—
DevSecOps at enterprise scale�

2. Risk Based Prioritization. Remediate where
exploitability intersects with business value;
not every CVE justifies an all hands fire drill�Exhibit 01: AppSec program yields 3�18× return over average

breach cost�

Exhibit 02: Embedded controls align with regulations,
avoiding costly penalties

Page 6 of 33

3. Continuous Improvement. Treat AppSec as
a product with backlogs, KPIs, and customer
(developer) feedback loops, not a one off
project�

Secure Development & DevSecOps
Operating Model

Implementing DevSecOps reduces MTTR from
weeks to hours and aligns security cadence with
sprint velocity�

SDLC Phase Security Objective Embedded Control Examples

Plan & Design Model threats, enforce
architecture patterns

STRIDE workshops, security user
stories, architecture risk analysis

Code Prevent unsafe
patterns at commit

Pre-commit hooks, secret
scanning, linting against CWE
Top 25

Build & Test Detect defects
automatically

SAST, SCA, container image
scanning, unit test coverage
gates

Package &
Release

Verify integrity
& provenance

Signed artifacts, dependency
pinning, IaC scanning, SBOM
generation

Deploy Harden runtime
& enforce policy

Zero-trust segmentation, secrets
vault, policy-as-code gates

Operate Monitor & respond
with context

RASP/WAAP, cloud workload
protection, unified logging with
UEBA & SOAR

Governance, Risk, and Compliance (GRC)

 • Policy Framework. Map OWASP ASVS
controls to ISO 27001 Annex A and NIST CSF
to ensure auditability�

 • Risk Register. Rank vulnerabilities by asset
value, exploitability, and threatactor
motivation; review quarterly at the cyber risk
committee�

 • Third Party Assurance. Demand SBOMs,
pen-test attestations, and continuous attack

surface monitoring for vendors; integrate
scores into procurement�

 • Incident & Crisis Management. Maintain
playbooks aligned to MITRE ATT&CK,
practicing simulations with legal, comms,
and the board�

Tooling & Architecture – Building a
Defense‑in‑Depth Stack

 • Code & Build: Git native SAST and secret
detection prevent insecure commits�
Developer IDE plugins boost fix rates by 55 %�

 • Pipeline: Policy as code engines (e�g�, Open
Policy Agent or OPA) block non-compliant
deployments; container and IaC scanners
catch misconfigurations preproduction�

 • Runtime: Web Application & API Protection
(WAAP), Runtime Application Self Protection
(RASP), and Kubernetes admission controllers
stop zero-days in real time�

 • Observability: Centralized telemetry with ML
anomaly detection shortens MTTD below
24 h—the high maturity benchmark�

Key Metrics

1. Leading Indicators – % critical findings fixed
within SLA, pipeline policy pass rate,
developer training completion�

2. Lagging Indicators – MTTD, MTTR,
unauthorized data access events, security
related downtime minutes�

3. Value Metrics – Vulnerability burndown
velocity, avoided incident costs, Return on
Security Investment (ROSI) vs� plan�

Exhibit 03: DevSecOps embeds security throughout every
software lifecycle stage�

Page 7 of 33

Dashboards should translate technical data into
risk reduced per dollar invested language for
finance committees�

180 Day Action Plan – From Strategy to
Execution

Timeline Outcome Key Tasks

0-60 Days Visibility &
Quick Wins

Validate asset
inventory; deploy SCA &
secret scanning; patch
CIS top misconfigs

61-120 Days Risk Triage &
Governance

Threat-model top 5
revenue apps; establish
policy-as-code gates;
launch secure-coding
workshops

121-180 Days Scale &
Measure

Integrate SAST/DAST;
stand-up AppSec KPI
dashboard; present risk
roadmap to the board

Organization can have a basic full fledged
AppSec program in about 180 days�

Investment & ROI – Making the Business
Case

An incremental investment in a well-thought
AppSec program would potentially avert millions
of dollars in breach costs while accelerating
security baked product release cycles by 12%�

Present investments as risk adjusted NPV (Net
Present Value) to win capital allocation debates�

Culture, Talent, and Operating Model

High performing AppSec programs share four
traits:

1. Integrated Squads. Security engineers
embedded in product teams accelerate
threat modeling and peer reviews�

2. Developer Enablement. Capture the Flag
events, secure coding bootcamps, and
gamified leaderboards create psychological
ownership�

3. Executive Incentives. Tie a slice of bonus
metrics to cyber risk reduction, aligning
priorities across silos�

4. Diverse Hiring. Blend offensive (red team)
and defensive (blue team) skill sets to
anticipate attacker creativity�

Future Threat Horizons & Technology
Shifts

 • Software Supply Chain Attacks. Adversaries
poison open source dependencies and CI
pipelines (e�g�, SolarWinds, Log4Shell)�
Mitigation: signed SBOMs, provenance
attestations, and repository firewalls�

 • AI Enabled Exploitation. Generative AI
lowers the barrier to crafting polymorphic
payloads and automates reconnaissance�
Countermeasures: adversarial ML testing,
model assurance frameworks, and runtime
bot mitigation�

 • Quantum Ready Crypto. Postquantum
algorithms must enter crypto backlogs
before 2030 to avoid future decryption of
today’s secrets�

 • API Proliferation. By 2027, APIs will represent
90 % of webapp traffic; OWASP API Top 10

Exhibit 04: 180-day phased roadmap accelerates enterprise
AppSec maturity�

Category Year 1 Year 2 Year 3

Tooling & Automation 40 % 20 % 10 %

People & Training 30 % 35 % 40 %

Process & Governance 20 % 25 % 30 %

Contingency & Innovation 10 % 20 % 20 %

Exhibit 05: Three-year spending shifts investment from tools
to people�

Page 8 of 33

controls, schema validation, and zero-trust
service meshes become mandatory�

Executives must set aside funds for future
trend tracking and regular tech updates to stay
competitive�

Board Oversight & Cyber Resilience
Governance

Boards increasingly demand transparent cyber
risk reporting:

 • Charter & Committee. Form a dedicated
cyber risk subcommittee chaired by an
independent director with security expertise�

 • Risk Appetite Statement. Quantify
acceptable risk tolerance (e�g�, probability
adjusted loss ceilings) and link to AppSec
KPIs�

 • Scenario Exercises. Conduct full board
tabletop simulations covering data
exfiltration, ransomware, and cloud
compromise events�

 • Continuous Education. Provide quarterly
briefings on emerging threats, regulatory
changes, and program maturity benchmarks�

Post Merger Integration & Supply Chain
AppSec

M&A deals can import latent vulnerabilities into
your AppSec environment� Proactively mitigate
these risks through::

 • Pre-Close Due Diligence. Perform rapid
AppSec posture assessments and map
inherited obligations�

 • Day 1 Controls. Isolate acquired software
assets behind WAAP/RASP and initiate code
scans within 30 days�

 • Vendor Tiering. Classify suppliers by data
criticality; require Tier1 partners to meet or
exceed your own AppSec SLAs�

 • Metrics Driven Continuous Improvement.
Set annual OKRs� Annual maturity
assessments (BSIMM, SAMM) validate
progress and benchmark against peers�

Goal Target

Reduce critical vulnerability MTTR <14 days

Increase code coverage of
automated security tests

90% of
repositories

Achieve SBOM availability for
production releases

100%

Cut customer-facing incidents
attributable to AppSec (YoY)

50% reduction

Conclusion – Executive Imperatives

Application security is inseparable from revenue
assurance and fiduciary duty�

Leaders who embed security into digital strategy
unlock faster innovation, confident compliance,
and durable trust�

The roadmap outlined here—grounded in threat
intelligence, risk economics, and DevSecOps
automation—enables executives to transform
AppSec from a compliance obligation into a
competitive differentiator�

The choice is stark: invest in bulletproof
software today or risk becoming tomorrow’s
breach headline� With clear sponsorship,
disciplined execution, and an unwavering
commitment to continuous improvement,
organizations can convert application security
from a reactive cost center into a durable,
innovation enabling capability�

From a governance perspective, executives
should embed cyber risk reviews into standard

Exhibit 06: Executive metrics track remediation speed,
coverage and incidents�

Page 9 of 33

board agendas, ensuring oversight parallels that of financial and legal risk committees� Operationally,
CISOs must champion security as code, enforcing reproducible, automated controls that scale with cloud
native architectures� Culturally, leadership must reward engineers for fixing vulnerabilities with the same
enthusiasm reserved for shipping new features—making security a celebrated KPI rather than a last
minute checkbox�

Taken together, the principles, frameworks, and action plans outlined offer a pragmatic pathway to
material risk reduction within a single fiscal quarter and ongoing resilience over the long term� By
investing early, quantifying value in business terms, and measuring progress ruthlessly, the C-Suite
secures not only the organization’s digital estate but also its competitive future�

Executive Cheat Sheet – 10 High Impact Actions for the Next 12 Months

Exhibit 07: Ten prioritized actions to rapidly strengthen enterprise AppSec posture�

Page 10 of 33

1. Introduction and
Overview to AppSec

1.1 Definition and Importance of
Application Security (AppSec)

Applications are crucial for business operations,
from customer interactions to the storage and
processing of critical data�

Application Security includes processes, tools,
and techniques designed to protect these
applications from vulnerabilities and cyber
threats throughout their lifecycle—from
design, development, and implementation to
maintenance and operations�

According to the Verizon’s 2025 Data Breach
Investigations Report (DBIR), Web Application
continues to be the perennial top action vector
in breaches�

For organizations, the risk of neglecting effective
AppSec practices can be severe: data breaches,
financial losses, reputational damage, and
regulatory penalties� With rising sophistication
of cyber attacks, security must be integrated
at every stage of Software Development
Lifecycle(SDLC)�

A key principle of AppSec is “shifting security
left,” emphasizing early security integration in
development�

This proactive approach reduces vulnerabilities
and the cost and complexity of remediating
security issues� This model aligns with
DevSecOps, where development, security, and
operations teams collaborate continuously�

1.2 Evolution of AppSec and Current
Trends

Previously, security testing was a final step in
the SDLC, with penetration testing or security
audits conducted before an application went
live� However, agile development and continuous
integration/continuous deployment (CI/CD)
pipelines have made this approach inadequate,
as the reactive nature of traditional testing leaves
organizations vulnerable to new threats�

Exhibit 08: Top 10 ways attackers exploit (DBIR Verizon 2024)
applications to gain access�

Page 11 of 33

 • Attacks on applications and software supply
chains, along with the increased compliance
and regulatory scrutiny, are imposing risk
management requirements on application
development teams�

 • Application security continues to be seen as
an impediment to application development�
This perception will only get worse as security
teams grapple with the use of AI coding
assistants by development teams�

 • Cloud-native application development and
diverse deployment options (e�g�, containers,
micro services, server-less technologies) have
increased the number and surface area of
application assets that must be secured�

The rise in application-based cyber attacks has
led to a paradigm shift in security strategies�
Bolting security onto applications at the end
of development proved ineffective� Instead,
security evolved into an integral part of the DDI
process� DevSecOps integrates security into
every stage of development� Security automation
tools like Static Application Security Testing
(SAST) and Dynamic Application Security Testing
(DAST) within CI/CD pipelines detect and address
vulnerabilities in real time, enabling fast-paced
development without sacrificing security�

Additionally, modern applications increasingly
rely on third-party APIs, open-source libraries,
and micro services, expanding the potential
attack surface� Therefore, supply chain
security has become crucial, with new strategies
to identify and mitigate risks� This has led to
Software Composition Analysis (SCA) tools, which
secure third-party components throughout an
application’s lifecycle�

Zero Trust Architecture (ZTA) operates on the
premise that no actor, system, or component—
whether inside or outside the organization’s
network—should be trusted by default�
Every request and user interaction must be

continuously verified� This aligns with cloud-
native applications, where decentralized services
rely on APIs and micro services� Zero Trust
frameworks emphasize on constant verification
and encryption, reshaping how organizations
safeguard their applications�

1.3 The Case for AppSec in the Modern
Enterprise

As businesses embrace digital transformation,
the attack surface is increasing, introducing
new threats and vulnerabilities� The increasing
sophistication of adversaries—from nation-state
actors to cyber criminals—has made AppSec
crucial� Applications are prime targets for threat
actors due to direct access to sensitive data�

Regulations such as the GDPR and California’s
CCPA now make firms directly liable for data
breaches, imposing stiff fines and reputational
fallout� A mature application-security (AppSec)
program is therefore no longer optional—it’s
essential for compliance and for earning the
trust of customers, partners, and regulators� By
embedding strong AppSec, organizations boost
confidence in their digital services, cut risk, move
faster, and stay resilient against evolving threats�

Exhibit 09: AppSec spending dramatically reduces potential
breach financial impact�

Page 12 of 33

2. Key Concepts and
Principles of AppSec

2.1 Confidentiality, Integrity, and
Availability (CIA Triad)

The CIA Triad—Confidentiality, Integrity, and
Availability—forms the core of any information
security strategy, including AppSec� These three
principles ensure the protection of applications
and sensitive data:

 • Confidentiality: This ensures that sensitive
data is accessible only to authorized users
through encryption, access controls, and
identity management� Techniques like
AES-256 encryption, multi-factor
authentication (MFA), and role-based access
controls (RBAC) are used to protect data at
rest and in transit� DHS CISA’s Secure By
Design emphasizes default security
configurations that prioritize confidentiality�
Applications should be designed to enforce
encryption and access control policies from
the start, ensuring sensitive data is protected
from unauthorized access�
Reference: Best practices on encryption are
detailed in NIST SP 800-175

 • Integrity: Integrity ensures data accuracy
and prevents alteration during storage or
transit� Cryptographic hashing (e�g�, SHA-256)
and digital signatures validate data integrity,
while regular monitoring, automated
logging, and secure development practices
detect unauthorized changes� Using NIST’s
Secure Software Development Framework
(SSDF), integrity is maintained through
secure coding practices, version control, and
testing strategies, identifying issues early in
the SDLC�
Reference: NIST guidelines on data integrity
can be found in NIST SP 1800-25

 • Availability: Ensuring applications are
operational when needed is crucial�
Organizations use redundant systems, load
balancers, and scalable cloud infrastructure
to guarantee availability� Distributed Denial of
Service (DDoS) protection and incident
response protocols are essential to protecting
it� CISA›s Secure By Default principle
reinforces the idea that availability should be
built into systems from the start, including
pre-configured performance thresholds,
backup strategies, and incident response
plans�
Reference: For availability best practices,
refer to NIST SP 800-34 Rev�1

These principles form the foundation of secure
applications, ensuring data remains protected,
accurate, and accessible�

2.2 Security by Design and Default

Secure by Design integrates security measures
into the application architecture from the start
of the SDLC� This proactive approach prevents
vulnerabilities before they are introduced and
creates resilient applications�

DHS CISA’s Secure By Design emphasizes
integrating security into software from the
outset, rather than addressing vulnerabilities
later� This requires continuous collaboration
between developers, security teams, and system
architects to implement secure practices
throughout development�

Key elements of Secure by Design include:

 • Threat Modeling: During early design,
identify potential attack vectors and assess
risks� This involves identifying critical assets,
analyzing attack methods, and developing
mitigation strategies using frameworks like
STRIDE and DREAD�

Page 13 of 33

Reference: Learn more about threat
modeling in OWASP Threat Modeling

 • Secure Coding Standards: Adhering to
secure coding standards helps developers
avoid vulnerabilities like SQL injection or
cross-site scripting (XSS)� The NIST
SSDF promotes coding practices to avoid
common security flaws, and tools like SAST
automate flaw detection during
development�
Reference: OWASP Secure Coding Practices

 • Automated Security Testing: Integrating
SAST and DAST tools into CI/CD pipelines
enables early detection and fixing of
vulnerabilities before they reach production,
aligning with both DHS’s Secure By
Default and NIST SSDF for continuous
testing during development�
Reference: For more on security testing, refer
to NIST SP 800-53

Security by Default complements Security
by Design by ensuring that applications are
securely configured from the start, enforcing
HTTPS, disabling unnecessary services, and
enabling robust authentication� This reduces
configuration errors, a common source of
vulnerabilities�

2.3 Least Privilege and Defense in Depth

Least Privilege limits access rights to the
minimum� This reduces potential damage and
restricts attackers’ ability to escalate privileges or
move laterally�

RBAC: It restricts user permissions based on
their roles� For example, a developer may access
development but not production environments�

API Keys and OAuth Tokens: Using restricted
API tokens and OAuth grants limits access to

external services� Tokens should expire quickly,
and permissions should be carefully scoped�

Defense in Depth uses multiple lines of defense
to protect against attacks, ensuring that if one
fails, others remain effective�

Firewalls: Network and application firewalls
filter out malicious traffic before it reaches the
application�

Encryption: Encrypting data both at rest and
in transit adds a layer of protection� Even if
attackers access it, they cannot decipher it
without decryption keys�

MFA: It adds an additional security layer,
preventing unauthorized access even if user
credentials are compromised by requiring
additional verification�

Intrusion Detection and Prevention Systems
(IDPS): IDPS tools monitor network traffic and
system behavior to detect signs of an attack,
triggering alerts when suspicious activity is
detected for quick response�

CISA’s Secure by Design reinforces Defense
in Depth by promoting multi-layered security,
ensuring controls at every application level� NIST
SSDF emphasizes layered security, applying
best practices across SDLC to sustain resilience
against diverse threats�

Page 14 of 33

3. Emerging Threats and
Trends in AppSec

3.1 OWASP Top Ten 2021 Vulnerabilities

The Open Worldwide Application Security
Project (OWASP) is a globally recognized
organization most famously known for
their OWASP Top 10� Understanding these
vulnerabilities helps cybersecurity professionals
proactively defend against common threats�

The latest OWASP Top 10 2021 list includes:

A01: Broken Access Control: Occurs when
authorization mechanisms fail, allowing
attackers to access unauthorized data or
functions� Example: Manipulating session tokens
to gain admin privileges�

A02: Cryptographic Failures: Weak or improper
encryption can expose sensitive data due to

outdated encryption algorithms or lack of
encryption�

A03: Injection Attacks: Occur when an
application allows untrusted input to be sent
to an interpreter, leading to arbitrary code
execution�

A04: Insecure Design: This vulnerability occurs
due to poor security practices during the design
phase, where critical security features are
overlooked�

A05: Security Misconfiguration: Occurs when
systems use insecure settings, such as default
passwords, unpatched systems, or exposed
services�

A06: Outdated Components: Using outdated
libraries or open-source components with
known vulnerabilities can expose applications to
exploitation�

Exhibit 10: OWASP Top Ten visualised for quick vulnerability overview�

Page 15 of 33

A07: Authentication Failures: Poor session management or password policies can allow unauthorized
access�

A08: Software and Data Integrity Failures: Compromised updates, libraries, or pipelines can introduce
malicious code�

A09: Security Logging and Monitoring Failures: Inadequate logging and monitoring make it difficult to
detect and respond to breaches in a timely manner�

A10: Server-Side Request Forgery (SSRF): Occurs when an attacker manipulates server-side requests to
access internal systems or services�

3.2 Emerging Attack Surface

With the rapid pace of technological advancements, new threats and attack surfaces are emerging that
organizations must be aware of and mitigate effectively�

Threat Category Description Emerging Threat

API Security With the rise of micro services, securing APIs
is crucial� Common vulnerabilities include
improper authentication, excessive data
exposure, and lack of rate limiting�

APIs often expose sensitive data,
increasing the risk of breaches when
access controls are weak�

Supply Chain Attacks Supply chain attacks target third-party libraries,
components, or services used within an
application� Compromised dependencies allow
attackers to gain access to critical systems�

With the increased use of open-source
software and third-party APIs, attackers
are targeting less-secure components to
infiltrate organizations�

Container Security
Vulnerabilities

Containers, like those in Docker and
Kubernetes, introduce security risks if mis-
configured, leading to privilege escalation,
unauthorized access, or data breaches�

Insecure container images, weak access
controls, and improper isolation of
containers can cause vulnerabilities and
system access by attackers�

Ransomware
Targeting
Applications

Ransomware attacks are increasingly targeting
applications by exploiting weak access controls
or vulnerabilities to gain entry and encrypt
critical data and demand ransom�

Attackers may exploit application
vulnerabilities to deploy ransomware,
disrupting business operations and
causing financial damage�

Cloud-Native Security
Challenges

Cloud applications face risks like mis-
configured storage, insufficient identity and
access management (IAM), and insecure API
gateways�

Misconfigurations and weak IAM policies
can expose cloud applications to external
threats, leading to unauthorized data
access�

Zero-Day Exploits Zero-day vulnerabilities are unknown security
flaws in software, meaning no patch is available�
These vulnerabilities provide attackers with
a window of opportunity to exploit systems
before a fix can be deployed�

As software becomes more complex, the
likelihood of undiscovered vulnerabilities
grows, increasing the potential for zero-
day exploits�

Exhibit 11: API, supply-chain and container threats are rising sharply�

Page 16 of 33

4. Best Practices in
AppSec

4.1 Secure Coding Practices

At the core of AppSec is secure coding, where
developers embed security into the SDLC to
prevent vulnerabilities in the codebase�

Secure coding principles are not merely best
practices but essential strategies to defend
against cyber threats�

1. Use Parameterized Queries: To mitigate SQL
injection attacks, use parameterized queries,
to ensure user inputs are treated as data, not
executable code�

2. Avoid Hard-coding Sensitive Information:
Instead of hard-coding API keys, passwords,
or cryptographic secrets in source code, store
them in environment variables or secure
vaults, like AWS Secrets Manager or
HashiCorp Vault�

3. Input Validation and Output Encoding:
Validate user inputs to ensure they conform
to expected formats and ranges, preventing
SQL or XSS injection attacks� Sanitize and
encode outputs to avoid rendering untrusted
data as executable code�

Reference: For comprehensive input
validation and encoding practices, refer
to OWASP Secure Coding Guidelines.

4. Secure Error Handling: Error messages
should be generic and not reveal sensitive
system details to users� This prevents
attackers from gaining useful information�
Maintain detailed error logs for internal
debugging and incident response�

4.2 Authentication and Authorization

Implementing strong authentication and
authorization ensures only authorized users and
services access an application’s resources�

MFA: It adds an additional layer of security by
requiring two or more verification methods,
reducing the risk of unauthorized access,
especially where passwords have been
compromised�

Tip: Use token-based MFA (e�g�, OTPs via
email/SMS or app-based tokens like Google
Authenticator) for all privileged accounts and
critical applications�

OAuth and Token-Based Authentication:
OAuth 2.0 uses secure, stateless token-
based authentication for web applications�
By generating secure tokens (e�g�, JSON Web
Tokens, or JWT), applications enhance scalability
and security�

Best Practice: Use short-lived encrypted tokens
and refresh tokens for secure session renewal
without exposing user credentials�

Reference: Learn more about secure token
management in NIST SP 800-63B

RBAC and Attribute-Based Access Control
(ABAC): Role Based Access Control (RBAC) limits
resource access based on user roles, ensuring
minimal privileges� ABAC enhances this by
considering attributes like time, location, and
device for more precise control�

Example: A finance team member might have
access to reports but not to administrative
functions� ABAC could limit access based on the
user’s location, like allowing access only within
the corporate network�

Page 17 of 33

4.3 Security Testing and Assessment

Integrating security testing into the development pipeline is crucial for identifying and fixing
vulnerabilities early, especially in agile environments using Continuous Integration and Continuous
Deployment (CI/CD) practices

Method Focus & Key Actions Best Practice

SAST Scans source for SQLi, buffer
overflows, weak crypto�

Run on every commit with instant dev feedback
(OWASP Code Review Guide)�

DAST Probes running app for XSS, auth
gaps�

Execute in staging before release�

IAST Combines SAST + DAST for live
issue detection (e�g�, insecure data
handling)�

Enable during dev & test for real-time alerts�

SCA Audits third-party libraries for
known CVEs�

Automate scans in the pipeline to keep
dependencies patched�

Pen Testing Simulates real attackers to expose
complex gaps�

Perform annually or after major changes; merge
findings with automated results�

Secure Code Review Human oversight of every PR to
enforce best practices�

Follow OWASP Secure Code Review Guide�

4.4 Areas Covered in Security Testing

At a minimum, Application Security testing
should cover the following areas to ensure
comprehensive protection:

Source Code: SAST scans should detect coding
issues like SQL injection and XSS�

Third-Party Components: SCA tools ensure
third-party libraries are free from known
vulnerabilities�

Authentication and Authorization: Test login
systems, session management, and RBAC for
robust access control�

API Security: Perform extensive tests on APIs,
ensuring that all API requests are authenticated
and authorized�

Data Handling: Validate input and output to
prevent injection attacks and ensure proper
encoding�

Runtime Behavior: Use DAST and IAST to detect
vulnerabilities when the application is running�

Compliance: Ensure the application meets
regulatory standard s like PCI-DSS and GDPR�

Exhibit 12: Blended SAST, DAST, IAST maximises vulnerability discovery coverage�

Page 18 of 33

5. AppSec and Zero Trust

5.1 How AppSec Enables Zero Trust

The Zero Trust security model ensures no
user, system, or device should be automatically
trusted� Every access request must be verified
and continuously validated before access is
granted� AppSec is key to implementing Zero
Trust in modern enterprises�

Key AppSec Principles Supporting Zero Trust

1. Granular Access Controls and RBAC: Zero
Trust requires restricted access based on
least privileges� RBAC ensures users only
access necessary resources� Advanced
models like ABAC restrict access based on
location, device type, or time of access�
Best Practice: Implement fine-grained
access controls at the application level,
ensuring that users and services are only
granted minimal privileges�

2. Continuous Authentication and
Authorization: In a ZTA, authentication and
authorization are ongoing processes� MFA,
token-based authentication (e�g�, OAuth 2�0),
and adaptive mechanisms ensure security
after initial login� Applications should require

re-authentication for sensitive actions or
revalidate access tokens�
Best Practice: Enforce session expiration
policies and regularly refresh access tokens
to maintain continuous authentication�

3. Micro-segmentation and API Security:
Zero Trust emphasizes breaking down
applications into smaller segments, each
with its own access control policies� In
environments where APIs are widely used,
secure API management is critical to prevent
unauthorized access�
Best Practice: Use API gateways with
authentication, rate limiting, and monitoring
for secure communication between micro
services�

4. Encryption and Data Protection: Zero Trust
requires encryption at rest and in transit�
AppSec enforces standards like TLS 1�3 for
data exchanges and secure storage for
sensitive data�
Best Practice: Use end-to-end encryption to
protect sensitive data and implement proper
key management practices�

5. Real-Time Monitoring and Incident
Response: Zero Trust relies on
continuous monitoring to detect threats�
Integrating SIEM systems provides real-time
visibility and alerts for unauthorized access
attempts, helping rapid incidence response�
Best Practice: Use logging and monitoring
tools to track suspicious activity and enforce
real-time threat detection�

AppSec is key to implementing a ZTA� By
enforcing continuous authentication, granular
access controls, secure API management, and
comprehensive monitoring, organizations can
protect their applications and sensitive data
from threats� AppSec provides the necessary
tools to implement and maintain Zero Trust at
the application level�

Exhibit 13: Zero Trust hinges on continuous verification,
granular controls�

Page 19 of 33

6. AppSec and
Cybersecurity Supply
Chain Risk Management
(C-SCRM)

6.1 How AppSec Enables C‑SCRM

The increasing reliance on third-party
components, open-source libraries, and external
services has expanded the attack surface of
applications� C-SCRM aims to mitigate these
risks�

AppSec ensures third-party components are
secured, reducing the supply chain attack risks�

Practices aligned with NIST 800-161 and
artifacts like the Software Bill of Materials
(SBOM) provide visibility and control over third-
party dependencies�

Key AppSec Principles Supporting C-SCRM:

1. Third-Party Component Security:
Applications heavily rely on third-party
components and open-source libraries,
which can introduce vulnerabilities� NIST
800-161 recommends maintaining visibility
into the security of external suppliers and

their components�
Mitigation: Utilize SCA tools to monitor
third-party libraries for vulnerabilities� Keep
these libraries updated with security patches�
Create and manage a SBOM to track all third-
party dependencies and ensure supply chain
transparency�
Best Practice: Adopt SBOM management
practices to document the origin, version,
and security status of each component, as
advised in NIST 800-161 and Executive Order
14028�
Reference: Learn about SBOMs and their
role in supply chain security in NIST SBOM
Guidance�

2. Vulnerability and Patch Management:
Vulnerabilities within third-party components
are hard to findin a timely manner� Effective
practices aligned with NIST 800-161 include
regular scanning, patching, and monitoring
of software components�
Mitigation: Integrate vulnerability
scanning tools into your CI/CD pipeline to
identify issues with third-party components
early� The SBOM helps pinpoint which
components need updates, while NIST
800-161 on prioritizing and applying patches
promptly�
Best Practice: Automate patch management
using SBOM and SCA tools to ensure
third-party libraries are regularly updated,
mitigating emerging risks�

3. Supplier Risk Assessment and Auditing:
Organizations must assess the security
practices of third-party suppliers to ensure
the safety of their components� NIST 800-
161 provides guidance on evaluating the
security posture of suppliers and potential
risks they introduce�
Mitigation: Regularly audit third-party
suppliers to ensure they follow security best
practices, such as secure development and
vulnerability management�

Exhibit 14: AppSec fortifies supply chain against third-party
compromises�

Page 20 of 33

Best Practice: Require suppliers to provide
SBOMs and security reports, enabling risk
assessment of third-party components in line
with NIST 800-161�

4. Continuous Monitoring and Incident
Response: Continuous monitoring maintains
visibility into the security of third-party
components after deployment� Real-time
tools alert for vulnerabilities or anomalies�
Mitigation: Use SIEM tools to monitor
external components and services� Configure
them to cross-reference SBOM vulnerabilities
and alert for unexpected behavior�
Best Practice: Align your monitoring
practices with NIST 800-161 by continuously
monitoring all third-party components and
having a response plan for supply chain
incidents�

By leveraging NIST 800-161 guidance and
tools like SBOMs and SCA, organizations can
better manage supply chain risks in AppSec�
Continuous monitoring, patch management,
and regular supplier assessments are critical for
securing third-party components and mitigating
supply chain attacks�

AppSec
Principle

Description Mitigation
Approaches

Best Practices References

Third-Party
Component
Security

Applications
depend on third-
party components
that can introduce
vulnerabilities�

Use SCA tools, regularly
update libraries, maintain
SBOMs for tracking
transparency�

Adopt SBOM
management practices
documenting origin,
version, security status�

NIST 800-161,
Executive Order
14028, NIST SBOM
Guidance

Vulnerability
and Patch
Management

Managing
vulnerabilities and
ensuring timely
patches of third-
party components�

Integrate vulnerability
scanning tools into CI/CD
pipelines, utilize SBOM to
prioritize updates�

Automate patch
management using
SBOM and SCA tools for
continuous updates�

NIST 800-161

Supplier Risk
Assessment
and Auditing

Assessing and
auditing suppliers'
security practices
and potential
risks from their
components�

Regularly audit suppliers
for secure development
and vulnerability
management
compliance�

Require suppliers to
provide SBOMs and
security reports to assess
risk effectively�

NIST 800-161

Continuous
Monitoring
and Incident
Response

Ongoing
monitoring and
responding
promptly to
security incidents
involving third-
party components
post-deployment�

Implement SIEM tools
cross-referenced with
SBOM vulnerabilities,
alert on anomalies�

Continuously monitor
third-party components
and establish clear
incident response plans�

NIST 800-161

Exhibit 15: Structured patching, auditing, monitoring secure component lifecycle�

Page 21 of 33

7. AppSec vs. Other
Security Testing
Approaches

7.1 AppSec vs. Network Penetration
Testing

AppSec focuses on securing software
applications against vulnerabilities like SQL
injection, XSS, authentication flaws, and
insecure data handling� It involves secure
coding practices, vulnerability scanning, threat
modeling, and automated security testing (e�g�,
SAST, DAST) throughout the SDLC�

Network Penetration Testing (pen-testing)
evaluates the security of an organization’s
network by exploiting vulnerabilities in devices
(e�g�, firewalls, routers, switches) and services
(e�g�, FTP, SSH) to gain unauthorized access or
disrupt operations� It simulates real-world attacks
to identify weaknesses in configurations, patch
management, or defenses�

Key Difference: AppSec secures application
code and architecture, while network pen-
testing targets network configurations and
devices�

Example: AppSec focuses on flaws in API
endpoints or insecure authentication, while
network pen-testing targets open ports or

vulnerable network services that could allow
access to backend systems�

7.2 Red Team/Purple Team Exercises vs.
AppSec

Red Team exercises are designed to simulate
a full-scale attack on an organization’s security
defenses, often with no prior warning to the
defenders (Blue Team)� The Red Team behaves
like adversaries, employing tactics such as social
engineering, lateral movement, and privilege
escalation to compromise the organization� The
goal of Red Team exercises is to identify gaps
in the organization’s defense mechanisms,
including weaknesses in both network security
and AppSec�

Purple Team exercises, by contrast, involve
collaboration between Red and Blue Teams�
The focus is on improving the organization’s
defensive capabilities by creating a feedback
loop between attackers (Red Team) and
defenders (Blue Team), ensuring that lessons
learned are applied in real-time to strengthen
defenses�

In AppSec, the focus is narrower, targeting
vulnerabilities specific to applications, such as
insecure coding practices, API vulnerabilities,
and input validation issues� It involves testing the
security of software as it is being developed or
after it has been deployed�

Key Difference: Red Team and Purple Team
exercises cover a broader scope, simulating
real-world adversary tactics across all layers
(network, application, physical), while AppSec
focuses exclusively on protecting the application
layer through continuous testing and secure
development practices�

Example: A Red Team might simulate a phishing
attack to steal user credentials and then exploit

Exhibit 16: Various Types of Security Testing

Page 22 of 33

an application’s authentication flaws to gain
unauthorized access� AppSec, in this case, would
focus specifically on fixing those flaws, ensuring
that vulnerabilities such as weak password
storage, improper session management, or lack
of MFA are addressed�

7.3 Crowd Sourced Penetration Testing
vs. AppSec

Crowd Sourced Penetration Testing involves
leveraging a community of ethical hackers to
find vulnerabilities in an organization’s systems�
Organizations often offer rewards for valid
vulnerabilities found (similar to bug bounty
programs) and benefit from the diverse skill
sets and perspectives of multiple testers� Crowd
Sourced pen tests can uncover a wide variety of
issues, including those in applications, network
infrastructure, and APIs�

AppSec, on the other hand, is typically more
structured and internal, focusing on secure
coding practices, automated vulnerability
scanning, and regular security assessments as
part of the SDLC� It is a proactive approach that
aims to identify and fix vulnerabilities before the
application goes live�

Key Difference: Crowd Sourced penetration
testing occurs after an application has been
deployed, utilizing external testers to find
vulnerabilities that internal teams may have
missed� In contrast, AppSec emphasizes securing
the software throughout its development,
including design, code review, and pre-
deployment testing�

Example: In crowd Sourced pen-testing, a
group of ethical hackers might test a live
web application for flaws like SQL injection
or broken access controls� AppSec, however,
would work to ensure those vulnerabilities are
addressed during the development process,

ideally preventing them from ever making it into
production�

7.4 Bug Bounty Programs vs. AppSec

Bug Bounty Programs incentivize external
security researchers (often referred to as “bounty
hunters”) to discover and report vulnerabilities
in an organization’s applications in exchange
for financial rewards� These programs allow
organizations to benefit from the collective
intelligence of a wide pool of testers, providing
a valuable external validation of security efforts�
However, bug bounty programs are typically
reactive, meaning they focus on identifying
vulnerabilities after an application has been
deployed�

In contrast, AppSec is proactive, aiming to
prevent vulnerabilities from being introduced
in the first place� By following secure coding
practices, running automated security tests
(SAST, DAST, IAST), and conducting code reviews,
AppSec aims to ensure that applications are
resilient to attacks before they go live�

Key Difference: Bug bounty programs focus
on identifying vulnerabilities in live applications
through external testing, while AppSec works
throughout the SDLC to prevent vulnerabilities
from being introduced, reducing the number
of issues that need to be identified post-
deployment�

Example: A bug bounty hunter might discover
a vulnerability in a deployed application related
to insecure API endpoints� AppSec would
have aimed to catch this issue during the
development process through threat modeling,
API security testing, and secure coding
standards�

Page 23 of 33

8. How to Develop and
Mature an AppSec
Program

8.1 Getting Started with an AppSec
Program

For organizations launching
their AppSec program, the goal is to establish a
structured foundation that can evolve over time

Successful development requires a combination
of cultural change, technical practices, and
strategic alignment� Utilizing frameworks
like OpenSAMM and BSIMM offers a measurable,
structured approach to AppSec maturity,
allowing Chief Information Security Officers
(CISOs) to track progress and ensure continuous
improvement�

Key Steps for Starting an AppSec Program:

1. Establish a Security-First Culture: A
successful AppSec program begins with a
security-first mindset across the organization�
This means promoting security awareness
and ensuring that all team members, from
developers to executives, understand their
role in maintaining security�

Action: Conduct ongoing security
awareness training and promote
secure coding standards� Use
OpenSAMM’s Governance practices to
establish the security culture, ensuring
stakeholders are aligned with AppSec goals�

Best Practice: Start with a Security
Champions Program, where designated
developers promote security practices
in each development team� This
aligns with OpenSAMM’s Education &

Guidance domain, which emphasizes role-
based security awareness�

2. Integrate Security into the SDLC: A core
principle of AppSec is to integrate security
into the SDLC from the outset� “Shifting
left” ensures that security is built into the
development process rather than added after
vulnerabilities are introduced�

Action: Implement SAST and DAST tools
within the SDLC� OpenSAMM provides
a structure for assessing security in the
Implementation phase, where organizations
can measure how effectively security is
integrated into their development processes�

Best Practice: Automate security testing
within the CI/CD pipeline to enforce
continuous security assessments at each
code commit�

3. Select the Right Tools and Technologies:
Choosing the right tools is essential for
building an effective AppSec program� Tools
should include vulnerability scanners, secure
coding frameworks, and automation that can
scale with the organization’s development
pace�

Action: Implement SCA for tracking third-
party libraries and tools such as SAST for
code-level vulnerability detection�

Best Practice: Use OpenSAMM’s
Design practices to ensure that selected
tools align with the security requirements
of each application� This phase emphasizes
the importance of architectural risk analysis,
ensuring applications are secure by design�

4. Develop and Enforce Security Policies:
Defining security policies early on creates a
foundation for consistent AppSec practices
across the organization�

Page 24 of 33

Action: Develop coding standards based on
the OWASP Secure Coding Guidelines and
create policies for handling vulnerabilities
identified during development�
OpenSAMM’s Governance domain can
help CISOs measure policy adoption and
adherence�

Best Practice: Create a Security Policy
Handbook that aligns with industry
standards such as NIST Secure Software
Development Framework (SSDF)� Use
BSIMM to benchmark policies against
industry norms, ensuring they align with
proven best practices�

8.2 Maturing an AppSec Program

As the program evolves, CISOs must focus
on refining processes, scaling the use of
security tools, and fostering cross-functional
collaboration�

OpenSAMM and BSIMM provide detailed
maturity models to help measure progress and
prioritize next steps for growth�

Measuring AppSec Maturity: Frameworks such
as OpenSAMM provide a structured way for
CISOs to assess the maturity of their AppSec
program�

OpenSAMM measures maturity across four key
domains: Governance, Design, Implementation,
and Verification�

Each domain is broken into activities that
can be evaluated to determine how far along
an organization is in implementing effective
AppSec practices�

Steps to Maturing an AppSec Program:

1. Adopt a Risk-Based Approach: As
organizations grow, not all applications or

vulnerabilities will present the same risk�
Prioritizing vulnerabilities based on business
impact is crucial for resource allocation�

Action: Implement a risk-based approach
using frameworks such as NIST Risk
Management Framework (RMF) or FAIR
(Factor Analysis of Information Risk)�
OpenSAMM’s Risk Management activity
measures the effectiveness of risk
assessment practices in identifying and
mitigating high-risk vulnerabilities�

Best Practice: Develop threat
modeling exercises for critical applications,
aligning with OpenSAMM’s Design domain
to continuously assess architectural risks�

2. Continuous Monitoring and Incident
Response: Mature AppSec programs
integrate real-time monitoring and incident
response capabilities� SIEM systems should
monitor applications post-deployment
to detect anomalies and threats as they
emerge�

Action: Implement SIEM tools that collect
and analyze security data from applications
in real-time� Align monitoring efforts
with BSIMM’s “Attack Models” practice to
detect real-time security threats�

Best Practice: Integrate Runtime
Application Self-Protection (RASP) to
automatically respond to detected threats,
increasing the application’s resilience to
attacks�

3. Develop a Comprehensive Vulnerability
Management Program: A mature
AppSec program goes beyond identifying
vulnerabilities; it systematically manages
and tracks them across applications and
environments�

Page 25 of 33

Action: Automate vulnerability scans
using SCA tools to detect flaws
in third-party components� Use
OpenSAMM’s Verification domain to
measure the effectiveness of vulnerability
management practices, including
remediation times and compliance with
patch management policies�

Best Practice: Maintain and continuously
update a SBOM, ensuring visibility into all
third-party dependencies� SBOMs help
organizations quickly identify and remediate
vulnerable components, in line with NIST
800-161�

4. Cross-Functional Collaboration
(DevSecOps): As organizations mature,
security must become a shared responsibility
across all teams, from development to
operations� DevSecOps ensures that security
is embedded in every phase of development
and deployment�

Action: Establish cross-functional
teams that include members from
security, development, and operations�

OpenSAMM’s Governance domain
encourages collaboration and includes
measures for tracking the effectiveness
of DevSecOps practices�

Best Practice: Create Purple Teams to
promote continuous collaboration between
Red and Blue Teams� Use BSIMM’s “Security
Testing” practice to benchmark how well
security is integrated into DevOps workflows�

CISOs can measure the success of their
AppSec programs by leveraging frameworks
like OpenSAMM and BSIMM, which provide clear
metrics for assessing maturity across different
domains� By starting with foundational security
practices and scaling to risk-based approaches,
continuous monitoring, and cross-functional
collaboration, organizations can achieve a
mature AppSec program that is resilient to
evolving threats�

Page 26 of 33

9. Tools and Technologies
in AppSec

9.1 Overview of Key Security Tools

An effective AppSec program requires the use of diverse tools to detect vulnerabilities, secure the
software supply chain, and maintain compliance across the development lifecycle� Leveraging advanced
tools like those from Sonatype and Lineaje ensures security at every stage of software creation, including
dependency management and vulnerability detection�

Tool Type Purpose Examples Best Practice

SAST Analyzes source code,
bytecode, or binaries to
find vulnerabilities without
executing the application�

SonarQube,
Checkmarx, Veracode

Integrate into early SDLC and CI/CD
pipelines for continuous security checks
on code commits�

DAST Simulates attacks on a
running application to find
vulnerabilities in real-time
environments�

OWASP ZAP, Burp
Suite, Netsparker

Use during the pre-production phase
to find and fix runtime vulnerabilities
before deployment�

IAST Combines SAST and DAST;
provides real-time insights
into application behavior
while analyzing code�

Contrast Security,
Seeker by Synopsys

Deploy during testing and development
for immediate feedback to developers,
helping fix issues before production�

SCA Monitors third-party
libraries and open-
source components for
known vulnerabilities and
compliance�

Sonatype Nexus
Lifecycle, Lineaje’s
Supply Chain Security,
Snyk

Automate scans in CI/CD pipelines for
continuous monitoring� Maintain a
Software Bill of Materials (SBOM) for
visibility�

WAFs Acts as a security barrier
between web applications
and the internet, filtering
malicious traffic�

AWS WAF, Cloudflare
WAF, Imperva

Use to protect production environments
from common web-based attacks like
SQL injection and XSS�

SIEM Tools Aggregates and analyzes
security data from multiple
sources to detect suspicious
activity in real-time�

Splunk, IBM QRadar,
LogRhythm

Integrate into your AppSec program
for real-time monitoring and insights,
enabling rapid response to threats�

Vulnerability
Scanners

Assesses applications and
infrastructure for known
vulnerabilities by comparing
to databases (e�g�, CVE)�

Nessus, Qualys, Lineaje
Vulnerability Scanning

Regularly scan applications and
infrastructure to detect and remediate
vulnerabilities based on severity�

9.2 Integrating Security into CI/CD
Pipelines

Embedding security controls into every CI/
CD stage delivers constant protection without
slowing delivery�

1. SAST and CI/CD Integration

Integrate SAST at the earliest build stage to
scan code in real time, giving developers
instant feedback and stopping vulnerable
code from ever reaching production�

Exhibit 17: Unified toolchain automates detection and response across lifecycle�

Page 27 of 33

2. DAST in CI/CD

Run DAST on pre-production builds to
uncover runtime issues and remediate them
before deployment, ensuring production-
ready security�

3. SCA & Dependency Management

During each build, SCA (e�g�, Sonatype Nexus
Lifecycle or Lineaje) audits open-source
components, automatically flagging or
updating risky libraries so no vulnerable
dependency ships�

4. Automated Security Testing

Trigger SAST, DAST, and SCA on every
commit, build, and deploy via Jenkins, GitLab
CI, or CircleCI to catch and fix flaws
continuously across the pipeline�

5. Continuous Monitoring & Feedback

In production, SIEM or RASP monitors live
behavior and raises instant anomaly alerts,
enabling security teams to respond to threats
within minutes�

When security is woven through the workflow,
the pipeline itself becomes the gatekeeper—
shipping resilient software at DevOps speed�

9.3 Automation and DevSecOps
Practices

DevSecOps integrates security practices into
DevOps, ensuring that security becomes a
shared responsibility across development,
security, and operations teams�

1. Security Automation

How It Works: Security automation tools
such as SAST, DAST, and SCA are integrated

into CI/CD pipelines to automate vulnerability
detection and remediation�

Benefits: Automating security processes
ensures consistent and continuous testing
throughout the SDLC, speeding up
development while reducing security risks�‍

2. Shift-Left Security

How It Works: The shift-left approach moves
security testing earlier in the SDLC, detecting
vulnerabilities as soon as they are introduced
into the codebase�

Benefits: Shifting security left reduces
remediation costs and ensures that
vulnerabilities are caught early, preventing
them from reaching production�

3. Continuous Security Monitoring

How It Works: Tools such
as RASP and SIEM monitor applications
during runtime to detect threats and
anomalies in real-time�

Benefits: Continuous monitoring enables
rapid incident response and helps ensure
that applications remain secure after
deployment�

Page 28 of 33

10. Legal and Compliance
Considerations in AppSec

10.1 Relevant Regulations and Standards

AppSec is not just about protecting data from
malicious actors; it is also about complying
with a wide range of legal and regulatory
requirements� Organizations must ensure their
applications meet the standards set by both
industry-specific regulations and international
laws designed to protect sensitive data� Here are
some of the key regulations and standards that
impact AppSec:

1. GDPR: The GDPR governs how organizations
collect, store, and process the personal data
of European Union (EU) citizens� Even
organizations outside the EU are required to
comply if they offer goods or services to EU
residents or monitor their behavior�

Key Requirements:

Collect and process data lawfully, transparently,
and for specific, legitimate purposes�

Implement strong security measures, such as
encryption and pseudonymization, to protect
personal data�

Promptly report data breaches to regulators and
affected individuals within 72 hours of discovery�

Allow individuals to access, correct, or request
the deletion of their personal data (the “right to
be forgotten”)

Impact on AppSec: Organizations must ensure
that applications comply with data privacy
principles and implement security controls like
encryption, RBAC, and secure data storage�
Reference: GDPR Guidelines

2. CCPA: The CCPA provides California residents
with greater control over their personal data,

similar to GDPR� It applies to businesses that
collect personal information from California
residents and meet specific thresholds (e�g�,
annual revenue or number of consumers)

Key Requirements:

Disclose the categories of personal data collect-
ed and its purpose�

Allow users to opt-out of data sales and request
access to or deletion of their personal data�

Implement security measures to protect person-
al data from unauthorized access or disclosure�

Impact on AppSec: Applications must include
features like consent management, data access
controls, and mechanisms for users to exercise
their rights under CCPA� Additionally, robust
security measures must be in place to prevent
unauthorized data access�
Reference: CCPA Guidelines

3. Payment Card Industry Data Security
Standard (PCI DSS): PCI DSS is a set of
security standards designed to ensure that all
companies that accept, process, store, or
transmit credit card information maintain a
secure environment� This standard applies
globally to any business dealing with
cardholder data�

Key Requirements:

Encrypt sensitive cardholder data both in transit
and at rest�

Implement strong access controls, including
MFA and RBAC�

Regularly test security systems and processes,
including vulnerability scans and penetration
testing�

Maintain a comprehensive information security
policy�

Impact on AppSec: Applications handling
payment data must comply with PCI DSS,

Page 29 of 33

incorporating strong encryption, secure data
storage, and continuous vulnerability scanning�
Reference: PCI DSS Guidelines

4. Health Insurance Portability and
Accountability Act (HIPAA): HIPAA applies
to healthcare providers, insurers, and their
business associates that handle protected
health information (PHI)� It mandates strict
controls over the privacy and security of
health data�

Key Requirements:

Ensure the confidentiality, integrity, and avail-
ability of PHI�

Protect against unauthorized access through
access controls, encryption, and auditing�

Perform regular security risk assessments and
adopt appropriate security safeguards�

Impact on AppSec: Healthcare applications
that process PHI must comply with HIPAA by
implementing encryption, access controls, audit
logging, and conducting regular security risk
assessments�
Reference: HIPAA Guidelines

5. Federal Risk and Authorization
Management Program
(FedRAMP): FedRAMP is a U�S� government
program that standardizes security
requirements for cloud service providers
(CSPs) offering services to federal agencies

Key Requirements:

Implement stringent security controls, including
encryption, continuous monitoring, and access
control mechanisms�

Conduct regular security assessments and au-
thorization processes�

Provide real-time visibility into security vulnera-
bilities and incidents�

Impact on AppSec: Cloud-based applications
providing services to federal agencies must

meet FedRAMP’s rigorous security requirements,
particularly around encryption, continuous
monitoring, and incident response�
Reference: FedRAMP Guidelines

10.2 Privacy by Design and Data
Protection Principles

Beyond mere regulatory compliance, Privacy by
Design calls for privacy and security to be woven
into an application’s architecture from day one
and maintained through every SDLC phase�

Proactive, Not Reactive. Start with a privacy
impact assessment so risks are anticipated— not
patched after launch�

Privacy as the Default. Ship the product with
data-minimizing settings already enabled; users
shouldn’t have to toggle privacy on�

Embedded Controls. Build access management,
encryption, and secure data-handling directly
into the codebase instead of layering them on
later�

Full-Lifecycle Protection. Guard information
from collection to disposal by encrypting data in
transit and at rest, then erasing it securely when
it’s no longer needed�

Transparency and Accountability. Publish
clear, actionable privacy notices and give people
meaningful control over how their data is used or
shared�

Best Practice. Map every safeguard to the NIST
Privacy Framework so your AppSec program
meets both industry standards and legal
obligations�

Page 30 of 33

11. Future Trends in
AppSec

11.1 AI and Machine Learning in AppSec

The use of Artificial Intelligence
(AI) and Machine Learning (ML) is reshaping
how organizations manage AppSec� AI enhances
efficiency in identifying vulnerabilities, reducing
false positives, and providing more accurate
prioritization of security risks�

Key Trends in AI/ML for AppSec:

 • Automated Threat Detection and
Response:
AI-driven platforms ingest logs, network
flows, and user behavior to detect anomalies
in real time, launch scripted containment,
and orchestrate playbooks that quarantine
compromised hosts within seconds�
Continuous learning from past incidents
sharpens detection of emerging attacks�

 • Proactive Vulnerability Identification:
ML models enrich scanners by predicting
likely weak points from code history,
architecture, and usage patterns� This insight
lets teams prioritize fixes, shorten patch
windows, and slash false positives, freeing
analyst hours�

 • AI-Powered Security Audits: During static
analysis and compliance reviews, AI groups
findings, maps them to standards, and
highlights true threats, trimming audit cycles
and easing regulatory reporting while letting
engineers focus on actionable flaws�

 • Vulnerability Management in Third-Party
Libraries: Supply-chain risk remains acute�
AI-driven composition tools continuously
track open-source components, correlate
them with fresh CVEs, and advise whether to

keep, patch, or replace each dependency�
Some platforms even simulate exploit chains
to gauge the business impact of a vulnerable
library�

 • AI in Penetration Testing: Reinforcement-
learning bots accelerate pen tests, optimize
scans, surface exploit paths, and deliver
prioritized remediation advice that mirrors
attacker tactics� Operating continuously, they
provide a “red team on demand” without the
staffing overhead�

Challenges: These advantages come with
caution� Adversaries can poison models or
craft inputs to mislead them, and data drift
can erode accuracy� Hardening data pipelines,
vetting training sets, and constant validation are
essential to keep AI-driven controls trustworthy
and effective�

11.2 Quantum Computing and
Cryptographic Implications

Quantum computing is expected to
revolutionize many areas of technology,
including security� Quantum computers will have
the power to break traditional cryptographic
algorithms that secure today’s applications,
posing a significant threat to encryption
standards such as RSA and ECC (Elliptic Curve
Cryptography)�

Key Trends in Quantum Computing for
AppSec:

1. Post-Quantum Cryptography: As quantum
computing becomes more viable,
organizations must begin transitioning
to quantum-resistant algorithms� These
cryptographic algorithms are designed to
withstand attacks from quantum computers,
ensuring that sensitive data remains secure
even in a post-quantum world�

Page 31 of 33

2. Quantum Key Distribution (QKD): Quantum
Key Distribution (QKD) is a method for
securely transmitting encryption keys using
the principles of quantum mechanics� It
ensures that any attempt to intercept the
keys will be detected, as quantum particles
cannot be measured without disturbing
them�

Challenges: While quantum computing
presents significant security challenges, the
technology is still in its infancy� Organizations
should begin preparing for a post-quantum
future, but widespread quantum attacks are still
several years away�

11.3 Supply Chain Security and SBOM
Evolution

As applications increasingly rely on third-
party components, securing the software
supply chain has become a priority� The rise
of supply chain attacks, such as those seen with
SolarWinds and Log4j, has underscored the need
for greater transparency and control over the
components used in software development�

Key Trends in Supply Chain Security:

 • SBOM Maturation – Software bills of
materials are now indispensable for
cataloging every dependency—libraries,
frameworks, modules—along with versions
and known CVEs�

 • Stricter Third-Party Assessments –
Organizations conduct deeper security audits
of suppliers, requiring vendors to prove
adherence to industry best practices before
their code is accepted�

 • Zero-Trust for the Supply Chain – Extending
the network model, every external
component is distrusted by default and must
be continuously verified before integration�

Challenges – Effective defense demands real-
time visibility and rapid response; as SBOMs
scale, they must stay accurate and seamlessly
embedded in existing security workflows�

11.4 Cloud‑Native and API Security
Challenges

The rise of cloud-native applications and API-
driven architectures has introduced new
security challenges� Micro services, containers,
and server-less architectures provide agility
and scalability, but they also expand the attack
surface, making API security a critical focus for
AppSec teams�

Key Trends in Cloud-Native and API Security:

1. API Security as a Priority: As APIs are the
primary method for connecting services in
cloud-native environments, they are also
prime targets for attackers� Poorly secured
APIs can lead to unauthorized access, data
breaches, and other serious vulnerabilities�

2. Container Security: Containers have become
the default unit of deployment for cloud-
native applications, but they introduce
security risks if not properly configured�
Mis-configured containers can lead to
privilege escalation or unauthorized access�

3. Server-less Security: Server-less
computing allows organizations to run code
without managing the underlying
infrastructure, but it also introduces new
security concerns, particularly around
function invocation, identity management,
and third-party dependencies�

Page 32 of 33

12. How can we help you
with AppSec?

12.1 How InterSec can help you with
Application Security?

InterSec is uniquely positioned to deliver
exceptional AppSec solutions, combining
certified expertise with strategic partnerships
and thought leadership in the industry� Our
team of professionals, certified in CSSLP, CASE,
CEH, Pen-test+, OSWE, and AWS Security,
provides unmatched depth in secure software
development, penetration testing, and cloud
security�

Certified Expertise and Thought Leadership

At the heart of our differentiation is our active
involvement with industry-leading organizations
such as NIST, MITRE, Carnegie Mellon Institute,
CISA, and the OWASP Foundation� By
collaborating with these key organizations, we
stay on the forefront of AppSec best practices,
solutions, and trends� Our ongoing participation
ensures that we are not only aware of emerging
threats but also at the forefront of developing
standards and strategies that shape the security
landscape�

For instance, InterSec’s involvement with
NIST and CISA Working Groups keeps us
ahead of evolving cybersecurity frameworks
and compliance requirements� Our alignment
with MITRE’s ATT&CK framework enables us
to deliver threat modeling based on real-world
adversary behavior, while our active participation
with the Carnegie Mellon Institute ensures
our approach to security is research-driven and
innovative� Additionally, our participation in
the OWASP Foundation allows us to influence
and leverage open-source AppSec projects like
the OWASP Top Ten, which directly informs our
client engagements�

 • Managed AppSec Services and Tailored
Solutions: InterSec offers Managed AppSec
Services designed to continuously protect
our clients’ applications� Our certified team
ensures that applications are consistently
tested using SAST, DAST, and SCA tools, and
we integrate these services seamlessly into
our clients’ CI/CD pipelines for automated,
continuous testing�

 • Building AppSec Programs from the
Ground Up: For organizations seeking to
establish a robust AppSec program, InterSec
has the expertise to help build secure,
scalable solutions from scratch� We guide
clients in adopting leading frameworks such
as OpenSAMM and BSIMM, ensuring that
security is integrated at every phase of
the SDLC� Our expertise spans from risk
assessment and vulnerability management
to establishing DevSecOps practices that
embed security into everyday operations�

 • Proven Experience Across Sectors: InterSec
has a proven track record of delivering
AppSec services across multiple sectors,
including finance, healthcare, technology,
and government� We specialize in tailoring
our solutions to meet the unique compliance
needs of each industry, ensuring long-term
protection against ever-evolving threats�
Whether developing a comprehensive
AppSec program or managing daily security
operations, InterSec’s clients benefit from
deep expertise and a proactive approach to
protecting their most critical assets�

By actively engaging with leading security
organizations and offering a team of highly
certified professionals, InterSec helps
organizations stay ahead of cyber threats while
meeting the highest standards of AppSec�

Don’t let security be an
afterthought—make it your
competitive advantage.

+1‑571‑765‑4235
inquiries@intersecinc.com

13800 Coppermine Road, Herndon, VA 20171
Work Area: Nationwide
www.intersecinc.com

Scan the QR code to book
a 30-min no obligation call

Whether you’re building an AppSec program from the ground up,
advancing your maturity, or seeking targeted guidance—contact InterSec
today to start turning security into your competitive advantage.

