THE STATE OF

Al in Software
Engineering

2025 &

@harness

THE STATE OF

Alin Software

Engineering
2025 &
Executive Summary 02
Key Findings 03
1. The New Normal: Pervasive Al Adoption (013
and Tool Sprawl
2. The Al Velocity Paradox: When Speed (03]
Creates Drag
3. Downstream Bottlenecks Slow 12

Al-Powered Delivery

4. Navigating the Paradox: The Four Quadrants 16
of Al Maturity

Conclusion: Move Fast and Don't Break Things 18

@harness

THE STATE OF

Al in Software
Engineering

2025 &

Executive Summary

Al-assisted coding has gone from an experimental edge to an everyday reality. For
engineering teams, the promise is immense: faster development cycles, improved code
quality, and more time for innovation. In our survey of 900 engineers, platform leaders, and
technical managers across the United States, the United Kingdom, France, and Germany,
the majority report that the use of Al assistants is leading to faster shipping speeds.

Yet, beneath the surface-level optimism lies a hard truth: Al's speed boost is uneven. The
benefits gained in code creation are being throttled by processes further down the
software delivery lifecycle (SDLC). Downstream processes, including testing, deployment,
security, and compliance, have not matured at the same pace, creating the

Al Velocity Paradox.

The result is a dangerous operational blind spot. Organizations believe they are
accelerating when in reality, they are simply pushing unverified code into production faster.

02

THE STATE OF

Al in Software
Engineering

2025 &

Key Findings Include

2,

A Clear Velocity Lift

Since adopting Al, 63% of organizationsare @ | -7

shipping code to production faster.

487%

e

1.

Pervasive Al Adoption

On average, development and engineering
teams use between eight to ten distinct Al
tools, while more than a third (36%) use an
even wider array.

3.

Increased Security and Quality Risk

Nearly half (48%) of teams are concerned
they will see an increase in software
vulnerabilities due to their use of Al-coding
assistants, and 45% of all deployments linked
to Al-generated code lead to problems.

03

THE STATE OF

Al in Software
Engineering

2025 &

4,

Rising Costs

70%

More than two-thirds (70%) of organizations
are concerned that Al assistants could cause
cloud costs to spiral out of control, because

it is so easy to deploy inefficient code.

43% 5.

‘. | The Downstream Bottleneck

. . ‘ . The proportion of coding workflows that are
‘ . ' . . automated sits at 51%, but is just 43% for
‘ ‘ TTTmesssnssaes Cl/build pipeline creation and execution.

“Organizations that fail to integrate Al safely and
securely across their SDLC in the next 12 months
will go the same way as the dinosaurs.”

- say 74% of respondents

04

E STATE OF

Alin Software
Engineering

2025 &

1. The New Normail: Pervasive
Al Adoption and Tool Sprawl

The adoption curve for Al in software engineering isn't just steep, it's vertical. Al is no
longer a sidecar; it's part of the engine.

Organizations have already adopted Al in an array of use cases across the SDLC, and
expect to see significant efficiency gains. However, the use of Al in downstream stages of
delivery lags behind its application for code generation, which threatens to hinder
organizations’ ambitions.

“Within the next five years, software
delivery will be dominated by Al agents
working alongside human engineers”

- say 80% of development teams and their leaders

05

Areas of software delivery where organizations

have already adopted Al:

Code generation

Documentation

QA/ testing

Error remediation

Security and compliance

Performance and cost
optimisation

Continuous integration

Maintenance/ issue
remediation

Continuous delivery

Feature management/ rollouts

63%

60%

57%

55%

54%

53%

49%

47%

43%

40%

THE STATE OF

Al in Software
Engineering

2025 &

Aspects of software delivery that respondents
expect to see significant impact from Al.

Speed of code creation

Speed of testing and QA

Developer onboarding time

Performance and cost
optimisation

Availability of documentation

Speed of security and
compliance tests

Collaboration amongst
developers

Speed of code delivery to
production

51%

45%

43%

42%

38%

35%

34%

06

THE STATE OF

Al in Software
Engineering

2025 &

2% Tool proliferation

On average, organizations use eight to ten distinct Al tools for software engineering, and
more than a third (36%) are juggling an even greater number. This paints a picture not just
of Al abundance, but of significant tool sprawl. While each new tool may add marginal
value, it also introduces undeniable complexity and lengthens developer onboarding time.

e N
2+

months

the average time it takes to fully
onboard a new software engineer

“Constant context switching is mentally
draining and kills developer productivity”

- say 71% of respondents

Managing security, ensuring compliance, and monitoring performance across a
fragmented toolchain becomes a significant governance headache; one that most
organizations are only beginning to confront. This is the first crack in the foundation of Al-
driven development, setting the stage for bottlenecks to come.

o7

THE STATE OF

Al in Software
Engineering
2025 &

2. The Al Velocity Paradox:
When Speed Creates Drag

When asked about the impact of Al coding tools,
63% of respondents say their developers ship
code to production more frequently.

Xy

However, upstream speed is only one part of the
eqguation. Faster code creation does not guarantee
overall development velocity.

“The use of Al coding assistants is like squeezing a
balloon - the volume of work stays the same, it's
just forced from one side to another.”

- say 67% of development teams and their leaders

The speed boost from Al-assisted coding is creating a pressure wave that is crashing
against a wall of under-automated, legacy downstream processes. While developers are
writing code faster than ever, the systems meant to test, secure, and deploy that code are
struggling to keep up. This has led to the emergence of the Al Velocity Paradox.

08

€ Limited Downstream Automation

THE STATE OF

Al in Software
Engineering
2025 &

There is a stark imbalance in automation maturity across the SDLC. While 51% of coding
workflows are automated on average, organizations’ use of these capabilities drops off

consistently from there.

51% 48% 47%

Coding/ Developer Quality and
Development environment resilience testing/
creation QA

46%

Security and
compliance
testing

46%

Documentation

e e——
-

45% 45% 43%

Continuous Incident Continuous

delivery management Integration/Build
pipeline creation
and execution

43%

Performance and
cost optimization

38%

Feature
Management/
Rollouts

The so far limited use of Al in Continuous Delivery (CD) is of particular concern.

I o of respondents characterize their CD process
On y 6/0 as fully automated.

The majority (85%) say their process is somewhere
between 1-75% automated, highlighting that it
remains very normal for significant manual effort
to be required in each release.

Significant
Manual Effort

09

THE STATE OF

Al in Software
Engineering

2025 ®

° While Al assistants help developers write code
COntanOUS faster, the ability to realize those velocity gains

depends heavily on the delivery pipeline. Our data

Deliverqy reveals a clear correlation: as Continuous Delivery

(CD) automation matures, the likelihood of shipping

AUtomqtion code more frequently due to Al increases.

° Among organizations with low CD automation (O-
IS CI Force 25%), 55% reported increased shipping frequency

from Al tools. This rises to 64% for those with

MUItipIier moderate automation and peaks at 78% for

organizations with fully automated pipelines. This
suggests that to fully capitalize on Al-generated
code, organizations must ensure their delivery
mechanisms are fast enough to keep up with the
increased pace of creation

(5 Cracks Beginning to Emerge

The gap between automated code creation and validation is a primary source of risk,
quality issues, and hidden costs that can stall the overall velocity of software delivery.
Only 41% of respondents are fully confident that their deployment checks and governance
processes will always be able to prevent bugs from Al-generated code getting into
production.

“It'simpossible to strike the perfect balance
between delivering code faster and ensuring its
reliability and security”

- say two-thirds (66%) of respondents

This challenge is only set to worsen as vibe coding continues to take off amongst non-
specialist or less experienced developers.

10

THE STATE OF

Al in Software
Engineering

2025 ®

Nearly two-thirds (63%) of respondents say vibe
coding is “a disaster waiting to happen, and skilled
developers are about to be inundated with requests to
fix other people's shoddy work.”

637”

Organizations are accelerating directly into a new set of bottlenecks. The time saved by
developers will be paid for downstream by operations, security, and finance teams. This is
the drag that turns a localized speed boost into a system-wide slowdown.

“Without automated guardrails, organizations are going
to face some very painful and costly mistakes from non-
technical teams trying their hand at vibe coding”

- say 78% of respondents

1

THE STATE OF

Al in Software
Engineering

2025 &

3. Downstream Bottlenecks
Slow Al-Powered Delivery

The drag on velocity isn't caused by a single point of failure, but by a series of
interconnected bottlenecks across the downstream phases of the SDLC. When we
examine the specific areas of friction, several patterns emerge.

=2 DevOps and Pipeline Proliferation

Creating, securing, and maintaining a unique delivery pipeline for every new service is
simply not scalable at the speed of Al-driven development. Perhaps in light of this,
guardrails for standardizing build and deployment processes emerged as the most
important priority for increasing the use of Al in software delivery.

Organizations that rate automatically enforced guardrails and policies in the
following areas as very important to increasing their use of Al across the SDLC:

449 AN%
57% rosess e e 51%

5 budgets timelines .
Standardizing Increasing use of deployment
build and deployment strategies such as blue/green,
pipelines canary, and feature flags
\I”l“'“l// y
I Y
o \\\ : g‘ = : //;__ o
— E /—\
oo = | 3% tabil
ncreasing x// = - Increased availability
functional and unit : 4 E B = N of SBOMs for
test coverage 2 T P \\\ artifacts

//|||HHI'|\

54% 48%
o nereechc o 53% 53% Lo

that have test plans i . chaos testing
Increased availability of More defined
engineering metrics at incident management
all phases of delivery processes

12

THE STATE OF

Al in Software
Engineering

2025 &

More Deployment Failures With a
Wider Fallout

45%

of deployments involving Al-generated code
introduce problems.

"y

of organizations have already experienced
at least one production incident directly

1%

caused by Al-generated code.

N
72% o
2

Organizations remain relatively immature in their use of feature management to mitigate
the risk of releases for code created with Al. Less than half say their developers are using
feature flags for many of the primary use cases that help to prevent coding errors from
creating a widescale production incident.

13

TTTTTTTTTT

Al in Software
Engineering

2025 &

H Use cases where developers use feature
flags for Al-assisted/generated code.

® O

58% 50% 477%

Kill switches A/B testing and Gradual rollouts/
and rollbacks experimentation Phased releases

X -

43% 31%

Controlled access Testing features
to new features in production

Use case

(o

“If they aren't managed carefully, Al assistants could
significantly widen the blast radius of failed software
releases, creating more customer disruption, business risk,
and developer stress,”

- say 73% of respondents

14

THE STATE OF

Al in Software
Engineering

2025 &

1] Increased Manual Toil and Risk

Any time saved during code creation is being reallocated to cleanup during downstream
stages of delivery. One third (33%) of organizations are concerned that the use of Al-
assisted coding tools will lead to an increase in the amount of manual downstream work
such as QA, testing, and integration. Whether this work falls to a dedicated team or back
to the developer, it represents a direct tax on innovation.

In particular, faster code generation threatens to overwhelm teams who rely on manual
security reviews. Nearly half (48%) of organizations are concerned they will see an
increase in software vulnerabilities and security incidents as a result of their adoption of
Al-assisted coding tools, and 43% worry they will face increased regulatory non-
compliance.

(53 Unexpected Cost Overruns

Inefficient, Al-generated code can also have a direct 7 oo/o

impact on the bottom line. More than two-thirds (70%)
of respondents are concerned that their cloud costs
could spiral out of control as the use of Al assistants
increases, because it's so easy to deploy

inefficient code.

These bottlenecks demonstrate that true velocity is a \/

measure of the entire system, not just its fastest

component. Addressing these downstream friction
points is the only way to realize the full promise of Al
in software development.

“The use of Al needs to extend across the entire
SDLC if we're to redlise the true potential of coding
assistants for accelerating delivery,”

- say 83% of respondents
15

THE STATE OF

Alin Software

Engineering
2025 &

4. Navigating the Paradox:
The Four Quadrants of Al Maturity

The Al Velocity Paradox forces organizations into one of four distinct quadrants, defined
by their maturity in both upstream Al adoption (coding) and downstream Al-powered
automation (testing, security, deployment).

4)

Low Downstream High Downstream
Automation Automation

High Al [,
Adoption The Danger Zone The Velocity Leaders
(Coding) Fast, but Fragile Fast and Resilient
Low Al @
Adoption The Laggards The Cautious Planners
(Coding) Slow and Fragile Slow, but Stable

_ Y

{C; The Danger Zone: High Al Adoption, Low
Downstream Automation

This is where the paradox lives and where most organizations find themselves today. They
have enthusiastically adopted Al for code generation, achieving the initial speed boost.
However, their downstream processes remain manual and brittle. They are, in effect,
running face-first into a wall. The result is a high-risk environment characterized by:

Frequent deployment Increased security
failures vulnerabilities

Rising manual toil for ' Unpredictable
QA and Ops teams \\/ costs

16

THE STATE OF

Al in Software
Engineering

2025 ®

The Laggards: Low Al Adoption,
Low Downstream Automation

These organizations have not embraced Al for coding and still rely on manual processes
throughout the software delivery lifecycle. They are slow, inefficient, and falling behind the
competition. While they may not experience the acute pain of the Velocity Paradox, they

are failing to capitalize on the single biggest technology shift in modern software
development.

(5 The Cautious Planners: Low Al Adoption,
High Downstream Automation

A small and disciplined group, these organizations have mature, automated pipelines but
have been slow to adopt Al for coding. They are stable and reliable, but risk being
outpaced by more agile competitors. Their robust downstream foundation, however,
positions them to become Velocity Leaders as soon as they choose to accelerate their
upstream Al adoption.

The Velocity Leaders: High Al Adoption,
High Downstream Automation

This is the target state. Velocity Leaders have embraced Al not just for coding, but across
the entire software delivery lifecycle. They use Al-powered automation to test, secure,
deploy, and verify code, ensuring that speed is matched with safety and resilience. For
these organizations, Al is a true competitive advantage, enabling them to deliver value to
customers faster and more reliably than anyone else.

The critical question for every engineering leader is: which quadrant are you in, and how do
you move to the top right?

17

THE STATE OF

Al in Software
Engineering

2025 &

Conclusion: Move Fast and
Don't Break Things

Al in software engineering is no longer optional. The speed and productivity gains are too
significant to ignore. However, as our research shows, realizing the true value of Al
requires more than just faster coding. It requires a holistic approach that pairs upstream
speed with downstream intelligence.

Organizations that focus only on Al-assisted coding are setting themselves up for failure.
They are creating a system that is fast but fragile, where the time saved by developers is
paid for in the form of failed deployments, security vulnerabilities, and manual rework.

The path forward is clear. To escape the Al Velocity Paradox and become a true Velocity
Leader, engineering organizations must:

Audit the Entire Pipeline: Pinpoint the manual handoffs
1. Identify the automation gaps in 2. and sources of friction.
testing, security, and
deployment processes.

Shift Al Investment Consolidate and Standardize:

3. Downstream: Prioritize the 4. Move away from a fragmented
use of Al in the post-coding collection of point tools and
lifecycle. Implement Al- toward a unified platform for
powered testing, security software delivery. This reduces
scanning, and deployment complexity and allows for the
verification to create a safety consistent application of Al-
net for developers. powered governance.

18

THE STATE OF

Al in Software
Engineering

2025 &

“Purpose-built platforms that automate the end-to-end
SDLC will be far more valuable than solutions that target
just one specific task in future,”

- say 81% of respondents

By embracing Al for everything after coding, organizations can finally unite speed with
resilience. They can empower their teams to move fast and not break things, unlocking the
full, transformative potential of Al in software development.

Methodology

This report is based on a survey of 900 engineers,
K 9 0 0 y platform leaders, and technical managers,
commissioned by Harness and conducted by
\ . J independent research firm Coleman Parkes in August
alh g 2025. The sample included 500 respondents in the
United States, 200 in the UK, and 100 in each of

Germany and France.

THE STATE OF

Al in Software
Engineering
2025 @

