
Just Retired

Migrating off 
Jenkins to a Modern 
CI/CD Solution
Break free from CI/CD complexity and 
embrace AI for Software Delivery




Executive Summary
For many organizations over the past decade, Jenkins has been the cornerstone of 
continuous integration and continuous delivery (CI/CD). However, as DevOps practices 
evolve and cloud-native technologies become standard, many teams find that Jenkins 
struggles to keep up with modern requirements. This white paper examines why Jenkins 
gained such widespread adoption, the challenges organizations face, why migration can 
be difficult, and a structured approach to moving to Harness, an AI for Software Delivery 
platform designed to address these pain points. The benefits of migration include reduced 
maintenance overhead, faster and more secure builds, ease of deployments in various 
environments, enhanced developer experience, and advanced features like AI-powered 
verification and rollback that are critical in today's competitive landscape.

Introduction 
The Evolution of CI/CD

Continuous Integration and Continuous Delivery have transformed from novel concepts to 
essential practices in modern software development. As organizations strive for faster 
releases, higher quality, and increased automation, the tools that support these practices 
must evolve accordingly. Jenkins emerged as an early leader in this space, providing a 
flexible platform for automation that helped countless organizations take their first steps 
toward CI/CD.



However, as software delivery becomes more complex, with microservices architectures, 
containerization, and cloud-native approaches becoming standard, many teams find that 
Jenkins creates more friction than flow in their delivery pipelines. This realization has 
sparked a migration trend toward more modern CI/CD solutions like Harness that are 
purpose-built for today's development challenges.

02



Why Jenkins Has Been a 

Popular Choice

Widespread Adoption and Community Support
Jenkins has amassed well over millions of developers worldwide1, making it one of the 
industry's most widely used CI/CD tools. This widespread adoption means finding talent 
familiar with Jenkins is relatively easy, reducing onboarding time for new team members.

Open-Source Foundation
As an open-source solution, Jenkins offers organizations a free entry point into CI/CD 
automation. This has made it particularly attractive for teams looking to implement CI/CD 
practices without significant upfront investment.

Flexibility and Extensibility
Jenkins was designed with extensibility in mind, offering a plugin architecture that allows 
users to adapt the tool to almost any workflow or technology stack. With nearly 2,000 
community-developed plugins available, users can find extensions for virtually any use 
case imaginable.

Developer-Centric Design
Created by Kohsuke Kawaguchi2 while working at Sun Microsystems, Jenkins was built by 
a developer facing the frustrations of manual build and test cycles. This developer-centric 
approach resonated with engineering teams who saw Jenkins as a tool built to solve real 
problems they encountered daily.

Distributed Architecture
Jenkins leverages a controller-agent architecture3 that allows organizations to distribute 
workloads across multiple nodes. This design enables teams to run builds and tests in 
parallel across different environments and operating systems, improving throughput and 
efficiency.

 1 https://appvibe.com/blog/why-is-jenkins-still-so-popular-in-2023/


 2 https://www.jenkins.io/blog/authors/kohsuke/


 3 https://devopscube.com/jenkins-architecture-explained/
03



04

Ease of Installation and Setup
For basic use cases, Jenkins is relatively straightforward to install and configure. It can 
run on any system with a Java Runtime Environment (JRE), be deployed in containers, or 
installed through native system packages, giving teams flexibility in how they deploy it.

Pain Points of Jenkins in Today's 
DevOps Landscape

The Plugin Nightmare
While Jenkins' extensive plugin ecosystem is often cited as a strength, it has increasingly 
become a source of frustration and technical debt for many organizations:

Not Built for Continuous Delivery/Deployment: Teams often rely on 
plugins to build out their CD workflows, which creates a lot of operational 
overhead and furthers the plugin nightmare.

Dependency Hell: The interdependency between plugins creates complex 
compatibility issues that make upgrades risky and time-consuming.

Outdated and Unmaintained Plugins: Many plugins are poorly maintained 
or completely abandoned, leading to security vulnerabilities and 
compatibility problems with newer Jenkins versions.

Documentation Gaps: Many plugins lack comprehensive documentation, 
making troubleshooting and proper implementation challenging.

Resource Intensity and Scalability Issues
Jenkins installations often become resource-hungry as they scale:

Excessive Resource Consumption: Jenkins setups frequently demand 
excessive RAM and CPU resources, straining infrastructure and limiting 
scalability.

Performance Degradation: As the number of jobs increases, the Jenkins 
server can become a bottleneck, slowing down the entire CI/CD process.



05

Maintenance Burden
The ongoing maintenance of Jenkins represents a significant overhead for many 
organizations:

Dedicated Personnel Required: Maintaining Jenkins often necessitates a 
dedicated team, pulling valuable resources away from product 
development.

Configuration Drift: Over time, Jenkins instances tend to accumulate 
manual configurations that are difficult to track and reproduce, creating 
"snowflake" servers that become impossible to recreate if lost.

Limited Infrastructure-as-Code (IaC) Support
Modern DevOps practices emphasize defining infrastructure and configuration as code, 

an area where Jenkins has traditionally fallen short:

Manual Configuration Prevalence: Jenkins makes it too easy to create 
configurations through clicking around the UI rather than defining them as 
code.

Rudimentary IaC Support: While improving, Jenkins' support for 
infrastructure-as-code and configuration-as-code remains less mature than 
purpose-built modern solutions.

Containerization/Modern Environment Challenges
As organizations move toward containerized workloads, Jenkins' architecture presents 
obstacles:

Difficult to Containerize: Jenkins was not originally designed with 
containerization in mind, making it challenging to run in modern container 
orchestration platforms like Kubernetes.

Ephemeral Environment Limitations: Jenkins struggles with truly 
ephemeral build environments, a key requirement for modern cloud-native 
applications.



06

User Experience Issues
Jenkins' user interface and user experience have not kept pace with modern expectations:

Outdated UI: Jenkins' interface is frequently criticized as outdated and 
unintuitive, making it less user-friendly than modern alternatives.

Complex Pipeline Syntax: The Jenkinsfile syntax is considered overly 
complex and difficult to master compared to competitors' offerings.

Why Migrating off 

of Jenkins is Tedious

Substantial Investment in Existing Pipelines
Many organizations have invested years of development effort into their Jenkins pipelines:

Pipeline Sprawl: Large enterprises often have thousands of Jenkins pipelines 
accumulated over many years.

Custom Code and Shared Libraries: Organizations typically develop extensive custom 
code and shared libraries specific to their Jenkins implementation.

Institutional Knowledge and Documentation
Migration requires addressing a significant body of institutional knowledge 

tied to Jenkins:

Internal Documentation: Organizations often have extensive internal documentation 
centered around Jenkins workflows and troubleshooting.

Team Expertise: Teams have developed specialized knowledge about their Jenkins setup 
that doesn't translate directly to new platforms.



Business Case Challenges
Justifying the migration from a financial and operational perspective can be difficult:

Developer Time Investment: Migration requires substantial developer time that could 
otherwise be spent on product features or improvements.

Opportunity Cost: The resources required for migration represent a significant 
opportunity cost, often approaching "close to a million or more in developer time".

New Issues Post-Migration: Like any major system rewrite, migration introduces a 

new set of issues that need to be addressed.

Technical Complexity
The technical aspects of migration present numerous challenges:

Plugin Dependency Analysis: Understanding what plugins are used, their exact functions, 
and their interdependencies is a complex undertaking.

Agent Configuration Understanding: Determining what's installed on Jenkins agents and 
how they're configured requires detailed analysis.

Authentication and Security Migration: Moving authentication methods, SSH keys, API 
tokens, and other secrets requires careful planning to maintain security.

07



08

What to Jenkins Users Should Know 
About Harness
Organizations coming from Jenkins often bring years of accumulated patterns, tooling 
habits, and mental models around how CI/CD should work. While Harness introduces a 
different approach to automation and platform experience, many foundational ideas will 
feel familiar. Concepts like pipelines, stages, steps, triggers, secrets, and agents still exist 
- what changes is how these are implemented, maintained, and secured.



This section outlines what engineers and platform teams should expect when transitioning 
from Jenkins to Harness. It highlights where the tools align conceptually and where 
Harness intentionally diverges to offer greater reliability, governance, and developer 
experience.

Pipeline Creation and Execution
In Jenkins, pipelines are defined using scripted or declarative Groovy in Jenkinsfiles. 
Harness pipelines can also be written as code using YAML, but there's also a visual editor 
that gives teams flexibility in authoring and reviewing workflows. Jenkins pipelines are 
often monolithic and tied to repository structure, while Harness encourages modular, 
reusable pipeline components. Harness also uses AI to generate pipelines. The AI doesn’t 
just create generic pipelines; it leverages your existing templates, tool configurations, 
environments, and governance policies to ensure each pipeline meets your internal 
standards.



One key similarity is that both tools define pipelines as a sequence of steps or stages that 
execute on a worker. But where Jenkins relies heavily on plugins and custom scripting, 
including the full use of Groovy as a general-purpose language, that flexibility often 
comes at the cost of consistency, maintainability, and onboarding speed. Harness takes a 
different approach with YAML-based pipelines that prioritize clarity and standardization 
without giving up power. It provides guardrails, reusable templates, custom steps, and 
intelligent input sets to express complex workflows in a predictable and shareable way. 
For use cases that require dynamic behavior, Harness supports extensibility through 
custom modules and integrations while still preserving the simplicity and auditability of 
declarative pipelines.

https://developer.harness.io/docs/continuous-delivery/cd-onboarding/new-user/pipeline-design-guide/


09

Plugins vs Platform Features
In Jenkins, much of the functionality is built through community plugins, whether it’s 
Docker builds, GitHub integrations, or test reports. While this offers flexibility, it often 
comes with versioning conflicts, plugin maintenance overhead, and unpredictable 
behaviors when plugins are outdated or poorly maintained.



Harness takes a different approach by offering a built-in step library with dozens of the 
most commonly used CI/CD actions, such as building and pushing Docker images, running 
tests, scanning for vulnerabilities, and more. These steps work out of the box without 
requiring additional installation or configuration.



Beyond steps, Harness also introduces templates, a powerful way to define reusable logic 
and pipeline components. You can create templates for steps, stages, or entire pipelines, 
and then link or share them across teams. This makes it easy to standardize best 
practices, enforce security and compliance rules, and reduce duplication. For example, a 
team can define a single security scan stage as a template, then reuse it across dozens of 
pipelines without rewriting or copy-pasting YAML.



Templates enhance developer productivity, reduce onboarding time, and bring structure to 
what might otherwise become fragmented or inconsistent pipeline code. For example, a 
team can define a security scan stage as a template once and reuse it across multiple 
pipelines to ensure consistency and compliance without duplicating YAML. Below is a 
sample pipeline template to illustrate how teams can encapsulate reusable logic and 
share it across projects or teams.

https://developer.harness.io/docs/platform/templates/template/


10

For teams that want plugin-like extensibility, Harness CI supports custom steps and 

integrates with the Drone Plugins ecosystem. You can use pre-built plugins from the 

Drone Plugins Marketplace. You can also write your own plugins and invoke them as part 

of your pipelines, similar to Jenkins shared libraries or custom steps, but with more 

structure and maintainability.



The flexibility of plugins is still there, but Harness wraps it with support, governance, 


and a curated experience that reduces the friction developers often face in Jenkins-

based setups.

https://plugins.drone.io/


11

Secrets and Credentials
Both Jenkins and Harness support injecting secrets into builds, but the management 
approach differs. Jenkins stores credentials internally or uses plugins to fetch from secret 
managers. Harness provides a native secrets manager with support for Vault, AWS Secrets 
Manager, GCP Secret Manager, and others, with built-in RBAC and audit logging.



The idea of securing tokens, passwords, or SSH keys remains the same, but Harness adds 
structure and visibility around who can access what and when.

Agents and Infrastructure
In Jenkins, builds are executed by agents (or nodes) that you configure and manage 
yourself. These agents can be static virtual machines, Docker containers, or dynamic 
Kubernetes pods, but it’s up to the user to provision, secure, scale, and maintain them. 
Many teams build their own fleet of agents and use labels to assign jobs across them, 
often via plugins like the Kubernetes plugin or EC2 plugin.



Harness takes a similar conceptual approach - you still need some kind of executor, but it 
introduces more structure and flexibility. You can choose from several execution 
infrastructures: Kubernetes (via Harness-managed pods), Docker-compatible VMs, or 
Drone-based runners. Each infrastructure option is explained in detail here: Which Build 
Infrastructure is Right for Me?



A key architectural difference is the Harness Delegate. The delegate is a lightweight, 
service-based component you install in your infrastructure (such as a K8s cluster or VM). 
Think of it like a Jenkins agent, plus credentials manager, plus job orchestrator. It securely 
connects your environment to the Harness platform, handles pipeline execution, connects 
to external services (like Docker registries, Git providers, or cloud infra), and ensures 
operations stay inside your network.

https://developer.harness.io/docs/platform/secrets/secrets-management/harness-secret-manager-overview/
https://developer.harness.io/docs/platform/secrets/secrets-management/add-hashicorp-vault
https://developer.harness.io/docs/platform/secrets/secrets-management/add-an-aws-secret-manager
https://developer.harness.io/docs/platform/secrets/secrets-management/add-an-aws-secret-manager
https://developer.harness.io/docs/platform/secrets/secrets-management/add-a-google-cloud-secret-manager
https://developer.harness.io/docs/continuous-integration/use-ci/set-up-build-infrastructure/which-build-infrastructure-is-right-for-me
https://developer.harness.io/docs/continuous-integration/use-ci/set-up-build-infrastructure/which-build-infrastructure-is-right-for-me
https://developer.harness.io/docs/platform/delegates/delegate-concepts/delegate-overview/


12

Harness Delegates & Connectors

(Public SaaS)
Connectors

D
irect C

onnection

Cloud

Mgr (SaaS)

Build Deploy

Authenticate via 
Harness Platform

Connectors 
(Protected)

Delegate(s)

Authenticate via

Task Assignment

Delegate 
Connection

Outbound HTTPS/SSL Only 
Port:443 
Proxy Support: Yes

via Delegate(s)

Stages / Steps

Firew
all

K8s Cluster(s)

Delegate(s)

SaaS Sevice behind  
SSO/Firewall

Corporate Data Center

Docker Runtime(s)

Delegate(s)*Not exhaustive list

Internet*

For teams using Harness Cloud build infrastructure that still need access to internal 

resources, Harness provides Secure Connect. Secure Connect creates a secure tunnel that 

allows cloud-hosted builds to access private assets, such as on-premises code 

repositories or internal artifact registries. It removes the need to allowlist IP addresses 

and offers a faster, more secure way to bridge cloud and on-prem environments. 



While Jenkins users are responsible for managing agents and provisioning access to 

secrets or cloud APIs through plugins, Harness simplifies these tasks through the 

Delegate model and features like Secure Connect. This results in less manual setup, 

improved security, and reduced maintenance effort.

https://developer.harness.io/docs/continuous-integration/secure-ci/secure-connect/


13

Access Control and Governance
In Jenkins, access control is typically handled through plugins like Role Strategy or Matrix 
Authorization Strategy. While these provide basic RBAC, configurations are often manual 
and vary across controllers. Enforcing standards or approvals usually relies on job-level 
scripting or organizational norms, which can be hard to scale or audit consistently.



Harness includes fine-grained RBAC built into the platform, allowing teams to scope 
permissions by project, environment, service, or pipeline. Roles can be centrally managed 
and tied into identity providers via SSO for consistent access control across teams and 
environments.



Beyond traditional RBAC, Harness supports Policy as Code using Open Policy Agent (OPA). 
Policies can be defined and stored directly in the Harness platform and applied to specific 
entities (such as pipelines or stages) at defined points in the delivery workflow. This allows 
teams to enforce security, compliance, and operational standards in a consistent, codified 
way.



Jenkins users familiar with DSL-based job controls or homegrown compliance scripts will 
find the concept familiar, but Harness provides a centralized, auditable, and scalable way 
to define and enforce rules without scattering logic across jobs.

Debugging and Visibility
In Jenkins, logs are tied to job runs and typically displayed as raw console output. 
Debugging often involves scrolling through long logs, deciphering stack traces, and 
mentally reconstructing what went wrong. Visualization and structured context are 

limited unless additional plugins are installed and configured.



Harness takes a different approach. Logs are automatically structured and tied to specific 
steps and stages, with direct links between failures and the pipeline execution graph. 
Beyond that, Harness includes AI-assisted failure analysis built into the platform. When a 
pipeline fails, Harness AI parses the logs, identifies the likely root cause, and highlights 
the failure reason, saving developers from log-diving and guesswork.



The core idea of reviewing logs to debug failures remains familiar, but Harness 
dramatically reduces the time it takes to find and fix issues by combining structured 

views with intelligent insights out of the box.

https://developer.harness.io/docs/platform/role-based-access-control/rbac-in-harness/
https://developer.harness.io/docs/continuous-delivery/x-platform-cd-features/advanced/cd-governance/harness-governance-overview/


A Structured Approach to Jenkins 
Migration: Moving to Harness

Preparation and Assessment
The first step in a successful migration is thorough preparation and assessment:

�� Have a running Cloudbees or Jenkins instanc�
�� Java 8 to 17 (recommended versions are Java 8, Java 11, or Java 17�
�� Some disk space to store Jenkins traces under the Jenkins Home director�
�� Minimum Jenkins version supported: jenkins/jenkins:2.387.3-lts-jdk11

Planning Your Migration Strategy 

Day 0
With a clear understanding of your Jenkins environment, develop a strategic 

migration plan:

�� Determine the first team to migrate, and ensure one engineer is fully dedicated  
to supporting the effor�

�� Harness will install the Harness’s Jenkins Migration Assistant™,  
run a pipeline in Jenkins, and validate initial trace�

�� Share the disk space/S3 bucket with Jenkins traces (step 3) with Harness

Rollbacks, Approvals, and Audit Trails
Rollback strategies in Jenkins are typically custom scripts embedded into jobs. In 
Harness, rollbacks are treated as first-class citizens with built-in deployment strategies, 
approval steps, and AI-powered verifications. Harness also includes an audit trail across 
pipeline edits, secrets, users, and deployments.



Teams used to scripting their way around Jenkins will find these capabilities familiar but 
more streamlined and centrally visible in Harness.

14

https://developer.harness.io/docs/database-devops/concepts-and-features/automatic-and-custom-rollback/








The Bene�fits of Harness Platform

Operational Ef�ficiency
Migrating to Harness delivers significant operational improvements:

Reduced Maintenance Overhead: Organizations typically see an 80% reduction in 
pipeline maintenance overhead after migrating from Jenkins to Harness.

Faster Build and Deployment Cycles: Harness can deliver 80% faster builds and 
deployments through optimized processes and infrastructure utilization.

Decreased Pipeline Failures: The built-in validation and verification capabilities of 
Harness result in significantly fewer pipeline failures.

Pipeline Consolidation and Standardization
Harness enables dramatic simplification of CI/CD infrastructure:

Template-Based Approach: Organizations can consolidate thousands of Jenkins 
pipelines into a handful of standardized templates. For example, Ancestry.com reduced its 
pipeline sprawl by 80:1 after migrating from Jenkins, cutting maintenance costs by 72%.

Governance and Standardization: Harness automatically applies security, compliance, 
and best practices to all pipelines, ensuring consistency across the organization.

11



Developer Experience Enhancements
Harness prioritizes the developer experience:

Intuitive Pipeline Studio: Allows developers to experiment quickly without needing to 
understand the nuances of YAML, making CI/CD more accessible to all team members.

Self-Service Capabilities: Developers can create and modify pipelines using Harness AI™ 
without relying on specialized DevOps expertise, reducing bottlenecks.

Rapid Feedback Loops: Lightning-fast builds with test and cache intelligence provide 
developers with immediate feedback.

Advanced Features Beyond Jenkins
Harness offers capabilities that go beyond what Jenkins can provide:

CI Intelligence Features: Test Intelligence, which selects tests to run based on code 
changes, Build Intelligence, which caches build tasks for Gradle, Maven, and Bazel, Docker 
Layer Caching, which caches unchanged Docker layers, etc.

AI-Powered Verification: Continuous verification connects CD pipelines with observability 
tools to automatically validate deployments and detect issues early.

Policy-Based Governance: Federated policy-based governance, powered by Open Policy 
Agent (OPA), allows organizations to define production requirements as code.

Comprehensive Audit Trails: Bank-tested audit capabilities track all platform activities, 
satisfying compliance requirements without compromising developer experience.



Purpose-Built Continuous Delivery
Harness recognizes that CI and CD are distinct disciplines with different requirements:

Specialized CD Platform: Harness was designed from the ground up as a continuous 
delivery platform, not just an extension of CI capabilities.

Advanced Deployment Strategies: Native support for canary, blue/green, and 
progressive delivery without complex custom scripting.

Automated Rollbacks: AI-powered rollback capabilities automatically detect and 
remediate failed deployments.

GitOps Integration: Seamless support for GitOps workflows alongside traditional 
deployment approaches.



Conclusion
While Jenkins has been a cornerstone of CI/CD for many organizations, its limitations in 

today's cloud-native, microservices-oriented world are becoming increasingly apparent. 

The challenges of plugin management, resource consumption, maintenance overhead, and 

limited support for modern practices are driving organizations to seek alternatives.



Migrating from Jenkins is a substantial undertaking requiring careful planning and 

execution. However, the benefits of moving to a modern solution like Harness, including 

reduced maintenance, faster builds, enhanced developer experience, and advanced 

capabilities, make it a worthwhile investment for organizations looking to stay competitive 

in today's fast-paced software delivery landscape.



By following a structured approach to migration that includes thorough preparation, 

strategic planning, incremental implementation, and continuous optimization, 

organizations can successfully transition from Jenkins to Harness while minimizing 

disruption and maximizing the return on their investment.



The future of CI/CD lies in AI-powered automation, developer self-service, and built-in 

governance: all areas where Harness excels. As software delivery continues to evolve, 


the organizations that embrace these modern approaches will be best positioned to 

deliver high-quality software at the speed the market demands.




