@harness

The Practical Guide to

Modernizing
Infrastructure
Delivery

Z,




@ harness

Contents

INtrOdUCHION e 3
The State of Infrastructure Delivery Today ..., 5
Challenges Facing T@AMS ..ot . 5
Why a New Approach s Needed ... 6
A Simpler Model: Provision, Configure, Deploy ... 7
What Modern Teams Do Differently ..., . 10
Rethinking Tooling: From Scripts to Systems ... 1
Developer Self-Service Is Not Optional Anymore ..o 14
ThEe ROIE OF tNe ID P oo 14
Powering Infrastructure Catalogs  --.--cooooviii 15
Integration into Developer WOrkfIOWS — «+-eoeoveieiainiiiiiiii 15
Putting It Together: A Unified Delivery Pipeline ... 16
Key Principles for Scaling Infrastructure Delivery ..., 17
What Modernized LOOKS LIKE ..o 19
Fromthe Field oo et 19
Consistent Patterns, Regardlessof Scale  ................coiii 20
The Role of Al in Infrastructure Delivery ... 21
Harness Infrastructure Management CapabilitiesataGlance  ...................................... 22
Infrastructure as Code Management (IaCM) ... ... 22
Internal Developer Platform (IDP) ... 24



®harness

Introduction

In today’s Al native software landscape, velocity is everything. Code moves from idea to
production faster than ever. Continuous integration and deployment have become standard.
Teams iterate rapidly to meet rising user expectations.

But infrastructure delivery has not kept pace.

While development workflows have evolved, infrastructure remains a common bottleneck.
Developers are expected to move quickly, but too often they are waiting—for environments to be
provisioned, configurations to be applied, or approvals to clear. And when they are not waiting,
they are navigating a maze of fragmented tools and inconsistent processes.

Tooling has improved, but not in unison. Provisioning is often managed through Infrastructure as
Code frameworks like Terraform or OpenTofu, executed via custom scripts or isolated Cl jobs.
Configuration is handled separately, sometimes through automated tools like Ansible, other times
via manual post-provision steps. CI/CD pipelines operate independently of infrastructure state,
unaware of what was provisioned, whether it conforms to policy, or if it is even ready to receive
code. The result is a delivery pipeline that appears modern but lacks cross-layer coordination.

Increasingly, infrastructure complexity demands more than automation. It demands systems that
are intelligent, consistent, and adaptive.

Al is beginning to reshape how infrastructure is managed. From surfacing cost anomalies to
recommending remediations for drift or security violations, machine learning and Al agents are
emerging as assistive layers that complement human workflows—not replace them. As part of a
governed system, Al can help platform teams scale decisions, enforce consistency, and reduce
operational overhead.

This guide is for platform engineers, DevOps leaders, and infrastructure architects who are
working to close the gap between what their teams need and what traditional infrastructure
delivery can support. It offers a framework grounded in unified workflows, reusable components,
policy-driven guardrails, and self-service models that scale. Whether you are just beginning your
journey or rethinking a mature platform, the goal is the same: deliver infrastructure that moves as
fast as your code while remaining secure, compliant, and increasingly intelligent over time.



@ harness

Key Statistics

Ve,

48% of outages in cloud environments S8 ' 4
are caused by misconfigurations, many “ -
. . . . - 48% | =
of which stem from inconsistently applied - -
infrastructure definitions. " ‘\
'R

Outages due to misconfigurations

— Gartner, 2024

60 %
< 60% of developers say they are blocked
}} waiting for infrastructure at least once per
// sprint.

— Harness IDP, 2023

Developers blocked each sprint

Over 50% of organizations using Terraform

I

have no system in place for reusing modules I

across teams leading to drift, duplication, esssssssssmmen +50%

and inconsistent security practices. —
IE——

- OpenTofu Community Survey, 2024 Organizations not reusing modules

The Practical Guide to Modernizing Infrastructure Delivery 4



@harness

The State of Infrastructure
Delivery Today

Challenges Facing Teams

Software teams today want to move fast but infrastructure often doesn’t. Despite
advancements in CI/CD, DevOps practices, and cloud-native tooling, the way infrastructure is
provisioned, configured, and deployed remains a patchwork of disconnected workflows.

Across many organizations, infrastructure delivery is still defined by:
+ Multiple handoffs between platform, security, operations, and development teams at every

stage including provisioning, configuration, and deployment.

* Inconsistent environments caused by configuration drift, manual changes, and untracked
infrastructure definitions.

o Delayed access to infrastructure, which blocks developers from shipping features or
testing changes when they need to.

o Siloed tooling that lacks integration and visibility like Terraform for provisioning, Ansible for
config, Jenkins for deployment that are all managed in isolation.

o Governance gaps, where policy enforcement, access control, and cost oversight are bolted
on as afterthoughts rather than built into the delivery workflow.

As engineering organizations scale, these inefficiencies compound. Manual processes become
brittle. Platform teams become overburdened. Developers seek workarounds. And security,
compliance, and cost control suffer as a result.



®harness

Why a New Approach Is Needed

The demands on infrastructure teams have changed, but the systems many rely on have not.

e Cloud and hybrid environments are growing more complex, with resources spread
across multiple regions, accounts, and architectures. Managing them through scripts or
spreadsheets no longer scales.

o Platform engineering teams are now tasked with enabling self-service providing reusable
templates, golden paths, and automation that empowers developers without compromising
control.

o Compliance and cost accountability are no longer optional. Teams must prove that every
provisioned resource is secure, policy-compliant, and cost-justified before it's deployed.

Meeting these needs requires more than better automation. It requires a shift in mindset from
managing infrastructure as a set of tools, to delivering infrastructure as a product.



®harness

A Simpler Model: Provision,
Configure, Deploy

A growing number of high-performing engineering organizations are consolidating these
workflows into a more cohesive model. Instead of treating provisioning, configuration, and
deployment as distinct processes, they are orchestrating them as a single, integrated system.
This approach enables greater predictability, stronger governance, and higher developer
velocity.

Provision: Codify and Allocate Infrastructure

Provisioning defines the structure of cloud environments. It involves translating architectural
intent into code that declares compute, storage, networking, IAM policies, and other
foundational resources. Most teams use frameworks such as Terraform or OpenTofu to achieve
this, enabling infrastructure to be version-controlled, reviewed, and automated.

However, provisioning at scale introduces significant challenges. Organizations managing
dozens or hundreds of teams often contend with duplicated modules, inconsistent variables,
and fragile automation. As the number of workspaces grows, so does the operational overhead.

A platform-driven provisioning approach addresses these issues by introducing:

o Shared module registries that enforce consistent patterns and ownership
o Variable sets that standardize inputs across teams and environments
o Policy controls that validate infrastructure before it is applied

o Pull request automation that integrates provisioning into the broader software
development lifecycle

o Cost estimation and drift detection to maintain accuracy and efficiency over time

Provisioning infrastructure is no longer just about codifying resources. It is about embedding
infrastructure creation into governed, automated systems that are resilient to scale and change.



®harness

Configure: Make Infrastructure Operational

Provisioning delivers the underlying resources. Configuration makes those resources
functional.

Post-provision configuration includes installing agents, setting environment-specific
parameters, enforcing security hardening, and applying network and runtime policies. These
tasks are procedural, often requiring ordered execution and conditional logic. Declarative laC
frameworks are not built to handle this layer effectively.

Some teams attempt to bridge the gap with custom shell scripts or manual steps. Others rely
on separate configuration management systems that drift over time or fall out of sync with
provisioning pipelines.

Tools like Ansible provide a programmatic way to manage configuration through structured
playbooks and inventory-driven automation. By codifying configuration in playbooks, teams
can:

« Ensure consistency across environments
e Avoid drift caused by manual changes

e Reduce onboarding time for new infrastructure patterns

Looking ahead, the configuration layer will become increasingly intelligent. With the rise of
Al-assisted agents, teams can detect misconfigurations, auto-generate procedural playbooks
for common use cases, and suggest configuration changes based on historical patterns where
all before infrastructure reaches production. These capabilities are not hypothetical. They are
already appearing in modern platforms like Harness, with beta-stage infrastructure agents
designed to proactively recommend or apply remediations based on observed drift or policy
violations.



®harness

Deploy: Release Applications with
Infrastructure Context

Application deployment typically relies on CI/CD pipelines to build, test, and release code.
However, these pipelines often operate without visibility into the environments they deploy to.
They may not know if an environment is provisioned correctly, if required services are running,
or if compliance policies have been met.

This lack of infrastructure awareness creates a fragile deployment surface. Failures occur late
in the process. Rollbacks are incomplete. Troubleshooting spans multiple systems and teams.

Integrating infrastructure delivery with application deployment creates a more reliable release
lifecycle. When provisioning, configuration, and deployment are orchestrated as a single
workflow, the system gains shared context across all layers. This allows teams to:

Validate that deployments target environments in a known and compliant state
o Link infrastructure and application changes in the same versioned history

o Improve traceability across pipeline runs, infrastructure changes, and application
behavior

o Reduce manual coordination between platform and application teams

Aligning application delivery with infrastructure readiness results in faster recovery times,
fewer production issues, and a more consistent release process across environments.

The provision, configure, deploy model has been discussed for years. What has changed is the
maturity of the tools and platforms now available to support it. Organizations no longer need
to build this integration from scratch. They can implement it consistently and at scale, using
systems designed to treat infrastructure delivery as a first-class concern within the broader
software lifecycle.



@harness

What Modern Teams

Do Differently

What Modern Teams Build

Reusable, versioned modules
for compute, networking,
storage, IAM, and more

Environment templates
codified in laC and
configuration tools

Policy-as-code guardrails
enforced at every stage of
the pipeline

Integrated pipelines that connect
provisioning, configuration, and
deployment

Internal registries and templates
exposed through self-service
platforms

Automated validation gates for
cost, security, and architectural
conformance

What It Enables

Consistency across teams,
faster onboarding, and reduced
duplication

Rapid environment
provisioning without
ticket-based workflows

Safe self-service for developers
with built-in security and
compliance checks

A unified delivery flow
with traceability and
reduced handoffs

Developer access to
infrastructure as a product, with
minimal operational overhead

Risk reduction before
resources are provisioned
or deploy



@ harness

Rethinking Tooling: From
Scripts to Systems

Most infrastructure teams have adopted automation in some form. Provisioning scripts exist. Cl/
CD pipelines run. Configuration management tools are in place. But despite this, the workflows
remain brittle. Tasks are automated, but systems are not integrated. The result is a collection of

tools that execute steps in isolation rather than a delivery system that operates end-to-end.

What Matters More Than the Tools
Themselves

The tools used for provisioning, configuration, and deployment are often the same across
organizations. What sets high-performing teams apart is not the tooling itself, but how they
build systems that scale, enforce consistency, and remain adaptable over time. Rather
than focus on which tool is being used, modern platform teams focus on the outcomes the
system can guarantee. They ask different questions that shift attention from automation to
architecture, and from speed to sustainability.

Can you enforce standards without slowing developers down?

Governance should not be a separate track. When policies, security checks, and architectural
guidelines are embedded into the delivery process, compliance becomes a default, not a delay.
Developers can deploy infrastructure through self-service workflows, confident that what they
ship aligns with internal controls without needing to navigate a separate review process.

i



®harness

Can you update infrastructure across environments with a single change?

Without modularization, teams are forced to replicate effort. Updating environments means
managing a patchwork of scripts or isolated pipelines. By investing in versioned modules
and environment templates, teams enable repeatability. They can apply changes globally,
understand the impact locally, and reduce the surface area for error.

Can you see what is being provisioned, changed, and deployed at any given moment?

Provisioning logs and deployment status tell only part of the story. Understanding how
infrastructure evolves over time like who made changes, when they occurred, and whether
they conform to policy requires deeper observability. Teams need real-time insight into
workflows, not just artifacts. This visibility enables better incident response, tighter access
control, and more informed decisions about change.

What Modern Platforms Need

Infrastructure tooling has matured, but maturity does not come from using more tools. It comes
from building systems that integrate those tools into a cohesive delivery experience. Modern
platforms are not collections of automation; they are structured environments that enforce
standards, support scale, and remain flexible across teams and technologies.

i:
97
=
%
3
- 7
4

ST S
Il e v op—



®harness

They treat infrastructure components as reusable assets.

With a module registry and workspace templates, infrastructure patterns can be defined

once and consumed many times. Modules are versioned and controlled, enabling consistency
without limiting flexibility. Templates abstract complexity while still allowing input customization
where required.

They unify provisioning and deployment into a single workflow.

Modern pipelines do more than deliver application code. They orchestrate the creation and
configuration of infrastructure alongside the software that runs on it. This alignment ensures
that environments are ready, compliant, and validated before deployment ever begins.

They validate changes before execution.

Policy enforcement and cost estimation are built into the pipeline. Changes are evaluated
against rules and budgets before resources are created. Security, compliance, and financial
guardrails are applied early, not after the fact, making the delivery process safer and more
predictable.

They support the tools your teams already use.

Standardization should not require consolidation. Modern platforms accommodate diverse
teams and tooling, from Terraform and OpenTofu to Ansible and beyond. As infrastructure
evolves, the system evolves with it without requiring a full rebuild of your workflows.

The shift is not from one tool to another. The shift is from toolchains to systems. Systems

that are observable, repeatable, and reliable by default. That is the foundation for modern
infrastructure delivery.

The Practical Guide to Modernizing Infrastructure Delivery 13



@harness

Developer Self-Service Is Not
Optional Anymore

As organizations scale, infrastructure bottlenecks become a constraint on velocity. When
developers depend on ticket-based provisioning or manual reviews to access environments,
delivery slows down, and cognitive load increases. Modern teams recognize that self-service is
not a luxury and that it is a foundational requirement for scalable software development.

Internal developer platforms (IDPs) play a central role in this shift. By abstracting infrastructure
complexity behind simple interfaces, they empower developers to deploy, test, and iterate
independently, without compromising on governance or security.

The Role of the IDP

An IDP provides a structured interface between developers and the underlying platform. Rather
than expose raw scripts or infrastructure definitions, it offers workflows that are safe, reusable,
and aligned with organizational policy.

o Developers interact with standardized templates rather than authoring infrastructure
code from scratch.
o Accessis role-based, ensuring the right teams can provision the right resources.

e Guardrails are built-in, so teams do not need to memorize compliance or security
requirements.

e Observability is provided by default, so developers understand the impact of what they
deploy.

The result is a clear boundary: platform teams define the rules, and developers consume the
infrastructure productively within them.

14


https://www.harness.io/products/internal-developer-portal

®harness

Powering Infrastructure Catalogs

A critical enabler of self-service is the infrastructure catalog. Catalogs allow developers to
select from pre-defined environment templates, module combinations, or workload types that
are each pre-approved by the platform team.

o Templates are created using Infrastructure as Code and configuration management tools.

e Versions are controlled and published to internal registries.

o Metadata and documentation guide developers in choosing the right patterns for their
use case.

Catalogs reduce duplication, increase reliability, and shift responsibility for provisioning away
from centralized teams without giving up control.

Integration into Developer Workflows

Self-service only works when it fits naturally into how developers already build and ship
software. That means:

o Infrastructure requests are embedded into pull requests or CI/CD pipelines.

¢« Environments can be created on-demand for feature branches, test cases, or
deployments.

o Developers receive feedback in the same systems they use every day such as version
control, issue trackers, or chat tools.

When infrastructure is embedded into existing workflows, adoption increases and friction
decreases. More importantly, the boundaries between application and platform teams become
clearer and more collaborative. Developer self-service is not just about speed. It is about
scale, consistency, and autonomy. As software systems grow more complex, the ability for
developers to provision and manage infrastructure safely becomes essential, not optional.



@ harness

Putting It Together: A Unified
Delivery Pipeline

All of it is
versioned
governed,
cost-
checked, and
tracked

v

The app is
deployed
via CI/CD

Dev requests a
new environment
from the IDP

T
Unified Delivery
Pipeline

Ansible
configures
the system

Behind the
scenes, a
workspace
template
provisions
infra



®harness

Key Principles for Scaling
Infrastructure Delivery

Scaling infrastructure is not just about adopting new tools or increasing automation. It requires
a deliberate shift in how teams think about system design, governance, and collaboration. The
following principles are foundational for building infrastructure platforms that grow with the
organization.

Think in Platforms, Not Tools

Tools evolve. Platforms last.

Rather than expose developers to the details of provisioning or configuration tools, modern
platforms define clear interfaces for requesting infrastructure. Portals, templates, and
workflows become the surface area for developers abstracting away complexity while
preserving flexibility behind the scenes. This separation enables platform teams to evolve their
tooling over time without disrupting developer workflows.

Enforce Standards Through Code, Not
Checklists

=]

Manual reviews do not scale.

Policies and approvals must be codified. Policy-as-code frameworks allow teams to define
compliance, security, and architectural rules in a repeatable, testable format. These rules are
then enforced automatically as part of infrastructure workflows removing the need for out-of-
band reviews and reducing time to delivery. Codifying standards also improves transparency
and ensures that enforcement is consistent across teams and environments.

17



®harness

Measure Infrastructure Like Software

e

Infrastructure delivery should be observable and measurable.

Treat infrastructure workflows with the same rigor as application code. Track version history.
Measure time-to-provision. Monitor for drift and unintended changes. Metrics like deployment
frequency, lead time for changes, and change failure rate apply equally to infrastructure
systems. This mindset turns infrastructure from a support function into an engineering
discipline.

Make Reuse the Default
oG

Avoid solving the same problem more than once.

Platform teams should invest in module registries, workspace templates, and paved paths that
encode best practices. When developers can start from proven patterns, they move faster
with less risk. Reuse also accelerates iteration. Improvements made to a shared module benefit
every team using it.

Start Simple, Scale Thoughtfully
®

Not every team needs every feature from day one.

Infrastructure platforms should grow iteratively. Begin with foundational patterns and evolve
based on usage and feedback. Introduce self-service incrementally. Add guardrails and policies
as needed. Scaling is not about building everything at once, it is about building the right things

at the right time.This approach keeps the platform manageable and aligned with real-world
needs.



®harness

What Modernized Looks Like

Modern infrastructure delivery is not measured by the number of tools adopted or scripts
automated. It is defined by clarity, consistency, and the ability to scale governance without
sacrificing speed. The most effective teams do not just build pipelines, they build platforms for

their teams.

From the Field

Across industries, leading infrastructure teams are applying shared principles in different ways:

« Afintech engineering org on Harness has scaled to provision over 4,000 workspaces
across teams using fewer than ten reusable templates by reducing drift while maintaining
team autonomy.

o Another DevOps team implements automated cost estimation and Open Policy Agent
(OPA) policies to block misconfigured infrastructure before it reaches production by
ensuring financial and operational safeguards without manual intervention.

These teams do not rely on brute-force automation. They build systems that encode
organizational knowledge, enforce controls programmatically, and create a better developer
experience by design.



@ harness

Consistent Patterns, Regardless of Scale

While implementation details vary, the foundational practices of high-performing infrastructure
teams remain consistent:

They optimize for trust and autonomy.
Developers are empowered through self-service, but every workflow is governed by code-
defined guardrails.

They automate governance early.
Policy enforcement, cost control, and compliance validation are integrated from the start—not
added retroactively.

They treat infrastructure as a platform, not a pipeline.
The platform is reusable, composable, and maintained with the same discipline as production
software.

What modernized looks like is not perfection. It is clarity, reuse, and confidence at every stage
of the Software Delivery Lifecycle. As teams scale, Al will play a larger role in helping platform
teams manage infrastructure proactively. The most modernized infrastructure systems will not
just be automated. They will be adaptive by leveraging data, feedback, and Al-driven insights

to evolve alongside the applications they support.

20



®harness

The Role of Al in Infrastructure Delivery

As infrastructure systems grow more complex, platform teams face an increasing need for
automation that goes beyond static pipelines and hardcoded policies. Al introduces a new layer
of adaptability by enabling infrastructure systems that learn, respond, and improve over time.

Early use cases already emerging in modern platforms like Harness to include:

4%{? Intelligent remediation
Al agents analyze drift, failed plans, or out-of-policy changes and recommend or apply
remediations based on prior decisions and organization rules.

@ Cost anomaly detection
Al models can identify infrastructure changes that significantly deviate from normal
usage patterns and flag potential overspending before it becomes a budget issue.

-O Automated policy suggestion
Machine learning models trained on historical provisioning activity can suggest new
OPA policies or updates to existing rules when violations recur.

Configuration optimization
Al can assist in recommending optimal configuration patterns based on runtime metrics,
cloud provider data, and internal SLOs.

The value of Al in infrastructure is not in replacing platform teams, but in augmenting them. By
offloading repetitive analysis and enabling proactive decision support, Al shifts the platform
team’s role from firefighting to system design and continuous improvement.

21



@ harness

Harness Infrastructure
Management Capabilities at a
Glance

Harness provides infrastructure delivery systems that enable platform teams to manage
complexity, enforce consistency, and expose infrastructure to developers through self-service
interfaces. The core capabilities are delivered through two integrated modules: Infrastructure
as Code Management (laCM) and the Internal Developer Platform (IDP).

Infrastructure as Code Management (laCM)

Harness laCM is designed to bring consistency, control, and scalability to how infrastructure
is defined, tested, approved, and deployed. It enables platform teams to standardize
infrastructure delivery while giving developers safe, self-service access to provisioned
environments. laCM workflows feel familiar to application teams. Infrastructure changes are
executed through pipelines, pull requests, or API calls that mirror CI/CD patterns. At the same
time, platform teams retain centralized control over modules, policies, and infrastructure state.

=] Infrastructure as Account: Hamess Demo > Organization: Demo > Project: Reference Architecture > Workspaces

2] Code Management Workspace
Reference Architecture + New Workspace v Qk Tag Filter A-Z,0-9
All Workspaces © ACTIVE © INACTIVE =+ PROVISIONING ++ DESTROYING DRIFTED A FAILED @ UNKNOWN

NAME STATUS CREATED LAST UPDATED

AWS EC2

ACTIVE UNLOCKED
AN () Oct 02, 2024 0Oct 02, 2025 -
::l::re © APPLY_NEEDED Jun 06, 2025 Jun 06, 2025 wh UNLOCKED
EC2 using Templated Workspace © APPLY_NEEDED May 19, 2025 Aug 27, 2025 s UNLOCKED
Id: Ec2 TEmplate
Engine_sring - Fargate © AcTIVE Oct 23,2024 Oct 30, 2024 w6 UNLOCKED
Id: Engineering_Fargate
fnb_pipeline © APPLY_NEEDED Jun 18, 2025 Jun 18, 2025 s UNLOCKED
Id: fnb_pipeline
laCM - CI - CD DRIFTED Oct 23,2024 Jan 28, 2025 = UNLOCKED
Id: laCM_CI_CD
Namespace-demo ) DRIFTED Sep 17, 2025 Sep 17, 2025 i UNLOCKED

I Namesnace-dema

22


https://www.harness.io/products/infrastructure-as-code-management
https://www.harness.io/products/infrastructure-as-code-management
https://www.harness.io/products/internal-developer-portal

®harness

T¢= Centralized pipeline orchestration
All workspaces execute through a
shared pipeline engine that handles
plan, apply, approvals, and rollback.
No external orchestrators or custom
automation layers are required.

Workspace templates
Define repeatable, parameterized
environments with guardrails baked in.
Platform teams maintain a few golden
templates while enabling thousands of
workspaces across teams.

6% Module registry and integrated testing
Store, version, and test reusable
modules. Developers pull only trusted
infrastructure components, while
platform teams retain control over
changes and conformance.

@ OPA-based policy enforcement
Validate plans against security,
compliance, and operational policies
before execution. Approvals can be
triggered based on policy evaluation
outcomes, ensuring governance at
scale.

® Cost estimation before apply
Preview cost impact during the plan
phase. Identify misconfigurations early
and align infrastructure usage with
financial expectations.

The Practical Guide to Modernizing Infrastructure Delivery

Drift detection and remediation

Monitor for configuration drift between
declared and actual state. Future
capabilities include an Al Infrastructure
Agent that analyzes the nature of the
drift and automatically recommends

or applies remediations based on
organizational policies and prior behavior.

GitOps-native delivery

Infrastructure updates can be triggered
via pull requests with integrated policy
checks and approval gates. PRs serve
as the single source of truth for both
infrastructure and application changes.

e Support for multiple laC tools

Manage Terraform and OpenTofu
natively, with support for

Ansible, Terragrunt, and other tooling
to provide teams with flexibility as they
evolve.

Fine-grained access control and
auditability

Define role-based permissions for
modifying pipelines, applying changes,
and viewing infrastructure state. Every
change is tracked, providing full audit
trails for platform and security teams.

Custom dashboards for infrastructure
visibility

Build tailored views for platform, security,
or finance stakeholders. Monitor usage,
cost, drift, and change activity across
environments in one place.

23



@harness

Internal Developer Platform (IDP)

Harness IDP provides the control plane for delivering infrastructure and services to developers
through self-service. It exposes infrastructure workflows as productized experiences—codified
by platform teams, consumed by developers, and governed by policy. The goal is not to hide
complexity, but to abstract it behind safe interfaces. Developers interact with templates, not

pipelines. They provision environments, services, or infrastructure from curated catalogs.
Platform teams control how these catalogs are built, how policies are enforced, and how

workflows are executed.

Internal Developer Workflows
Fotal Self-service hub for new cations, infrastructure, 1ts, and all developer operations.
Q 2 Ownedby me 4 Favorites 0
I\ Your Library «
2 All Woridlows; G Provision Azure Runtime
& Account v
Self-service offering for creating VM instances.

© Service Onboarding 8

@ Infrastructure Onboar... @ @ Account | resource | )2 Tags

@ Developer Onboarding 1

<8 Day 2 Operations 2

® SE Utilities 7
Ny
N

1aCM Front End Demo

%2 Cloud 3.0 Environments 2

<& Service Onboarding (.. 1 By user:account/joseph.titra@hamess.io

Self-service front end offering for laCM
& Hamness Platform Ma... v

fh Hamess Solutions Fac... 0 © Account | environment < 2 Tags

D

=2 Test Flows 1

AT Execution History + Create v M

s Scope Type Owner Lifecycle +

Request Infrastructure - VM or K8s space
B o

Template to create infrastructure

© Account | service

1Tags

Yy
N
Titra - Create Cloud Bucket

By user:account/joseph.titra@harness.io

Self-service front end offering for laCM

£ Account | environment | <2 Tags

Tags

Reset

Provision EC2 VM Instance

By user:account/david.stewart@harness.io

offering
s IACM Pipeline

 Account  resource

2Tags

Sandbox Environment Creation

By user:account/joseph.titra@harness.io

vice front end offering for short-lived sandbox
ments

& Account  environment 2 Tags
(® Execute
. N
B AskAl )

24



®harness

The Practical Guide to Modernizing Infrastructure Delivery

Infrastructure and service catalogs
Curated catalogs expose approved
templates for compute, networking,
environments, and application
services. Catalog entries are backed
by laC and configuration automation
but abstracted into developer-friendly
forms.

Workflow embedding

Developers invoke infrastructure
workflows from pull requests, issue
trackers, or chat interfaces—no need
to manually configure pipelines or
request access. Workflows are event-
driven and Git-integrated.

Self-service provisioning with built-in
controls

Developers request environments
through forms or APIs. Platform teams
define inputs, default values, and
constraints. Approvals, cost estimates,
and policy validations are enforced
automatically.

Pipelines as a product

Infrastructure delivery pipelines are
versioned and maintained by platform
teams. Developers do not build their
own pipelines; they select and use

paved paths defined for their use case.

Q

v

Role-based access control (RBAC)
Permissions are fine-grained and
environment-aware. Platform teams
can control who can provision what, in
which environment, and with what level
of access.

Audit trails and reporting

Every provisioning, deployment, and
configuration action is logged. Audit
data is queryable and exportable for
compliance, cost analysis, or incident
investigations.

Integration with external systems

IDP connects to secret managers,
SCM systems, observability platforms,
and ticketing tools—reducing context
switching and making infrastructure
part of the broader developer
workflow.

Onboarding and discoverability
Templates include metadata,
documentation, and tags. Developers
can search, filter, and request the
infrastructure they need without
waiting on ops.

25



&harness

The Modern Software Delivery Platform

Follow us on Contact us on

X /harnessio www.harness.io

@ /harmessinc




