Pièce complexe ou fonctionnelle? Prototypage, série, ou retrofit? L'antisèche ultime pour éviter les 12 erreurs les plus fréquentes en impression 3D métal.

La fabrication additive métal ouvre des possibilités incroyables... mais les pièges sont nombreux.

Supports, orientation, retrait matière, tolérances serrées...

Une conception pensée pour l'usinage ne fonctionne pas forcément en impression 3D.

Un post-traitement oublié peut transformer un gain en surcoût.

Un mauvais choix de matériau peut compromettre toute l'application.

© Cette checklist vous aide à anticiper, en un coup d'œil, ce qui peut faire échouer un projet d'impression 3D métallique.

- Quand une pièce sort brute et nécessite encore usinage ou TTH.
- Quand un canal interne piège la poudre et bloque la mise en service.
- Quand l'oubli d'une surépaisseur fait rater une tolérance critique.
- Quand une erreur de design coûte du temps, de l'argent... et un redesign complet.

✓ Vous y trouverez :

- Les 12 erreurs les plus courantes en impression 3D métal.
- Leurs impacts concrets sur vos projets.
- Comment les éviter dès la conception.

The following of the street of

Erreur courante

Conséquence

Bonne pratique

1. Conception non adaptée (pièce pensée pour CNC)	Risque de non-faisabilité, surcoûts massifs	Intégrer les règles de DfAM dès la conception
2. Ne pas préciser l'application de la pièce	Mauvais choix de process ou matière	Indiquer si proto, fonctionnel, série, conditions d'usage
3. Oublier les surplombs et zones à supports	Supports complexes, retrait difficile, coûts élevés	Concevoir pour limiter les supports et anticiper leur retrait
4. Cavités internes inaccessibles	Poudre piégée → pièce inutilisable	Prévoir trous d'évacuation ou géométrie adaptée
5. Choix matière inadapté	Propriétés mécaniques ou corrosion non conformes	Sélectionner l'alliage en fonction des contraintes réelles
6. Négliger le traitement thermique	Fissures, contraintes résiduelles, dureté incorrecte	Intégrer systématiquement le TTH dans le process
7. Oublier les surépaisseurs pour usinage	Tolérances inatteignables, pièce rebutée	Prévoir surépaisseurs sur zones critiques
8. Mal gérer les états de surface	Interfaces non conformes, retouches coûteuses	Définir zones brutes vs zones nécessitant une finition
9. Penser que la pièce sort prête à l'emploi	Déception, coûts cachés (usinage, sablage, polissage)	Toujours prévoir un post-traitement adapté
10. Ne pas fournir de plan avec tolérances	Pièce non conforme aux attentes	Fournir un plan 2D en plus du fichier 3D
11. Sous-estimer les délais réels	Retard projet, mauvaise planification	Intégrer fabrication + TTH + usinage dans le planning
12. Se focaliser uniquement sur le coût unitaire	Comparaison biaisée avec l'usinage, mauvaises décisions	Évaluer la valeur globale (délais, masse, assemblages)

