
Measuring the 
Impact of AI 
Development Tools



2

Table of Contents

Preface

About the Authors

Executive Summary

�� Introduction

The Rise of AI in Software Development

Defining AI Coding Assistant Tools

�� The Potential Benefits of AI Coding Assistant Tools

Enhancing Productivity Through Automation

Improving Code Quality and Consistency

Streamlined Workflows and Reduced Toil

�� The Importance of Measuring the Impact of AI Coding Assistant Tools

�� Key Metrics for Measuring Impact

Developer Velocity

Product Quality

Developer Experience

How Harness AI Productivity Insights Can Help

4

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

2



2

Table of Contents

2

�� Methodology for Measurement

Controlled Experiments

Surveys and Interviews

Data Analysis

Key Measurement Capabilities

�� Challenges and Considerations

Defining Clear Measurement Goals

Ensuring Data Integrity

External Factors

�� Balancing Quantitative and Qualitative Data

Contextualizing Metrics

Crafting Insightful Questions

�� The Future of AI in Software Development

Emerging Innovations and Trends

Societal and Economic Implications

Recommended Next Steps

How Harness Can Help You

20

21

22

23

24

25

26

27

28

29

29

30

31

32

33

35

37



Preface

About the Authors

This ebook is a collaboration between Google, the steward of DORA research, and Harness, the 

AI-native software delivery platform. It combines Google’s expertise in performance 

measurement with Harness’s ability to turn development data into insights, offering a practical 

guide to navigating AI-augmented software development.



Readers will learn which metrics matter and how to collect, interpret, and apply them 

effectively. Whether you're an engineering leader, DevOps practitioner, or developer, this guide 

provides research-backed frameworks and actionable strategies to measure AI’s impact on 

productivity, quality, and developer experience.



Turn the page to begin your journey toward a more data-driven future in software delivery.

Nathen Harvey

Nathen Harvey leads the DORA team at Google Cloud, helping organizations improve software 

delivery using DORA research. He focuses on enhancing developer experience and performance, 

supports technical communities like the DORA Community of Practice, and has co-authored key 

DORA reports and contributed to 97 Things Every Cloud Engineer Should Know.

Prashant Batra

Prashant Batra, Senior Director of Product Management at Harness, brings over 20 years of 

experience in building AI-driven tools that turn engineering data into predictive insights.  

He focuses on enhancing visibility into software workflows and bridging technical metrics 

with strategic decisions.

4



Executive Summary
� AI coding assistants have become transformative tools in software development, with 81% of 

organizations increasing AI incorporation into applications, primarily for code writing (74.9%) 
and information summarization (71.2%)

� The key benefits of AI coding tools include enhanced developer productivity through 
automation, improved code quality and consistency, and streamlined workflows that reduce 
manual toil—though developers still need to evaluate and modify AI-generated code.

� Measuring AI's impact requires tracking quantitative metrics (development velocity, code 
quality, deployment frequency) and qualitative factors (developer satisfaction, cognitive load 
reduction) through controlled experiments, surveys, and data analysis.

� Primary challenges in measuring AI impact include maintaining consistent measurement 
approaches across different development contexts, and ensuring data integrity, accounting 
for external factors like team changes and project complexity.

� Organizations need comprehensive measurement frameworks that can adapt to evolving 
AI capabilities while balancing technical metrics with human factors. Tools like Harness AI 
Productivity Insights combine development tool metrics and developer surveys to provide 
a more complete understanding of the impacts of AI investments and how to optimize 
their value.

� The future of AI in software development points toward increasingly sophisticated tools with 
enhanced contextual awareness, though success requires thoughtful integration that 
considers both productivity gains and broader societal impacts on the workforce.

5



�� Introduction
There is no question that artificial intelligence is rapidly reshaping software development. 
Measuring its real impact has become vital for organizations investing in AI-powered developer 
tools. This ebook delves into the methodologies, metrics, and frameworks needed to accurately 
evaluate how AI influences developer productivity, code quality, and business outcomes.



As companies increasingly adopt AI assistants for tasks like code generation, testing, and 
deployment, understanding their tangible benefits is essential. Justifying these investments and 
optimizing implementation strategies require a thorough analysis of AI’s real-world impact. 
However, measuring AI’s influence poses unique challenges beyond traditional productivity 
metrics. From quantifying time savings and code quality improvements to assessing developer 
experience and maintenance implications, organizations need comprehensive strategies to 
capture AI’s true value.


This guide offers practical frameworks for evaluating AI tools throughout the software 
development lifecycle. Drawing on real-world case studies, expert insights, and proven 
methodologies, readers will discover how to establish meaningful metrics, collect accurate 
data, and assess AI’s impact on both technical and business outcomes.



Whether your organization is just starting to implement AI tools or looking to enhance existing 
deployments, this ebook provides essential guidance for measuring and maximizing the 
benefits of AI in software development.

Gartner®, Research Roundup for DevOps, 20 January 2025

“ By 2027, the number of platform engineering teams using 
AI to augment every phase of the software development 
life cycle (SDLC) will have increased from 5% to 40%.

6
GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates 
in the U.S. and internationally and is used herein with permission. All rights reserved.



The Rise of AI in Software Development

The integration of artificial intelligence 
into software development marks a 
transformative shift in how we build, test, 
and deploy code. From startups to 
enterprise organizations, AI tools are 
fundamentally changing development 
practices and team dynamics. This 
evolution represents more than just 
technological advancement—it signals a 
new era in software engineering where AI 
serves as an intelligent collaborator 
throughout the development lifecycle.



Recent years have seen exponential growth 
in AI adoption across development teams. 
What began as simple code completion tools 
has evolved into sophisticated AI assistants 
capable of generating complex functions, 
optimizing performance, and predicting 
potential issues before they arise. These 
tools now support developers across the 
entire software development lifecycle, from 
initial planning through deployment and 
maintenance.



The impact extends beyond mere productivity 
gains. AI tools are influencing architectural 
decisions, changing how teams approach 
testing and quality assurance, and reshaping 
code review processes. They're also 
democratizing development by making 
advanced programming capabilities more 
accessible to developers across skill levels.

Yet this rapid adoption brings new 
challenges. Organizations must navigate 
questions about code quality, security 
implications, and the changing role of human 
developers. The need to measure and 
understand AI's impact has become crucial as 
teams seek to optimize their use of these 
tools while maintaining code quality and 
security standards.



This shift toward AI-augmented development 
represents a crucial inflection point in 
software engineering. As these tools continue 
to evolve, their influence on development 
practices, team structures, and skill 
requirements will only grow. Understanding 
and measuring this impact becomes 
essential for organizations looking to harness 
AI's potential while managing its challenges 
effectively.


7



De�fining AI Coding Assistant Tools

The software development landscape is undergoing a paradigm shift with the rise of AI coding 
assistants like Google Gemini Code Assist, GitHub Copilot, Cursor, or Windsurf. AI coding 
assistant tools represent a new generation of development solutions that leverage artificial 
intelligence to enhance the software development process. These tools range from simple code 
completion engines to sophisticated systems capable of generating entire functions, optimizing 
performance, and detecting potential issues before they manifest.



At their core, AI coding assistants combine advanced machine learning models trained on vast 
code repositories with natural language processing (NLP) capabilities. This powerful 
combination allows them to interpret developer intent, provide contextually relevant code 
suggestions, and even transform natural language descriptions into fully functional code. Some 
of the key capabilities of modern AI coding assistants include:

� Intelligent code completion and generation

� Automated testing suggestion and creation

� Bug detection and prevention

� Code refactoring recommendations

� Natural language to code translation

� Documentation generation

� Performance optimization suggestions

While early code assistants focused primarily on autocomplete functionality, today's AI tools 
serve as collaborative partners throughout the development process. They can understand 
project context, maintain consistency with existing codebases, and adapt to individual coding 
styles and preferences.



The evolution of AI coding assistants has profound implications for how we measure 
developer productivity and code quality. Traditional metrics, which were designed for a pre-AI 
era, must be reimagined to reflect the transformative impact of these tools on the way 
developers write, test, and maintain code. To fully harness the potential of AI coding 
assistants, it is critical to understand their capabilities, limitations, and role in shaping the 
future of software development.


8



�� The Potential Bene�fits of AI 
Coding Assistant Tools

AI coding assistants are rapidly changing the software development landscape, particularly in 
the developer's inner loop, where most of the day-to-day coding and development work 
happens. These tools offer real-time suggestions, automate repetitive tasks, and provide 
contextual guidance, effectively streamlining the coding process. By integrating directly into the 
developer's Integrated Development Environment (IDE) or through other interfaces such as 
chatbots or external web interfaces, AI coding assistants are becoming indispensable for many 
software professionals. This new approach increases efficiency, reduces the time spent on 
mundane tasks, and allows developers to concentrate on more complex and creative problem-
solving. The potential benefits span various areas of the software development lifecycle, with 
early adopters already reporting significant positive impacts on productivity and code quality.


This section explores the potential 
advantages of integrating AI coding 
assistants into development workflows, 
specifically focusing on three key areas: 
enhancing productivity through automation, 
improving code quality and consistency, and 
streamlining workflows and reducing toil. 
These areas are where AI's impact can be 
most immediately felt by developers. By 
understanding these benefits, organizations 
and individual developers can make informed 
decisions about the adoption and integration 
of these powerful tools.

9



81%

Enhancing Productivity Through 
Automation

One of the most significant benefits of AI coding assistants is their ability to boost developer 
productivity through automation. AI can perform a range of tasks that are often time-consuming 
and repetitive, such as writing code, summarizing information, and writing tests. 

By automating these tasks, developers can dedicate more time to higher-level problem-solving 
and innovation, which leads to significant gains in efficiency. AI coding assistants can synthesize 
information and provide highly personalized responses, which saves time spent on context 
switching. This can lead to a significant increase in individual productivity.



Furthermore, AI is helping developers complete their work more efficiently, allowing them to 
realize value from their work more quickly. This means that developers can finish their tasks 
faster and with more focus. This increase in efficiency contributes to improved job satisfaction 
as developers are able to see their work come to fruition more quickly.



According to the 2024 DORA Accelerate State of DevOps Report, a majority of developers 
report positive productivity gains from using AI tools, with over one third reporting moderate or 
extreme increases in productivity. This shows a widespread benefit from adopting these 
technologies, suggesting that the potential for productivity gains is significant across the 
software development industry.


agree increasing productivity is the biggest 
bene�fit that developers identify for AI tools. 

10

https://dora.dev/dora-report-2024/


Improving Code Quality and Consistency

AI coding assistants also play a crucial role in improving code quality and consistency. By 
analyzing code in real time, they can identify potential errors, suggest optimizations, and ensure 
that code adheres to established coding standards and best practices. AI can assist with tasks 
such as debugging code, optimizing code, and writing documentation. This not only reduces the 
likelihood of bugs and vulnerabilities but also contributes to a more maintainable and robust 
codebase. This improved code quality can lead to reduced code complexity, and improved 
documentation. These factors together can lead to an overall improved codebase. AI can also 
help with code review and approval processes leading to faster reviews and approvals.



The consistency that AI brings to code is also invaluable, ensuring that developers across a 
team follow the same patterns and conventions. This minimizes the variability in coding styles 
that can make code harder to understand and maintain. While many developers may not 
completely trust the code generated by AI, they still find the code useful and are willing to 
tweak it. This indicates a trend toward accepting AI as a tool that enhances developer 
capabilities rather than something that replaces the human element of writing good code. In 
fact, developers are becoming used to using AI-generated code and comparing it to early days 
of using StackOverflow where developers would copy and paste code and have to debug the 
code to get it to work.


DORA Accelerate State of DevOps Report, p. 24

“ One participant even likened the need to evaluate and 
modify the outputs of AI-generated code to “the early 
days of StackOver�flow, [when] you always thought 
people on StackOver�flow are really experienced, you 
know, that they will know exactly what to do. And then, 
you just copy and paste the stuff, and things explode

11

https://dora.dev/dora-report-2024/


Streamlined Work�flows and Reduced Toil

AI coding assistants are instrumental in streamlining workflows and reducing toil for developers, 

freeing up time from manual, less-valuable tasks.  By automating tasks like documentation and 

test writing, AI enables developers to focus on tasks that directly impact product value and 

innovation. The potential for AI to enhance flow and reduce interruptions can have a positive 

impact on job satisfaction. The reduction of toil can also prevent burnout and make developers 

more engaged with their work.



AI's assistance with code reviews and approvals, resulting in faster turnarounds, means that 

developers spend less time waiting for feedback and can more quickly iterate on their work. By 

integrating with CI/CD pipelines, AI can also automate many deployment processes, further 

reducing the manual overhead that developers need to manage. By using AI to its full potential, 

the developers can spend more time on creative, valuable, and fulfilling work, leading to a more 

efficient and happier development team.

12



�� The Importance of 
Measuring the Impact of 
AI Coding Assistant Tools

Understanding and quantifying the impact of 
AI coding assistants has become crucial as 
organizations increasingly invest in these 
technologies. Accurate measurement enables 
informed decision-making about tool 
adoption, helps optimize implementation 
strategies, and justifies continued investment 
in AI development solutions.



Key areas requiring measurement include 
productivity gains, code quality 
improvements, and business value generation. 
Organizations need to track metrics like 
development velocity, defect rates, and time-
to-market while also considering qualitative 
factors such as developer satisfaction and 
code maintainability.



Effective measurement frameworks must 
account for both direct and indirect benefits. 
While some impacts, like time saved on code 
generation, are easily quantifiable, others, 
such as improved developer experience or 
reduced cognitive load, require more nuanced 
evaluation approaches.

Organizations should focus on tracking�
� Development velocity and time saving�
� Code quality metrics and defect rate�
� Developer productivity and satisfactio�
� Business impact and RO�
� Resource utilization and efficienc�
� Knowledge sharing and team 

collaboratio�
� Security and compliance improvements



Establishing baseline measurements 
before implementing AI tools enables 
organizations to more accurately assess 
their impact. Regular monitoring and 
adjustment of measurement frameworks 
ensure continued alignment with 
organizational goals and evolving AI 
capabilities.



Success requires balancing quantitative 
metrics with qualitative assessments to 
build a comprehensive understanding of 
AI's impact across the software 
development lifecycle.


13



�� Key Metrics for 
Measuring Impact

DORA Accelerate State of DevOps Report, p46

“ “Implement a measurement framework that evaluates AI 
not by sheer adoption but by meaningful downstream 
impacts — how it helps employees thrive, bene�fits those 
who rely on your products, and unlocks team potential.”

Measuring the impact of AI coding assistants requires a comprehensive 
framework encompassing both quantitative and qualitative metrics across the 
software development lifecycle. 

14

https://dora.dev/dora-report-2024/


Developer Velocity

Development velocity stands as a primary metric, tracking how AI tools affect code generation 
speed, task completion times, and overall project delivery rates. Organizations must establish 
clear baselines and monitoring systems to accurately measure changes in development pace.

Time allocation tracking becomes crucial, focusing on how developers spend time between 
creative problem-solving and routine tasks. AI assistants typically reduce time spent on 
boilerplate code and repetitive operations, allowing more focus on complex architectural 
decisions and innovation.

15

Throughput Metrics

Throughput metrics focus on the volume of 
work completed over a given period.  
These include�

� Deployment Frequency: Measures how 
often code is successfully deployed to 
production. Frequent deployments 
indicate streamlined workflows and 
efficient development cycles�

� Number of Change Sets: Tracks the 
number of code changes per deployment. 
Smaller, more frequent commits support 
iterative development, simplifies code 
review, and reduces merge conflict�

� Number of Features Delivered: Assesses 
the rate of feature implementation, 
highlighting the ability of teams to meet 
product milestones and respond to 
customer needs.

Efficiency Metrics

Efficiency metrics evaluate the speed and 
effectiveness of development processes�

� Cycle Time: Captures the time taken from 
the start of a task to its completion. AI 
coding assistants can reduce cycle times 
by automating repetitive steps and 
providing quick solutions�

� Lead Time for Changes: Measures the 
duration from code creation to 
deployment. Shorter lead times reflect 
improved coordination and reduced 
bottlenecks�

� Time to Resolution: Tracks the speed of 
resolving issues such as bugs and errors. 
AI tools excel at identifying problems 
early, enabling faster resolutions.



Product Quality

Quality measurement demands attention to multiple dimensions, including defect rates, 
debugging time, and review efficiency. AI tools often influence these metrics through automated 
checks and suggestions, making it crucial to track both immediate and long-term quality 
impacts. Security vulnerability detection and technical debt accumulation provide additional 
insights into code quality trends.



These quality metrics must be measured against pre-AI baselines to accurately quantify 
improvements. Regular assessment ensures AI tools continue to enhance product quality while 
meeting evolving standards and requirements.

Quality Metrics

These metrics evaluate the robustness and 
reliability of the code�

� Defect Rates: Indicates the frequency of 
errors or bugs found in production. Lower 
defect rates signify enhanced code quality 
facilitated by AI-driven suggestions�

� Customer Satisfaction Scores: Surveys 
and user feedback reflect the perceived 
quality and reliability of software 
delivered with AI-assisted tools�

� Adherence to Performance Benchmarks: 
Compares code performance against 
predefined standards. This metric 
highlights the role of AI in optimizing 
performance metrics like execution speed 
and resource efficiency.

16



Developer Experience

Developer experience with AI coding assistants can be measured through sentiment and 
satisfaction surveys, workflow efficiency, and cognitive load reduction. Overall satisfaction 
metrics encompass tool reliability, suggestion relevance, and workflow integration quality. 
Regular feedback collection helps optimize AI tool implementation and ensures continued 
alignment with developer needs.



Mental load reduction shows in decreased time spent on routine tasks, improved problem-
solving capacity, and reduced friction in development workflows. Tool adoption patterns and 
feature utilization rates indicate how effectively developers integrate AI assistance into their 
daily work.



Focusing on the human aspect of development�
� Developer Surveys: Regular surveys capture satisfaction levels and perceptions of AI tools' 

utility and ease of use�
� Free form feedback: Present opportunities for identification of hidden perceptions and 

sentiments.



Behavioral data provides deeper insights into team dynamics and individual well-being�
� Burnout Rates: Tracks indicators of overwork or stress among developers. Effective AI tools 

should reduce toil and alleviate repetitive burdens�
� Retention Rates: Measures the ability to retain top talent, reflecting the positive impact of 

AI on job satisfaction.



Adoption and usage metrics reveal how effectively teams integrate AI tools into their workflows, 
providing crucial insights into the real-world impact of these technologies. By tracking these 
patterns, organizations can identify both successful adoption strategies and potential barriers 
to effective implementation. Understanding both adoption and ongoing usage metrics helps 
organizations optimize their AI implementation strategies and ensure sustained value from their 
investments.

Satisfaction Metrics and Sentiments


Behavioral and Health Metrics


Adoption and Usage Metrics


17



Adoption Metrics


Usage Metrics


Initial adoption metrics focus on how quickly and thoroughly teams begin incorporating AI 

assistants into their development processes�

� Tool Utilization Rate: Frequency and duration of AI assistant usage across different 

development tasks and team member�

� Initial Feature Coverage: Which basic capabilities do teams leverage during their first 

months of implementatio�

� Onboarding Success: Rate at which new users successfully integrate the tools into their 

workflows



Long-term usage metrics reveal the depth and sustainability of AI tool integration in 

development workflows�

� Suggestion Acceptance Rate: Percentage of AI suggestions that developers accept and 

integrate into their cod�

� Production Success Rate: Percentage of AI-suggested code that survives review and 

makes it to productio�

� Feature Usage Distribution: Which AI assistant capabilities are most frequently used and 

by who�

� Usage Consistency: Whether developers maintain consistent tool usage over time or show 

declining engagement

18



How Harness AI 
Productivity Insights 
Can Help
Harness AI Productivity Insights (AIPI) empowers 
engineering leaders to quantify the impact of AI 
coding assistants by combining SCM data, cohort-
based analysis, and developer sentiment surveys. 
With AIPI, organizations can measure AI’s influence 
on developer velocity, code quality, and overall 
efficiency, ensuring that investments in AI tools 
translate into tangible business value.



By leveraging automated data collection from 
Source Code Management (SCM) tools, AIPI 
seamlessly tracks key velocity and quality metrics 
such as PR lead time, commit frequency, and rework 
rates. Through customizable cohort comparisons, 
teams can analyze AI adoption trends, contrasting 
AI-assisted developers with non-AI users to 
benchmark effectiveness. Additionally, developer 
sentiment surveys provide qualitative insights into 
how AI tools impact productivity, collaboration, and 
job satisfaction.



With Harness AI Productivity Insights, organizations 
gain a holistic, data-driven framework to optimize AI 
tool adoption, improve developer workflows, and 
validate the ROI of AI coding assistants with 
confidence. By continuously monitoring AI’s impact, 
teams can refine implementation strategies, 
maximize efficiency, and drive meaningful 
improvements in software development.

19



�� Methodology for 
Measurement

Measuring the impact of AI coding assistants requires a structured approach combining 
qualitative data collection with quantitative assessment methods. Organizations should 
establish baseline measurements before AI tool implementation to enable accurate impact 
evaluation.



Key concepts in the methodology for measurement include controlled experiments to enable 
cohort-based comparisons, surveys and interviews to collect qualitative input, and data 
analysis to distill the large data-sets into comparable information. Success requires consistent 
application of measurement methodologies across teams and projects, while maintaining 
flexibility to adapt to different development contexts and requirements.


20



Controlled Experiments

Controlled experiments provide rigorous evidence of AI coding assistant impact through 
systematic comparison of development approaches. These experiments typically involve 
splitting comparable development tasks between teams using AI tools and those using 
traditional methods.



Task selection requires careful consideration of complexity, scope, and team expertise to 
ensure valid comparisons. Control groups maintain existing development practices while 
experimental groups integrate AI assistance. Both groups track identical metrics including 
development time, code quality, and resource utilization.



Statistical analysis of results helps quantify AI tool impact while controlling for variables like 
developer experience and project complexity. Time-series experiments track changes in team 
performance as they adapt to AI assistance, revealing both immediate gains and learning 
curve effects.



Randomized trials across different project types and team compositions help establish 
broader patterns of AI tool effectiveness. Cross-team experiments illuminate how AI impact 
varies with different development styles and expertise levels.



Documentation of experimental conditions, clear success criteria, and thorough data 
collection ensure reproducible results. Regular calibration of experimental design maintains 
validity as AI capabilities evolve.


21



Surveys and Interviews

Qualitative feedback through surveys and 
interviews provides crucial insights into the 
human experience of AI coding assistant 
adoption. Structured surveys capture 
quantifiable data about developer 
satisfaction, tool effectiveness, and workflow 
changes, while semi-structured interviews 
reveal deeper insights into usage patterns 
and challenges.



Regular pulse surveys track changes in 
developer sentiment and tool adoption over 
time. Success requires careful question 
design, consistent data collection, and 
systematic analysis of responses. Regular 
refinement of survey instruments ensures 
continued relevance as AI capabilities and 
team needs evolve.



Anonymous feedback channels encourage 
honest assessment of AI tool strengths and 
limitations. The feedback system should 
summarize answers grouped by cohort.



One-on-one interviews with developers 
reveal nuanced perspectives on how AI tools 
affect daily work. Discussion topics explore 
workflow changes, learning curves, and 
unexpected benefits or challenges. Team 
lead interviews provide a broader perspective 
on productivity and quality impacts.

Focus groups facilitate discussion of shared 
experiences and best practices across 
development teams. These sessions help 
identify common patterns in tool usage and 
areas for improvement. Cross-functional 
interviews with product managers and 
technical leads illuminate broader 
organizational impact.

22



Data Analysis

Data analysis methodologies for AI coding assistant impact combine quantitative metrics with 
qualitative insights. Version control systems, development environments, and project 
management tools provide raw data about code generation, quality metrics, and 
development velocity.



Statistical analysis examines patterns in development speed, code quality, and resource 
utilization before and after AI tool adoption. Time series analysis reveals trends in productivity 
and quality metrics, while correlation analysis identifies relationships between AI tool usage 
and performance improvements.



Comparative analysis examines performance differences between AI-assisted and traditional 
development approaches. This includes analyzing code quality metrics, development velocity, 
and resource utilization across different teams and project types.



Dashboards and visualization tools present key metrics in accessible formats for 
stakeholders. Regular reporting cycles ensure timely insights into AI tool impact while 
enabling quick response to emerging trends or issues.



This holistic approach helps quantify ROI and strategic value while identifying opportunities 
for optimization.


23



Key Measurement Capabilities

These key measurement capabilities are needed to ensure that the methodology of 
measurement provides reliable and trustworthy results. 



Automated data collection through development environments and version control systems 
provides objective metrics on code generation, quality, and deployment frequency. 
Integration with project management tools enables tracking of development velocity and 
resource utilization.



Qualitative assessment methods include developer surveys, workflow analysis, and code review 
feedback. Regular retrospectives help capture insights about tool effectiveness and areas for 
improvement. Time studies and workflow mapping reveal changes in development patterns and 
efficiency gains.



A/B cohort testing methodologies allow organizations to compare AI-assisted and traditional 
development approaches. This controlled testing helps isolate the specific impact of AI tools on 
development outcomes.



Continuous monitoring systems track real-time metrics while providing trend analysis over time. 
This ongoing measurement enables organizations to identify patterns, adjust implementation 
strategies, and optimize tool usage for maximum benefit.



Time-based frameworks enable analysis of both immediate and long-term impacts. Short-term 
productivity gains should be balanced against sustainable quality improvements and long-term 
maintainability. Regular calibration of measurement methods ensures continued relevance as AI 
capabilities evolve.



Integration with existing development metrics and KPIs helps contextualize AI tool impact 
within broader organizational goals. This holistic approach enables better understanding of ROI 
and strategic value.


24



��
Challenges and 
Considerations
Measuring AI coding assistant impact presents 
unique challenges in data collection, analysis, and 
interpretation. Tool effectiveness varies across 
different development contexts, team 
compositions, and project types, making 
standardized measurement complex.



Measurement consistency requires careful 
standardization across teams and projects. 
Different development contexts and tool usage 
patterns can lead to variable results, 
necessitating flexible yet comparable 
measurement approaches. Evolving AI capabilities 
require regular adjustment of measurement 
frameworks. As tools advance, organizations 
must update their metrics and analysis methods 
to capture new forms of impact.

25



De�fining Clear Measurement Goals

Clear measurement goals serve as the foundation for evaluating AI coding assistant impact. 
Organizations must align measurement objectives with business goals while considering 
technical, organizational, and human factors.



Primary measurement areas include development velocity, code quality, and developer 
experience. Each area requires specific success criteria and measurement approaches tailored 
to organizational context.



Goal definition must balance quantitative metrics with qualitative indicators. While code 
generation speed and defect rates offer concrete measurements, factors like developer 
satisfaction and knowledge sharing require nuanced evaluation approaches.



Timeframe considerations affect goal setting across different measurement periods. Short-term 
adoption metrics differ from long-term impact assessment, requiring flexible goal frameworks 
that evolve with tool maturity.



Success criteria should reflect realistic expectations while maintaining ambitious targets. Goals 
must account for learning curves, team adaptation periods, and varying impacts across 
different development contexts.



Regular review and refinement of measurement goals ensure continued relevance as AI 
capabilities and organizational needs evolve. Stakeholder alignment remains crucial for 
effective goal setting and measurement success.



Look for measurement tools that provide flexible report definition and centrally shared results 
dashboards to help mitigate these challenges.


26



Ensuring Data Integrity

Data integrity in measuring AI coding assistant impact requires robust collection methods and 
validation processes. Automated data collection through development tools must be verified 
for accuracy and completeness, while manual data entry needs standardized processes to 
prevent inconsistencies.



Source control systems, development environments, and project management tools should be 
properly configured to capture relevant metrics without gaps or duplications. Data validation 
routines help identify anomalies or collection errors before they impact analysis.



Privacy and security considerations necessitate careful handling of sensitive development data. 
Access controls and anonymization processes protect confidential information while 
maintaining measurement accuracy.



Cross-validation between different data sources helps ensure consistency and reliability. 
Regular audits of data collection methods and storage systems maintain integrity throughout 
the measurement process.



Standardized data formats and consistent metadata facilitate accurate analysis. Clear 
documentation of collection methods and data transformations ensures reproducibility and 
trustworthy results. Regular data quality assessments identify potential issues early, enabling 
prompt corrective action. Success requires ongoing monitoring and maintenance of data 
collection infrastructure.



Look for measurement tools that provide solid toolchain integrations and automated integration 
monitoring and alerting to help mitigate these challenges.


27



External Factors

External factors significantly influence AI 

coding assistant impact measurement. 

Market conditions, technology changes, and 

industry trends affect tool adoption and 

effectiveness. Economic conditions influence 

investment in AI tools and related 

infrastructure.



Team composition changes, including 

turnover and new hires, impact measurement 

consistency. Experience levels, technical 

backgrounds, and individual preferences 

toward AI tools vary across developers.



Project characteristics affect tool 

effectiveness measurements. Complexity 

levels, technical requirements, and deadlines 

influence how teams utilize AI assistance. 

Legacy system constraints and technical 

debt can limit tool impact.



Organizational changes, including 

restructuring or process modifications, affect 

measurement accuracy. Policy changes, 

security requirements, and compliance 

updates may alter how teams can use 

AI tools.

Competitive pressures and industry adoption 

rates influence implementation timelines and 

expectations. Technology evolution, including 

AI capability advances and new tool releases, 

requires ongoing measurement framework 

adjustments.



Workplace environment changes, including 

remote work transitions or hybrid models, 

affect tool usage patterns and team 

collaboration metrics. Infrastructure changes 

impact tool performance and availability.



These types of challenges can’t all be solved 

by your measurement tool, but look for 

measurement tools that provide a flexible 

measurement system that can 

simultaneously collect, track, and analyze 

the necessary data for many different 

cohorts, over many different reports, so it can 

provide organization, team, and situation-

specific measurements and flex with 

changing scenarios.


28



�� Balancing Quantitative 
and Qualitative Data

Measuring AI coding assistant impact presents unique challenges in data collection, analysis, 
and interpretation. Tool effectiveness varies across different development contexts, team 
compositions, and project types, making standardized measurement complex.



Measurement consistency requires careful standardization across teams and projects. Different 
development contexts and tool usage patterns can lead to variable results, necessitating 
flexible yet comparable measurement approaches. Evolving AI capabilities require regular 
adjustment of measurement frameworks. As tools advance, organizations must update their 
metrics and analysis methods to capture new forms of impact.


Data Analysis

Raw performance metrics require careful contextualization against project complexity, team 
experience levels, and business requirements. Historical baselines and team-specific contexts 
help establish meaningful benchmarks while accounting for normal performance variations.



Environmental factors such as infrastructure changes, tooling updates, and process 
modifications can significantly influence metric interpretation. Understanding these external 
variables ensures more accurate assessment of AI tool impact.



Business context ultimately shapes metric relevance and priority, with organizational goals and 
market conditions determining how different measurements should be weighted. Industry 
standards, such as DORA metrics, and competitive benchmarks provide additional context for 
evaluating the significance of observed improvements.


29

https://dora.dev/guides/dora-metrics-four-keys/


Crafting Insightful Questions

Effective qualitative assessment requires carefully designed questions that probe beyond 
surface-level feedback, examining specific aspects of tool usage, workflow changes, and 
perceived benefits while avoiding leading or overly broad inquiries. By investigating multiple 
dimensions including adoption patterns, developer experience, team collaboration, and 
technical impact, organizations can build a comprehensive understanding of both individual and 
organizational benefits of AI coding assistants.



Suggested topics to explore include productivity impact, innovation, efficiency, quality of work, 
and overall satisfaction. 



Here are some example questions from the DORA/Harness co-branded survey in the Harness AI 
Productivity Insights tool (scaled answers)


Regular refinement of questions ensures continued relevance as teams gain experience with AI 
tools, while structured collection methods like surveys, interviews, and retrospectives help 
capture evolving patterns in tool effectiveness.

Productivity

Quality

Innovation

Satisfaction

Efficiency
When work is assigned to me, 

I have all the necessary 
information to start the work 

immediately

How confident are you that 
the tests you write accurately 
reflect the quality and stability 

of the code?

How frequently do you feel 
like you're able to find creative 

solutions to technical 
challenges?

How often do you experience 
a state of deep focus and 

productivity during 
development tasks?

Our code review process 
effectively identifies bugs, 

potential security issues, or 
architectural flaws

30



�� The Future of AI in 
Software Development

The trajectory of AI in software development points toward increasingly sophisticated and 
integrated development experiences, with future AI coding assistants featuring enhanced 
contextual awareness, deeper understanding of system architectures, and more nuanced code 
generation capabilities. These advances promise to transform how software is created, making 
development more accessible while enabling experienced developers to work at higher levels 
of abstraction.



As AI capabilities expand, the role of developers will continue shifting toward higher-level 
problem solving and creative design. This evolution requires ongoing adaptation of skills, 
processes, and measurement approaches, with success depending on the balanced integration 
of AI capabilities with human expertise.


DORA Accelerate State of DevOps Report, p26

“ The future effects AI will have on our world 
remain unclear. But, this year, our survey strongly 
indicates that AI has produced an unignorable 
paradigm shift in the �field of software 
development.

31

https://dora.dev/dora-report-2024/


Emerging Innovations and Trends

Next-generation AI development tools are evolving toward more sophisticated natural language 
understanding and contextual awareness, enabling intuitive translation of high-level 
requirements into production-ready code while maintaining architectural consistency. These 
advances are accompanied by automated system design capabilities that can suggest optimal 
architectures based on requirements and constraints.



Cross-platform development assistance is improving as AI tools better understand different 
technology stacks and frameworks, while automated testing and validation capabilities expand 
to cover more complex scenarios. Enhanced security analysis is becoming more sophisticated, 
integrating threat modeling and compliance checking throughout the development process.



Success metrics must adapt to capture both technical improvements and enhanced developer 
experiences in this rapidly advancing landscape. Organizations need to consider how to 
measure and evaluate these new capabilities while ensuring they maintain focus on 
meaningful outcomes.

32



Societal and Economic Implications

“ While AI coding tools democratize software 
development, they also raise concerns about job 
displacement and the need for reskilling in the 
tech workforce.

Economic Impact of AI on Software Development, World Economic Forum, 2023, pg7

AI coding assistants are reshaping the software development landscape with broad societal 
and economic impacts, creating both opportunities and challenges in the job market as these 
tools augment developer capabilities. While potentially affecting entry-level positions and 
traditional coding roles, they also democratize development capabilities and create new 
specialized positions.



Economic implications extend beyond direct productivity gains to industry-wide effects on 
software development costs and accessibility. Smaller organizations gain access to capabilities 
previously limited to large enterprises, while early adopters establish competitive advantages in 
an evolving market.



Workforce development faces transformation as skill requirements evolve, requiring educational 
systems and professional training to adapt to AI-augmented development environments. 
Success in navigating these changes requires balanced consideration of productivity gains 
against broader societal impacts, including effects on workforce development and 
industry evolution.

33



“ 90% of respondents are 
concerned that AI tools will 
replace developers
The State of Software Delivery Report, 2024, pg14

The responsible deployment of AI tools must consider ethical implications, including bias 
prevention, privacy protection, and maintaining developer autonomy. Organizations must 
ensure these tools support skill growth rather than creating unhealthy dependencies or 
knowledge gaps.

34



Recommended Next Steps
Organizations looking to measure the impact of AI coding assistants should begin by 
establishing clear baseline metrics across key areas: developer velocity, code quality, and team 
satisfaction. This foundation enables meaningful before-and-after comparisons and helps 
identify areas where AI tools can deliver the most value. The initial focus should be on 
implementing a balanced measurement framework that combines quantitative metrics (like 
deployment frequency and defect rates) with qualitative insights from developer surveys and 
interviews. Organizations should also identify pilot teams for controlled experiments, allowing 
for systematic comparison between AI-assisted and traditional development approaches.



Success in measuring AI's impact requires ongoing commitment to data collection, analysis, and 
framework refinement. Organizations should invest in automated data collection tools that 
integrate with existing development environments, establish regular review cycles to assess 
and adjust measurement approaches and maintain open communication channels for developer 
feedback. As AI capabilities evolve, measurement frameworks must adapt accordingly while 
maintaining focus on meaningful business outcomes. Leadership should prioritize transparent 
communication about measurement goals and results, ensuring that insights drive continuous 
improvement in AI tool implementation and usage across the organization.


35



From Insight to Impact: 
Charting Your Path

The world of AI is changing fast, and your 
organization needs to adapt. This ebook provides 
the map, but you're the one steering the ship. Here’s 
how to navigate your journey toward continuous 
improvement.



The Core Practice: Start with Your Reality

Continuous improvement always begins with an 
honest look at where you are today. That's why your 
first step must be to capture a set of baseline 
metrics. As you introduce new AI tools and practices, 
these metrics will allow you to see what's working, 
what isn't, and why.



A Mindset for Success: Embrace the Lessons

Your journey will have both advances and setbacks. 
Treat them both as successes. As long as you learn 
from every outcome, you are making progress. 
These lessons will inform every future experiment 
and decision.



Your Next Step

Use the advice in this ebook to identify your first 
improvement experiment. How can you assess 
where you are today, and what's the first small 
change you can make? This iterative cycle of 
assessing, experimenting, and learning is how you 
will build lasting capacity for change.


36



How Harness Can Help You
Harness AI Productivity Insights (AIPI) helps engineering leaders measure how AI coding 
assistants like Google Gemini Code Assist impact developer productivity. The platform 
generates detailed reports comparing teams using AI tools against those who don't, tracking 
both performance improvements and learning curves over time. AIPI looks beyond basic 
adoption metrics to measure meaningful impacts through code velocity, quality metrics, and 
developer feedback surveys.



Through simple one-click integration with source code management systems, AIPI provides 
immediate visibility into productivity gains from AI assistant usage. The tool can be deployed in 
minutes as part of Harness’ Software Engineering Insights (SEI) module. This comprehensive 
approach helps organizations understand their return on investment in AI coding tools by 
combining quantitative metrics with qualitative developer insights, giving engineering leaders 
the data they need to optimize their AI implementation strategies.



Engineering teams can use AIPI to:

• Compare productivity between AI users and non-users

• Track performance improvements as developers master AI tools

• Measure code quality and velocity metrics

• Collect and analyze developer feedback

• Make data-driven decisions about AI tool investments


37

https://www.harness.io/products/software-engineering-insights


The AI-Native Software Delivery Platform™

Contact us on

www.harness.io

Follow us on

/harnessio

/harnessinc


