


2The Practical Guide to Modernizing Infrastructure Delivery

Introduction

The State of Infrastructure Delivery Today

	 Challenges Facing Teams

	 Why a New Approach Is Needed

A Simpler Model: Provision, Configure, Deploy

What Modern Teams Do Differently

Rethinking Tooling: From Scripts to Systems

Developer Self-Service Is Not Optional Anymore

	 The Role of the IDP

	 Powering Infrastructure Catalogs

	 Integration into Developer Workflows

Putting It Together: A Unified Delivery Pipeline

Key Principles for Scaling Infrastructure Delivery

What Modernized Looks Like

	 From the Field

	 Consistent Patterns, Regardless of Scale

	 The Role of AI in Infrastructure Delivery

Harness Infrastructure Management Capabilities at a Glance

	 Infrastructure as Code Management (IaCM)

	 Internal Developer Platform (IDP)

3

5

5

6

7

10

11

14

14

15

15

16

17

19

19

20

21

22

22

24

Contents



3The Practical Guide to Modernizing Infrastructure Delivery

Introduction
In today’s AI native software landscape, velocity is everything. Code moves from idea to 
production faster than ever. Continuous integration and deployment have become standard. 
Teams iterate rapidly to meet rising user expectations.

But infrastructure delivery has not kept pace.

While development workflows have evolved, infrastructure remains a common bottleneck. 
Developers are expected to move quickly, but too often they are waiting—for environments to be 
provisioned, configurations to be applied, or approvals to clear. And when they are not waiting, 
they are navigating a maze of fragmented tools and inconsistent processes.

Tooling has improved, but not in unison. Provisioning is often managed through Infrastructure as 
Code frameworks like Terraform or OpenTofu, executed via custom scripts or isolated CI jobs. 
Configuration is handled separately, sometimes through automated tools like Ansible, other times 
via manual post-provision steps. CI/CD pipelines operate independently of infrastructure state, 
unaware of what was provisioned, whether it conforms to policy, or if it is even ready to receive 
code. The result is a delivery pipeline that appears modern but lacks cross-layer coordination.

Increasingly, infrastructure complexity demands more than automation. It demands systems that 
are intelligent, consistent, and adaptive.

AI is beginning to reshape how infrastructure is managed. From surfacing cost anomalies to 
recommending remediations for drift or security violations, machine learning and AI agents are 
emerging as assistive layers that complement human workflows—not replace them. As part of a 
governed system, AI can help platform teams scale decisions, enforce consistency, and reduce 
operational overhead.

This guide is for platform engineers, DevOps leaders, and infrastructure architects who are 
working to close the gap between what their teams need and what traditional infrastructure 
delivery can support. It offers a framework grounded in unified workflows, reusable components, 
policy-driven guardrails, and self-service models that scale. Whether you are just beginning your 
journey or rethinking a mature platform, the goal is the same: deliver infrastructure that moves as 
fast as your code while remaining secure, compliant, and increasingly intelligent over time.



4The Practical Guide to Modernizing Infrastructure Delivery

Key Statistics

48%

60%

+50%

Outages due to misconfigurations

Developers blocked each sprint

Organizations not reusing modules

48% of outages in cloud environments 
are caused by misconfigurations, many 
of which stem from inconsistently applied 
infrastructure definitions. 
 
– Gartner, 2024

60% of developers say they are blocked 
waiting for infrastructure at least once per 
sprint. 
 
– Harness IDP, 2023

Over 50% of organizations using Terraform 
have no system in place for reusing modules 
across teams leading to drift, duplication, 
and inconsistent security practices. 
 
– OpenTofu Community Survey, 2024



5The Practical Guide to Modernizing Infrastructure Delivery

The State of Infrastructure 
Delivery Today

Challenges Facing Teams

Software teams today want to move fast but infrastructure often doesn’t. Despite 
advancements in CI/CD, DevOps practices, and cloud-native tooling, the way infrastructure is 
provisioned, configured, and deployed remains a patchwork of disconnected workflows.

Across many organizations, infrastructure delivery is still defined by:

•	 Multiple handoffs between platform, security, operations, and development teams at every 
stage including provisioning, configuration, and deployment.

•	 Inconsistent environments caused by configuration drift, manual changes, and untracked 
infrastructure definitions.

•	 Delayed access to infrastructure, which blocks developers from shipping features or 
testing changes when they need to.

•	 Siloed tooling that lacks integration and visibility like Terraform for provisioning, Ansible for 
config, Jenkins for deployment that are all managed in isolation.

•	 Governance gaps, where policy enforcement, access control, and cost oversight are bolted 
on as afterthoughts rather than built into the delivery workflow.

As engineering organizations scale, these inefficiencies compound. Manual processes become 
brittle. Platform teams become overburdened. Developers seek workarounds. And security, 
compliance, and cost control suffer as a result.



6The Practical Guide to Modernizing Infrastructure Delivery

Why a New Approach Is Needed

The demands on infrastructure teams have changed, but the systems many rely on have not.

•	 Cloud and hybrid environments are growing more complex, with resources spread 
across multiple regions, accounts, and architectures. Managing them through scripts or 
spreadsheets no longer scales.

•	 Platform engineering teams are now tasked with enabling self-service providing reusable 
templates, golden paths, and automation that empowers developers without compromising 
control.

•	 Compliance and cost accountability are no longer optional. Teams must prove that every 
provisioned resource is secure, policy-compliant, and cost-justified before it’s deployed.

Meeting these needs requires more than better automation. It requires a shift in mindset from 
managing infrastructure as a set of tools, to delivering infrastructure as a product.



7The Practical Guide to Modernizing Infrastructure Delivery

A Simpler Model: Provision, 
Configure, Deploy
A growing number of high-performing engineering organizations are consolidating these 
workflows into a more cohesive model. Instead of treating provisioning, configuration, and 
deployment as distinct processes, they are orchestrating them as a single, integrated system. 
This approach enables greater predictability, stronger governance, and higher developer 
velocity.

Provision: Codify and Allocate Infrastructure

Provisioning defines the structure of cloud environments. It involves translating architectural 
intent into code that declares compute, storage, networking, IAM policies, and other 
foundational resources. Most teams use frameworks such as Terraform or OpenTofu to achieve 
this, enabling infrastructure to be version-controlled, reviewed, and automated.

However, provisioning at scale introduces significant challenges. Organizations managing 
dozens or hundreds of teams often contend with duplicated modules, inconsistent variables, 
and fragile automation. As the number of workspaces grows, so does the operational overhead.

A platform-driven provisioning approach addresses these issues by introducing:

•	 Shared module registries that enforce consistent patterns and ownership

•	 Variable sets that standardize inputs across teams and environments

•	 Policy controls that validate infrastructure before it is applied

•	 Pull request automation that integrates provisioning into the broader software 
development lifecycle

•	 Cost estimation and drift detection to maintain accuracy and efficiency over time

Provisioning infrastructure is no longer just about codifying resources. It is about embedding 
infrastructure creation into governed, automated systems that are resilient to scale and change.



8The Practical Guide to Modernizing Infrastructure Delivery

Configure: Make Infrastructure Operational

Provisioning delivers the underlying resources. Configuration makes those resources 
functional.

Post-provision configuration includes installing agents, setting environment-specific 
parameters, enforcing security hardening, and applying network and runtime policies. These 
tasks are procedural, often requiring ordered execution and conditional logic. Declarative IaC 
frameworks are not built to handle this layer effectively. 

Some teams attempt to bridge the gap with custom shell scripts or manual steps. Others rely 
on separate configuration management systems that drift over time or fall out of sync with 
provisioning pipelines.

Tools like Ansible provide a programmatic way to manage configuration through structured 
playbooks and inventory-driven automation. By codifying configuration in playbooks, teams 
can:

•	 Ensure consistency across environments

•	 Avoid drift caused by manual changes

•	 Reduce onboarding time for new infrastructure patterns

Looking ahead, the configuration layer will become increasingly intelligent. With the rise of 
AI-assisted agents, teams can detect misconfigurations, auto-generate procedural playbooks 
for common use cases, and suggest configuration changes based on historical patterns where 
all before infrastructure reaches production. These capabilities are not hypothetical. They are 
already appearing in modern platforms like Harness, with beta-stage infrastructure agents 
designed to proactively recommend or apply remediations based on observed drift or policy 
violations.



9The Practical Guide to Modernizing Infrastructure Delivery

Deploy: Release Applications with 
Infrastructure Context

Application deployment typically relies on CI/CD pipelines to build, test, and release code. 
However, these pipelines often operate without visibility into the environments they deploy to. 
They may not know if an environment is provisioned correctly, if required services are running, 
or if compliance policies have been met.

This lack of infrastructure awareness creates a fragile deployment surface. Failures occur late 
in the process. Rollbacks are incomplete. Troubleshooting spans multiple systems and teams.

Integrating infrastructure delivery with application deployment creates a more reliable release 
lifecycle. When provisioning, configuration, and deployment are orchestrated as a single 
workflow, the system gains shared context across all layers. This allows teams to:

•	 Validate that deployments target environments in a known and compliant state

•	 Link infrastructure and application changes in the same versioned history

•	 Improve traceability across pipeline runs, infrastructure changes, and application 
behavior

•	 Reduce manual coordination between platform and application teams

Aligning application delivery with infrastructure readiness results in faster recovery times, 
fewer production issues, and a more consistent release process across environments.

The provision, configure, deploy model has been discussed for years. What has changed is the 
maturity of the tools and platforms now available to support it. Organizations no longer need 
to build this integration from scratch. They can implement it consistently and at scale, using 
systems designed to treat infrastructure delivery as a first-class concern within the broader 
software lifecycle.



10The Practical Guide to Modernizing Infrastructure Delivery

What Modern Teams 
Do Differently
What Modern Teams Build What It Enables

Reusable, versioned modules 
for compute, networking, 
storage, IAM, and more

Policy-as-code guardrails 
enforced at every stage of 
the pipeline

Environment templates 
codified in IaC and 
configuration tools

Integrated pipelines that connect 
provisioning, configuration, and 
deployment

Internal registries and templates 
exposed through self-service 
platforms

Automated validation gates for 
cost, security, and architectural 
conformance

Consistency across teams, 
faster onboarding, and reduced 
duplication

Safe self-service for developers 
with built-in security and 
compliance checks

Rapid environment 
provisioning without 
ticket-based workflows

A unified delivery flow 
with traceability and 
reduced handoffs

Developer access to 
infrastructure as a product, with 
minimal operational overhead

Risk reduction before 
resources are provisioned 
or deploy



11The Practical Guide to Modernizing Infrastructure Delivery

Rethinking Tooling: From 
Scripts to Systems
Most infrastructure teams have adopted automation in some form. Provisioning scripts exist. CI/
CD pipelines run. Configuration management tools are in place. But despite this, the workflows 
remain brittle. Tasks are automated, but systems are not integrated. The result is a collection of 
tools that execute steps in isolation rather than a delivery system that operates end-to-end.

What Matters More Than the Tools 
Themselves

The tools used for provisioning, configuration, and deployment are often the same across 
organizations. What sets high-performing teams apart is not the tooling itself, but how they 
build systems that scale, enforce consistency, and remain adaptable over time. Rather 
than focus on which tool is being used, modern platform teams focus on the outcomes the 
system can guarantee. They ask different questions that shift attention from automation to 
architecture, and from speed to sustainability.

Can you enforce standards without slowing developers down?

Governance should not be a separate track. When policies, security checks, and architectural 
guidelines are embedded into the delivery process, compliance becomes a default, not a delay. 
Developers can deploy infrastructure through self-service workflows, confident that what they 
ship aligns with internal controls without needing to navigate a separate review process.



12The Practical Guide to Modernizing Infrastructure Delivery

Can you update infrastructure across environments with a single change?

Without modularization, teams are forced to replicate effort. Updating environments means 
managing a patchwork of scripts or isolated pipelines. By investing in versioned modules 
and environment templates, teams enable repeatability. They can apply changes globally, 
understand the impact locally, and reduce the surface area for error.

Can you see what is being provisioned, changed, and deployed at any given moment?

Provisioning logs and deployment status tell only part of the story. Understanding how 
infrastructure evolves over time like who made changes, when they occurred, and whether 
they conform to policy requires deeper observability. Teams need real-time insight into 
workflows, not just artifacts. This visibility enables better incident response, tighter access 
control, and more informed decisions about change.

What Modern Platforms Need

Infrastructure tooling has matured, but maturity does not come from using more tools. It comes 
from building systems that integrate those tools into a cohesive delivery experience. Modern 
platforms are not collections of automation; they are structured environments that enforce 
standards, support scale, and remain flexible across teams and technologies.



13The Practical Guide to Modernizing Infrastructure Delivery

They treat infrastructure components as reusable assets.

With a module registry and workspace templates, infrastructure patterns can be defined 
once and consumed many times. Modules are versioned and controlled, enabling consistency 
without limiting flexibility. Templates abstract complexity while still allowing input customization 
where required.

They unify provisioning and deployment into a single workflow.

Modern pipelines do more than deliver application code. They orchestrate the creation and 
configuration of infrastructure alongside the software that runs on it. This alignment ensures 
that environments are ready, compliant, and validated before deployment ever begins.

They validate changes before execution.

Policy enforcement and cost estimation are built into the pipeline. Changes are evaluated 
against rules and budgets before resources are created. Security, compliance, and financial 
guardrails are applied early, not after the fact, making the delivery process safer and more 
predictable.

They support the tools your teams already use.

Standardization should not require consolidation. Modern platforms accommodate diverse 
teams and tooling, from Terraform and OpenTofu to Ansible and beyond. As infrastructure 
evolves, the system evolves with it without requiring a full rebuild of your workflows.

The shift is not from one tool to another. The shift is from toolchains to systems. Systems 
that are observable, repeatable, and reliable by default. That is the foundation for modern 
infrastructure delivery.



14The Practical Guide to Modernizing Infrastructure Delivery

Developer Self-Service Is Not 
Optional Anymore
As organizations scale, infrastructure bottlenecks become a constraint on velocity. When 
developers depend on ticket-based provisioning or manual reviews to access environments, 
delivery slows down, and cognitive load increases. Modern teams recognize that self-service is 
not a luxury and that it is a foundational requirement for scalable software development.

Internal developer platforms (IDPs) play a central role in this shift. By abstracting infrastructure 
complexity behind simple interfaces, they empower developers to deploy, test, and iterate 
independently, without compromising on governance or security.

The Role of the IDP

An IDP provides a structured interface between developers and the underlying platform. Rather 
than expose raw scripts or infrastructure definitions, it offers workflows that are safe, reusable, 
and aligned with organizational policy.

•	 Developers interact with standardized templates rather than authoring infrastructure 
code from scratch.

•	 Access is role-based, ensuring the right teams can provision the right resources.

•	 Guardrails are built-in, so teams do not need to memorize compliance or security 
requirements.

•	 Observability is provided by default, so developers understand the impact of what they 
deploy.

The result is a clear boundary: platform teams define the rules, and developers consume the 
infrastructure productively within them.

https://www.harness.io/products/internal-developer-portal


15The Practical Guide to Modernizing Infrastructure Delivery

Powering Infrastructure Catalogs

A critical enabler of self-service is the infrastructure catalog. Catalogs allow developers to 
select from pre-defined environment templates, module combinations, or workload types that 
are each pre-approved by the platform team.

•	 Templates are created using Infrastructure as Code and configuration management tools.

•	 Versions are controlled and published to internal registries.

•	 Metadata and documentation guide developers in choosing the right patterns for their 
use case.

Catalogs reduce duplication, increase reliability, and shift responsibility for provisioning away 
from centralized teams without giving up control. 

Integration into Developer Workflows

Self-service only works when it fits naturally into how developers already build and ship 
software. That means:

•	 Infrastructure requests are embedded into pull requests or CI/CD pipelines.

•	 Environments can be created on-demand for feature branches, test cases, or 
deployments.

•	 Developers receive feedback in the same systems they use every day such as version 
control, issue trackers, or chat tools.

When infrastructure is embedded into existing workflows, adoption increases and friction 
decreases. More importantly, the boundaries between application and platform teams become 
clearer and more collaborative. Developer self-service is not just about speed. It is about 
scale, consistency, and autonomy. As software systems grow more complex, the ability for 
developers to provision and manage infrastructure safely becomes essential, not optional.



16The Practical Guide to Modernizing Infrastructure Delivery

Putting It Together: A Unified 
Delivery Pipeline

Unified Delivery 
Pipeline

The app is 
deployed 
via CI/CD

Dev requests a 
new environment 

from the IDP

Ansible 
configures 
the system

Behind the 
scenes, a 

workspace 
template 

provisions 
infra

All of it is 
versioned 
governed, 

cost-
checked, and 

tracked



17The Practical Guide to Modernizing Infrastructure Delivery

Key Principles for Scaling 
Infrastructure Delivery
Scaling infrastructure is not just about adopting new tools or increasing automation. It requires 
a deliberate shift in how teams think about system design, governance, and collaboration. The 
following principles are foundational for building infrastructure platforms that grow with the 
organization.

Think in Platforms, Not Tools

Tools evolve. Platforms last. 
Rather than expose developers to the details of provisioning or configuration tools, modern 
platforms define clear interfaces for requesting infrastructure. Portals, templates, and 
workflows become the surface area for developers abstracting away complexity while 
preserving flexibility behind the scenes. This separation enables platform teams to evolve their 
tooling over time without disrupting developer workflows. 

Enforce Standards Through Code, Not 
Checklists

Manual reviews do not scale. 
Policies and approvals must be codified. Policy-as-code frameworks allow teams to define 
compliance, security, and architectural rules in a repeatable, testable format. These rules are 
then enforced automatically as part of infrastructure workflows removing the need for out-of-
band reviews and reducing time to delivery. Codifying standards also improves transparency 
and ensures that enforcement is consistent across teams and environments.



18The Practical Guide to Modernizing Infrastructure Delivery

Measure Infrastructure Like Software

 

Infrastructure delivery should be observable and measurable. 
Treat infrastructure workflows with the same rigor as application code. Track version history. 
Measure time-to-provision. Monitor for drift and unintended changes. Metrics like deployment 
frequency, lead time for changes, and change failure rate apply equally to infrastructure 
systems. This mindset turns infrastructure from a support function into an engineering 
discipline. 

Make Reuse the Default

 

Avoid solving the same problem more than once. 
Platform teams should invest in module registries, workspace templates, and paved paths that 
encode best practices. When developers can start from proven patterns, they move faster 
with less risk. Reuse also accelerates iteration. Improvements made to a shared module benefit 
every team using it. 

Start Simple, Scale Thoughtfully

 

Not every team needs every feature from day one. 
Infrastructure platforms should grow iteratively. Begin with foundational patterns and evolve 
based on usage and feedback. Introduce self-service incrementally. Add guardrails and policies 
as needed. Scaling is not about building everything at once, it is about building the right things 
at the right time.This approach keeps the platform manageable and aligned with real-world 
needs.



19The Practical Guide to Modernizing Infrastructure Delivery

What Modernized Looks Like
Modern infrastructure delivery is not measured by the number of tools adopted or scripts 
automated. It is defined by clarity, consistency, and the ability to scale governance without 
sacrificing speed. The most effective teams do not just build pipelines, they build platforms for 
their teams.

From the Field

Across industries, leading infrastructure teams are applying shared principles in different ways:

•	 A fintech engineering org on Harness has scaled to provision over 4,000 workspaces 
across teams using fewer than ten reusable templates by reducing drift while maintaining 
team autonomy.

•	 Another DevOps team implements automated cost estimation and Open Policy Agent 
(OPA) policies to block misconfigured infrastructure before it reaches production by 
ensuring financial and operational safeguards without manual intervention.

These teams do not rely on brute-force automation. They build systems that encode 
organizational knowledge, enforce controls programmatically, and create a better developer 
experience by design.



20The Practical Guide to Modernizing Infrastructure Delivery

Consistent Patterns, Regardless of Scale

While implementation details vary, the foundational practices of high-performing infrastructure 
teams remain consistent:

They optimize for trust and autonomy. 
Developers are empowered through self-service, but every workflow is governed by code-
defined guardrails.

They automate governance early. 
Policy enforcement, cost control, and compliance validation are integrated from the start—not 
added retroactively.

They treat infrastructure as a platform, not a pipeline. 
The platform is reusable, composable, and maintained with the same discipline as production 
software.

What modernized looks like is not perfection. It is clarity, reuse, and confidence at every stage 
of the Software Delivery Lifecycle. As teams scale, AI will play a larger role in helping platform 
teams manage infrastructure proactively. The most modernized infrastructure systems will not 
just be automated. They will be adaptive by leveraging data, feedback, and AI-driven insights 
to evolve alongside the applications they support.



21The Practical Guide to Modernizing Infrastructure Delivery

The Role of AI in Infrastructure Delivery

As infrastructure systems grow more complex, platform teams face an increasing need for 
automation that goes beyond static pipelines and hardcoded policies. AI introduces a new layer 
of adaptability by enabling infrastructure systems that learn, respond, and improve over time.

Early use cases already emerging in modern platforms like Harness to include:

The value of AI in infrastructure is not in replacing platform teams, but in augmenting them. By 
offloading repetitive analysis and enabling proactive decision support, AI shifts the platform 
team’s role from firefighting to system design and continuous improvement.

Intelligent remediation 
AI agents analyze drift, failed plans, or out-of-policy changes and recommend or apply 
remediations based on prior decisions and organization rules.

Cost anomaly detection 
AI models can identify infrastructure changes that significantly deviate from normal 
usage patterns and flag potential overspending before it becomes a budget issue.

Automated policy suggestion 
Machine learning models trained on historical provisioning activity can suggest new 
OPA policies or updates to existing rules when violations recur.

Configuration optimization 
AI can assist in recommending optimal configuration patterns based on runtime metrics, 
cloud provider data, and internal SLOs.



22The Practical Guide to Modernizing Infrastructure Delivery

Harness Infrastructure 
Management Capabilities at a 
Glance
Harness provides infrastructure delivery systems that enable platform teams to manage 
complexity, enforce consistency, and expose infrastructure to developers through self-service 
interfaces. The core capabilities are delivered through two integrated modules: Infrastructure 
as Code Management (IaCM) and the Internal Developer Platform (IDP).

Infrastructure as Code Management (IaCM)

Harness IaCM is designed to bring consistency, control, and scalability to how infrastructure 
is defined, tested, approved, and deployed. It enables platform teams to standardize 
infrastructure delivery while giving developers safe, self-service access to provisioned 
environments. IaCM workflows feel familiar to application teams. Infrastructure changes are 
executed through pipelines, pull requests, or API calls that mirror CI/CD patterns. At the same 
time, platform teams retain centralized control over modules, policies, and infrastructure state.

250 200 15 15 1010

https://www.harness.io/products/infrastructure-as-code-management
https://www.harness.io/products/infrastructure-as-code-management
https://www.harness.io/products/internal-developer-portal


23The Practical Guide to Modernizing Infrastructure Delivery

Centralized pipeline orchestration 
All workspaces execute through a 
shared pipeline engine that handles 
plan, apply, approvals, and rollback. 
No external orchestrators or custom 
automation layers are required.

Workspace templates 
Define repeatable, parameterized 
environments with guardrails baked in. 
Platform teams maintain a few golden 
templates while enabling thousands of 
workspaces across teams.

Module registry and integrated testing 
Store, version, and test reusable 
modules. Developers pull only trusted 
infrastructure components, while 
platform teams retain control over 
changes and conformance.

OPA-based policy enforcement 
Validate plans against security, 
compliance, and operational policies 
before execution. Approvals can be 
triggered based on policy evaluation 
outcomes, ensuring governance at 
scale.

Cost estimation before apply 
Preview cost impact during the plan 
phase. Identify misconfigurations early 
and align infrastructure usage with 
financial expectations.

Drift detection and remediation 
Monitor for configuration drift between 
declared and actual state. Future 
capabilities include an AI Infrastructure 
Agent that analyzes the nature of the 
drift and automatically recommends 
or applies remediations based on 
organizational policies and prior behavior.

GitOps-native delivery 
Infrastructure updates can be triggered 
via pull requests with integrated policy 
checks and approval gates. PRs serve 
as the single source of truth for both 
infrastructure and application changes.

Support for multiple IaC tools 
Manage Terraform and OpenTofu 
natively, with support for 
Ansible,Terragrunt, and other tooling 
to provide teams with flexibility as they 
evolve.

Fine-grained access control and 

auditability 
Define role-based permissions for 
modifying pipelines, applying changes, 
and viewing infrastructure state. Every 
change is tracked, providing full audit 
trails for platform and security teams.

Custom dashboards for infrastructure 

visibility 
Build tailored views for platform, security, 
or finance stakeholders. Monitor usage, 
cost, drift, and change activity across 
environments in one place.



24The Practical Guide to Modernizing Infrastructure Delivery

Internal Developer Platform (IDP)

Harness IDP provides the control plane for delivering infrastructure and services to developers 
through self-service. It exposes infrastructure workflows as productized experiences—codified 
by platform teams, consumed by developers, and governed by policy. The goal is not to hide 
complexity, but to abstract it behind safe interfaces. Developers interact with templates, not 
pipelines. They provision environments, services, or infrastructure from curated catalogs. 
Platform teams control how these catalogs are built, how policies are enforced, and how 
workflows are executed.



25The Practical Guide to Modernizing Infrastructure Delivery

Infrastructure and service catalogs 
Curated catalogs expose approved 
templates for compute, networking, 
environments, and application 
services. Catalog entries are backed 
by IaC and configuration automation 
but abstracted into developer-friendly 
forms.

Workflow embedding 
Developers invoke infrastructure 
workflows from pull requests, issue 
trackers, or chat interfaces—no need 
to manually configure pipelines or 
request access. Workflows are event-
driven and Git-integrated.

Self-service provisioning with built-in 

controls 
Developers request environments 
through forms or APIs. Platform teams 
define inputs, default values, and 
constraints. Approvals, cost estimates, 
and policy validations are enforced 
automatically.

Pipelines as a product 
Infrastructure delivery pipelines are 
versioned and maintained by platform 
teams. Developers do not build their 
own pipelines; they select and use 
paved paths defined for their use case.

Role-based access control (RBAC) 
Permissions are fine-grained and 
environment-aware. Platform teams 
can control who can provision what, in 
which environment, and with what level 
of access.

Audit trails and reporting 
Every provisioning, deployment, and 
configuration action is logged. Audit 
data is queryable and exportable for 
compliance, cost analysis, or incident 
investigations.

Integration with external systems 
IDP connects to secret managers, 
SCM systems, observability platforms, 
and ticketing tools—reducing context 
switching and making infrastructure 
part of the broader developer 
workflow.

Onboarding and discoverability 
Templates include metadata, 
documentation, and tags. Developers 
can search, filter, and request the 
infrastructure they need without 
waiting on ops.



26The Practical Guide to Modernizing Infrastructure Delivery

The Modern Software Delivery Platform™

Follow us on

/harnessio www.harness.io

/harnessinc

Contact us on


