
Abstract

Predicting the end-of-life (EOL) of lithium-ion batteries across different manufacturers
presents significant challenges due to variations in electrode materials, manufacturing
processes, cell formats, and a lack of generally available data. Methods that construct
features solely on voltage-capacity profile data typically fail to generalize across cell
chemistries. This study introduces a methodology that combines traditional voltage-
capacity features with Direct Current Internal Resistance (DCIR) measurements, en-
abling more accurate and generalizable EOL predictions. The use of early-cycle DCIR
data captures critical degradation mechanisms related to internal resistance growth, en-
hancing model robustness. Models are shown to successfully predict the number of cycles
to EOL for unseen manufacturers of varied electrode composition with a mean absolute
error (MAE) of 150 cycles. This cross-manufacturer generalizability reduces the need for
extensive new data collection and retraining, enabling manufacturers to optimize new
battery designs using existing datasets. Additionally, a novel DCIR-compatible dataset
is released as part of ongoing efforts to enrich the growing ecosystem of cycling data and
accelerate battery materials development.

1. Introduction

Lithium-ion batteries are indispensable across a wide range of applications due to
their high energy densities, decreasing costs, and extended lifetimes. However, predicting
the end of life (EOL) of these batteries, which is critical to ensuring their reliability
and safety, remains a significant challenge due to the complex and nonlinear degradation
mechanisms involved. Early and accurate prediction of battery EOL is essential for
several reasons. It enables accelerated testing and validation of new battery formulations,
allowing manufacturers to optimize chemistries and processes more efficiently.

Severson et al. (2019) made significant contributions by utilizing early-cycle features
from standard discharge capacity curves to predict battery life, introducing an approach
that provided high accuracy for end-of-life (EOL) predictions. Since then, a wide array of
studies has focused on improving EOL predictions Elmahallawy et al. (2022); Ling (2022);
Paulson et al. (2022); Saxena et al. (2022); Ma et al. (2020); Fei et al. (2022); Geslin et al.
(2023); Saxena et al. (2021); Chen et al. (2022); Li et al. (2019); Rangel-Martinez et al.
(2021); Saxena et al. (2015); Zhang et al. (2018); Hosen et al. (2021); Attia et al. (2021);
Ng et al. (2020). However, many of these works have relied on capacity-based features and
models that perform well only within the specific datasets on which they were trained.
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When applied to different chemistries or operating conditions, their predictive power di-
minishes significantly Severson et al. (2019); Sulzer et al. (2021); Finegan et al. (2021);
Attia et al. (2020); Paulson et al. (2024); Finegan and Cooper (2019); Walker et al. (2019);
Finegan et al. (2019); Wang et al. (2024). Paulson et al. (2022) created a machine learning
model that generalized across several cathode chemistries, utilizing a dataset drawn from
a substantial internal archive of batteries produced in-house. Recently, Rahmanian et al.
(2024) proposed an attention-based recurrent neural network capable of handling diverse
chemistries and cycling protocols. While their model demonstrates adaptability, it still
requires fine-tuning for new chemistries and is reliant on large proprietary datasets, lim-
iting its practical application in environments with limited data availability. Therefore,
predictive models for battery cycle life that generalize across manufacturers without re-
lying on data-hungry models are still lacking. Battery performance is influenced not only
by electrode chemistry but also by a variety of factors related to cell design and manufac-
turing processes Baumhöfer et al. (2014). Even cells with nominally similar chemistries
can exhibit vastly different behaviors due to differences in manufacturing parameters,
including electrode coating thickness, particle size distribution, slurry preparation, and
precision in assembly. Such variations can affect the electrochemical performance, aging
mechanisms, and overall reliability of a cell, making cross-manufacturer generalization
a significantly more complex challenge than cross-chemistry generalization alone. These
subtle changes profoundly impact degradation pathways, leading to different rates and
patterns of failure. For instance, as the battery cycles, degradation processes such as
the formation and growth of the solid electrolyte interphase (SEI) on the anode surface,
lithium plating, and the accumulation of inactive lithium deposits lead to an increase
in interfacial resistance. Concurrently, mechanical degradation of electrode materials,
loss of active material, and electrolyte decomposition contribute to sluggish ion and elec-
tron mobility, resulting in an overall increase in internal impedance Diao et al. (2022);
Fermı́n-Cueto et al. (2020).

Each manufacturer employs distinct cell designs, electrode materials, and processing
techniques. These differences manifest in a variety of ways, such as the thickness of
the electrodes, the specific anode and cathode formulations, the quality and consistency
of the solid-electrolyte interface (SEI) layer, and thermal management strategies during
operation. Furthermore, slight deviations in particle size distribution or the homogeneity
of active material coatings can lead to differences in impedance growth and capacity fade.
Thus, despite sharing broad similarities in lithium-ion technology, the cells in this study
display unique degradation profiles over time, emphasizing the complexity of generalizing
across manufacturers. Though works in recent years have made notable progress in
cross-chemistry generalization, the challenge of cross-manufacturer generalization remains
underexplored.

To address this challenge, the present work uses Direct Current Internal Resistance
(DCIR) measurements from early cycles as a key feature in predictive modeling, captur-
ing these underlying degradation processes to enable accurate EOL predictions across
chemistries and operating conditions. Using the ensemble of DCIR and traditional
capacity-based features from early cycles, models are developed that maintain high pre-
dictive accuracy even with simple linear regressors, achieving intrinsic generalizability
without the need for complex algorithms or extensive retraining. Incorporating DCIR
into routine cycling protocols offers a straightforward and cost-effective way to enhance
model robustness and generalizability across varying manufacturers.
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2. Cycling Protocol and Dataset Generation

Figure 1: Distinct cycling behavior across battery manufacturers complicates cross-
manufacturer prediction when relying on capacity-based features alone. (a) Discharge ca-
pacity as a function of cycle number for batteries from three manufacturers (LG MH1, Samsung 50E,
and BAK CG). Clear differences in degradation rates and capacity loss profiles can be observed across
manufacturers. (b-d) Differential capacity (dQ/dV) curves at cycle 100 for (b) BAK CG, (c) Samsung
50E, and (d) LG MH1 cells, highlighting the distinct electrochemical signatures for each manufacturer.
(e) t-SNE plot of features derived from cycling data, showing clustering of cells by manufacturer, further
illustrating the challenge of cross-manufacturer generalization in battery life prediction.

To address the scarcity of standardized cross-chemistry datasets for battery end-of-
life (EOL) prediction, a comprehensive benchmark dataset acquired from 57 commercial
lithium-ion cells from 3 different manufacturers with different cathode-anode combina-
tions is introduced (Fig.1). The cells were cycled with a diagnostic protocol that incor-
porated periodic DCIR measurements to track the internal resistance of the battery cells
at incremental states-of-charge (SOC) to provide a detailed view of cell degradation and
performance, a method widely utilized by OEMs and cell makers.

Battery cycling data were recorded at intervals ranging from a few seconds to a few
minutes, depending on the cycling current, generating time-series data for voltage, cur-
rent, and time. From these fundamental quantities, additional metrics such as capacity
and energy were computed. A key metric, the discharge capacity, was tracked across cy-
cles to monitor battery health, with the remaining percentage of initial discharge capacity
serving as the state-of-health (SOH).

The discharge capacity versus cycle number for all cells is illustrated in Fig. 1a, where
cells are colored by manufacturer. While most cells exhibit linear decay in discharge
capacity, some demonstrate non-linear profiles, emphasizing the need for models that
can accurately capture these variations. The focus of this work is on predicting the
cycle number at which a fixed SOH (e.g., 85%) is reached, recognizing that different
applications may require different SOH thresholds for a cell to be considered at its ”end
of life”. With this in mind, it should be noted that while ”EOL” may not be the most
appropriate terminology for this predictive task, it is used throughout the manuscript for
consistency with other works in the field.
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2.1. Battery cell manufacturers and chemistries

The dataset presented in this work is comprised of 57 Li-ion battery cells from 3 dif-
ferent manufacturers, each with a distinct cathode-anode combination. Table 1 describes
the difference between each cell type. The cathode in all cells are considered high-Ni;
the Samsung cells contain a Nickel-Cobalt-Aluminum (NCA) cathode Popp et al. (2020);
Schmitt et al. (2023) while the BAK and LG cells contain a Nickel-Manganese-Cobalt
(NMC) cathode. The anode in all cells is graphite-based; the Samsung and BAK cells con-
tain a Graphite-Silicon (Gr-Si) blend anode, while the LG cells contain a pure Graphite
(Gr) anode.

Cell Cathode Anode Format Nominal capacity

Samsung INR21700-50E NCA Gr-Si 21700 cylinder 5 Ah
BAK N21700CG NMC Gr-Si 21700 cylinder 5 Ah

LG INR18650-MH1 NMC Gr 18650 cylinder 3 Ah

Table 1: Manufacturer differences between the three cell types used in this study.

These cells differ in their electrode compositions and form factors, which directly
influence their degradation behaviors. Fig.1a shows that the discharge capacity versus
cycle number curves have varying characteristics depending on the manufacturer and
cycling conditions; linear, sub-linear, and super-linear decay profiles are observed Attia
et al. (2022). Fig.1b-d demonstrates the differences in electrochemistry between the
three cell types considered through the evolution of the differential capacity profiles over
50 cycles (data collected on a high-resolution NOVONIX UHPC system). To visualize
the differences in aging characteristics between each cell type, the differential capacities
are used in a t-distributed stochastic neighbor embedding, shown in Fig.1e.

By incorporating this diversity, the presented dataset is designed to validate the gen-
eralizability of machine learning models across varying commercial cell chemistries. This
approach ensures that findings presented in this work are not limited to a single cell type
but are applicable across a broad spectrum of commercially relevant lithium-ion cells.

2.2. Operating conditions

Table 2 summarizes the various cycling conditions comprising this dataset. The cells
were tested across three voltage ranges and three temperatures to capture a broad spec-
trum of degradation behaviors. Notably, only the Sam50E and BakCG cells were cycled
within a 3.0 V - 4.2 V range to avoid Li-Si alloying reactions, which are specific to Gr-Si
anodes. Cycling at 60°C was conducted exclusively with the 2.5 V - 4.2 V range be-
cause at high-temperatures degradation is expected to be dominated by time-dependent
reactions rather than cycle-dependant reactions.

Each set of operational parameters (temperature, voltage range, and manufacturer)
included three identical cells to account for cell-to-cell variability and the influence of
different cycling conditions. This comprehensive approach supports the development of
predictive models that are robust across a wide range of real-world scenarios.

All cells were cycled at a constant-current rate of C/3, with a constant-voltage hold at
the top-of-charge. To monitor and assess cell health, a diagnostic sequence was employed
every 100 cycles, starting at the 2nd cycle, that included two low-rate cycles at C/10 fol-
lowed by a 10-step DCIR measurement. The DCIR measurement was performed using 10
current pulses at equally-spaced SOCs, decrementing in 10% intervals from 100% to 10%.
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T
V

2.5 - 4.06 2.5 - 4.2 3.0 - 4.2

25 Sam50E, BakCG, LGMH1 Sam50E, BakCG, LGMH1 Sam50E, BakCG
40 Sam50E, BakCG, LGMH1 Sam50E, BakCG, LGMH1 Sam50E, BakCG
60 - Sam50E, BakCG, LGMH1 -

Table 2: Battery cell cycling conditions matrix, where T refers to the temperature (in Celsius) and
V refers to the volatge range between which the cells were cycled. Three voltage ranges and three
temperatures were employed to cover various degradation modes across three different cell manufacturers.

Each pulse had a 10-second duration at a current equivalent to a 1C full discharge and was
followed by a 15 minute relaxation period, a design that minimizes disruption to the cell’s
normal cycling and ensures accurate resistance measurements without compromising cell
performance.

This protocol efficiently captures dynamic performance, internal resistance, and over-
all battery health under realistic operating conditions, providing a rich dataset for devel-
oping predictive models that can generalize across various chemistries and conditions.

3. Machine Learning Approach

Figure 2: Schematic representation of feature extraction for battery life prediction. Starting
with raw discharge capacity curves, features such as ∆Q(V ), linear capacity fade, and DCIR-based
∆Q(V ) features are extracted for state-of-health prediction.

All features were extracted from time-series data of the first 102 cycles (Fig.2). Em-
phasis was given to features derived from electrochemically meaningful data fields such
as internal resistance, calculated from Direct Current Internal Resistance (DCIR) pulses:

1. ∆Q(V ) Features — Following the work of Severson et al. (2019), univariate time-
series features were extracted from the difference between discharge capacity vs.
potential curves, Q(V ), for two specific cycles (in this case, cycles 102 and 2). The
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extracted features include skewness (γ1), kurtosis (γ2), variance (σ2), mean (µ),
minimum (min), and maximum (max) of the function:

∆Q102−2(V ) = Q102(V )−Q2(V )

where Qn(V ) represents the Q(V ) curve at cycle n. These statistical features cap-
ture the distributional and shape changes in Q(V ) curves, which provide insights
into the battery’s state of health over time. Fig. 2 depicts sample Q2(V ) and
Q102(V ) curves, with the inset showing the corresponding ∆Q102−2(V ).

2. RDCIR Features — Each DCIR measurement involves applying a current pulse
at a specific state of charge (SOC) during a discharge step. The response to a
current pulse is a voltage drop that allows for the calculation of an effective internal
resistance: R = V/I. To build features for machine learning models, resistance
values were extracted for each of the 10 current pulses during cycles 2 and 102 (Fig.
2).

3. ∆QDCIR(V ) Features — Recognizing that each current pulse and its associated
voltage drop response from DCIR measurements can be viewed as forming a partial
Q(V ) curve, the methodology from Severson et al. (2019) is extended to calculate
the same set of univariate time-series statistical transformations (mean, minimum,
maximum, variance, skewness, and kurtosis) on these partial curves across the
10 SOC levels, between cycles 2 and 102. This process generated 60 additional
features, which is referred to as ∆Q

(k)
DCIR(V ) features, where k represents the pulse

number. This approach enables us to capture the nuances in the capacity changes
at various SOC levels, providing a more detailed understanding of the degradation
process. For instance, the kurtosis of the changes in these partial capacity curves
(γ2(∆Q

(k)
DCIR,102−2(V ))) can reveal sharpness or outlier behavior in capacity changes,

which might correlate with specific degradation mechanisms.

4. Linear Fit Features — To capture the overall trend in discharge capacity over
time, a linear fit is applied to the discharge capacity vs. cycle number curve be-
tween two early cycles (e.g., cycles 30 and 99). The slope (p1) and intercept (p2) of
this linear fit were used as features. These features provide insights into the rate of
capacity fade and the initial state of the battery, which are crucial for predicting
future performance. Although more complex fits were explored, they did not sig-
nificantly improve model performance and were therefore not included in the final
feature set.

These features were then combined and used to train various machine learning mod-
els. For regression-based modeling, the best performance was achieved using a simple
linear elastic net model. While more complex models such as Random Forest and Multi-
layer Perceptron were tested (as detailed in the Supplementary Information), Elastic Net
was ultimately selected due to its regularization properties, which help mitigate overfit-
ting—especially when using a relatively small dataset or when the features exhibit mul-
ticollinearity. This is particularly important given the nature of our feature sets, which
include correlated variables from both traditional capacity-based features and those de-
rived from DCIR measurements. Additionally, as a preprocessing step, Sequential Feature
Selection (SFS) was applied for high dimensional feature sets (e.g., the DCIR features) to
refine the input feature space for subsequent Principal Component Analysis (PCA). This
method demonstrates the robustness of the selected features which achieve high predic-
tion accuracy without the need for complex or resource-intensive models. Although the
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models trained in this work show strong predictive accuracy, it is noted that a larger and
more diverse dataset is essential to further validate these findings and ensure broader ap-
plicability. While cross-validation provides a robust estimate of model performance, the
addition of an independent holdout dataset would offer a more definitive evaluation of the
model’s capacity to generalize across different chemistries, manufacturers, and operating
conditions.

Nevertheless, to evaluate the generalization performance of the trained models, two
distinct cross-validation strategies were employed, each focusing on different aspects of
the dataset variability. A leave one triplicate out cross-validation strategy was adopted
to assess the model’s ability to generalize across different operating conditions. The
dataset is composed of cells grouped into triplicates, where each triplicate is a set of
three cells cycled under identical conditions (i.e., a specific combination of manufacturer,
temperature, and voltage range). In this approach, the model was trained on all but one
triplicate, and the remaining triplicate was used for testing. This process was repeated
until all triplicates were used as test sets, thus evaluating the model across a diverse range
of operating conditions. By excluding entire triplicates during each fold, this method
tests the model’s ability to predict cell behavior under previously unseen conditions,
effectively simulating the real-world scenario where a battery management system must
generalize to new operational environments. This strategy maximizes the utility of the
dataset and provides a robust assessment of the model’s generalization capabilities across
temperature, voltage, and manufacturer combinations.

In addition to operating conditions, cross-manufacturer validation was performed to
assess the model’s ability to generalize across different cell manufacturers. This was
achieved by training the model on cells from two manufacturers and testing it on cells
from the third. This approach evaluates how well the model, trained on cells from specific
manufacturers, can predict the performance of cells from a different manufacturer. Since
manufacturing processes introduce variability in electrode design, assembly, and material
quality, this validation is critical for ensuring the model’s robustness across different
production sources.

For completeness, a standard randomized 5-fold cross-validation was also performed,
and the results are presented in the Supplementary Information (SI). However, the results
presented in this manuscript focus on the validation strategies discussed above which
are tailored to the specific challenges of generalization across operating conditions and
manufacturers.

4. Results and Discussion

4.1. Cross voltage and temperature performance

To establish a performance baseline for the model across different operational con-
ditions, an established and widely applied feature set is first examined: the original
six-feature ∆Q(V) set from Severson et al. (2019). This feature set has been extensively
used in prior work for cycle life prediction and serves as a benchmark for comparison with
other feature sets. Fig. 3a shows the parity plot comparing predicted and actual EOL85

values using the leave one triplicate out cross-validation strategy, which was discussed in
the previous section. In all regression tasks, error is evaluated using the mean MAE of
all cross-validation (CV) validation set predictions.
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Figure 3: Predicted vs. actual cycles to EOL for different feature sets from an elastic net
regressor across varying conditions. Panels (a) and (e) depict predictions using the feature set
from Severson et al. (2019), while panels (b) and (f) show predictions using a downselected set of 20
features derived from novel DCIR-based ∆Q(V ) data, comparing cycles 102 and 2. Panels (c) and (g)
demonstrate results from step-wise backward sequential feature selection, reducing all features to 20 for
validation across different testing conditions (top row) and to 10 features for validation across different
manufacturers (bottom row), respectively. (d) R2 scores for different feature sets, corresponding to the
predicted number of cycles to reach EOL80, EOL85, and EOL90.

This baseline model is directly compared with an equivalent model trained on an aug-
mented feature set, which includes univariate time-series features computed from DCIR
pulses. The expanded feature set consists of 60 attributes, significantly increasing the
dimensionality and predictive power of the model. The inclusion of augmented DCIR
∆Q(V) features captures intricate degradation patterns that are not discernible using
the standard feature set alone. As demonstrated in Fig.3b this approach results in more
accurate predictions, with a notable improvement in MAE of 161 cycles. Further, using
an amalgamation of the downselected features from the entire feature set, including re-
sistance values from the 10 DCIR pulses, conventional ∆Q(V) univariate features, and
linear fit parameters (p1, p2) further enhances the EOL prediction (Fig.3c). Predictably,
models exhibit lower errors at higher SOH thresholds, reflecting the reduced complexity
of predicting less degraded states, as presented in Table 3.

The errors and scores reported in Table 3 and Fig. 3a-d are based on the custom CV
strategy outlined in the previous section. For reference, using a more conventional 5-fold
CV strategy, as detailed in the SI, results in even better performance. However, given
the uniqueness of the dataset, which includes cell triplicates, the custom CV strategy is
argued to better showcase the model’s generalizability across testing conditions.

4.2. Cross manufacturer performance

Traditional cycle life prediction using ∆Q(V )101−1 features, though simple and widely
used, fail to generalize across manufacturers, as shown in Fig. 3e with an MAE of 416
cycles. These features capture broad degradation trends but overlook critical indicators
like internal resistance growth, which results from processes such as SEI formation and
active mass loss due to electrode cracking and structural transformations. Additionally,
variations in electrode design and manufacturing processes further limit the predictive
power of ∆Q(V ) alone.
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SOH (%) ∆Q(V ) non-DCIR ∆QDCIR(V ) All features

80 424.8 425.9 294.3 179.6
85 390.6 319.8 160.6 113.4
90 197.1 142.1 107.4 72.6

Table 3: MAE for different feature combinations for EOL defined at different SOH thresholds. Features
based on DCIR measurements provide significant improvements in prediction accuracy compared to non-
DCIR features.

The incorporation of early-cycle DCIR-based features, as illustrated in Fig. 3f with an
MAE 265 cycles, substantially improves the model’s generalization across manufacturers.
DCIR tracks the evolution of internal resistance across various states of charge. This
provides a more comprehensive assessment of the cell’s internal electrochemical processes,
which enables the model to capture nuanced changes in degradation behavior.

Furthermore, the combination of both DCIR and traditional ∆Q(V ) features, as
shown in Fig. 3g with an MAE of 141 cycles, results in a marked improvement in pre-
diction accuracy. By leveraging both the broad degradation trends captured by ∆Q(V )
and the detailed internal resistance information provided by DCIR, the model can more
accurately predict state-of-health across a wide range of cell designs and manufacturing
processes. This hybrid feature set is particularly effective for bridging the gap between
cells with different electrode materials, as evidenced by the model’s ability to predict
the EOL of LG graphite-only cells based solely on training data from silicon-graphite
cells produced by Samsung and BAK, as well as the accurate prediction of Samsung’s
NCA-based cells based the NMC cells by LG and BAK.

5. Electrochemical Indicators and Their Role in Generalization

Variations in manufacturing practices, such as electrode composition, coating unifor-
mity, and assembly precision, introduce significant complexity into cycle life prediction.
These subtle differences manifest as changes in internal resistance, capacity fade, and
overall cell degradation. Internal resistance, in particular, serves as a critical indica-
tor of underlying degradation mechanisms, including solid electrolyte interphase (SEI)
growth, particle fracture, and lithium plating. These degradation processes influence the
electrochemical behavior of the cell, which in turn impacts its performance and lifetime.

As shown in Fig. 4, resistance-based features (R102, R2) and other impedance-related
indicators play a critical role in predicting cycle life, contributing substantially to model
performance under various operating conditions (Fig. 4a) and across different manu-
facturers (Fig. 4b). These features, which track resistance behavior at different states
of charge, likely capture degradation mechanisms, such as solid electrolyte interphase
(SEI) growth and lithium plating, that can manifest across different chemistries and
manufacturing processes, though the specific behavior of these mechanisms may still be
influenced by these factors. As illustrated in Fig. 4c, cells with greater number of cycles
at EOL85, as indicated by the darker colors, exhibit smaller ∆Q

(0)
DCIR,102−2. This suggests

that impedance-based features can effectively differentiate degradation behaviors even
when the underlying cell chemistries and manufacturing processes vary significantly.

In contrast, capacity-based features primarily track shifts in capacity fade but may
fail to capture early-stage degradation mechanisms such as internal resistance growth,
which can occur well before significant capacity loss is observed. This limitation becomes
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Figure 4: Feature-based drivers of model performance. SHAP values (in cycles) demonstrating
the contribution of various features to the prediction of EOL85 across (a) operating conditions and
(b) manufacturers. Positive SHAP values indicate a positive contribution to longer cycle life, while
negative values imply a reduction in predicted cycle life. The color gradient corresponds to the magnitude
of feature values, where darker colors indicate higher values. (c) Voltage difference plotted against

∆Q
(0)
DCIR,102−2 (Ah) for cells from three different manufacturers (LG - red, Samsung - blue, BAK -

green). Darker colors correspond to a greater number of cycles to EOL.

particularly evident when attempting to generalize models across different manufacturers,
as subtle variations in manufacturing processes (e.g., electrode coating uniformity or
electrolyte formulation) can result in different onset points and rates of degradation. The
ability of impedance-based features to generalize across these variations highlights their
importance in achieving reliable lifetime predictions.

Overall, the ability of DCIR-based features to reflect internal resistance growth, ir-
respective of specific manufacturing differences, contributes significantly to the model’s
robustness in generalizing across a wide range of cell designs. These features effectively
capture the microscopic and macroscopic degradation processes, ensuring a more reliable
prediction of battery life despite variations in cell chemistry or manufacturing techniques.

6. Conclusion

This work demonstrates the efficacy of incorporating internal-impedance-based fea-
tures from pulse measurements into data-driven models for the prediction of Li-ion battery
state-of-health, addressing limitations associated with traditional capacity-based features.
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While these conventional features capture broad degradation trends, they fail to gener-
alize effectively across different manufacturers due to variations in cell design, electrode
composition, and manufacturing processes. The inclusion of DCIR data, particularly in
early cycles, allows for the detection of internal resistance growth, which is closely tied
to key degradation mechanisms. Results presented in this work show that this integrated
approach significantly improves prediction accuracy and generalizes well across different
manufacturers and chemistries. Moreover, this methodology has the potential to allow
manufacturers to adapt their battery compositions and leverage pre-existing data for
predictive modeling without the need to build entirely new datasets, facilitating rapid
innovation and optimization of new cell designs. Incorporating DCIR-based features into
predictive models could thus provide a more robust and efficient framework for EOL
estimation, advancing battery management systems and their performance in diverse
real-world applications.

7. Data Availability and Future Revisions

The data supporting the findings of this study will be made publicly available in the
coming weeks. Additionally, minor edits and further content updates are expected as the
manuscript undergoes refinement based on ongoing review and feedback.
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Appendix A. Model Architecture Summary

While we only present results from a simple elastic net model in the manuscript, it is 
worth exploring the performance of other models — both simple and complex — for the 
data introduced in this study. Here, we perform the same analysis as in Section 3.1 in the 
manuscript using the cross-validation strategy detailed in the same section. Fig. A.1 shows 
parity plots for different architectures using (i) ∆Q(V) features, (ii) DCIR-based features, 
and (iii) all features. The same cycle pairing as in the manuscript has been used.

(a) Random forest model using
∆Q(V)101−1 features

(b) Random forest model using DCIR
features from cycles 2, 102

(c) Random forest model using all fea-
tures

(d) Ridge regression model using
∆Q(V)101−1 features

(e) Ridge regression model using
DCIR features from cycles 2, 102

(f) Ridge regression model using all
features

(g) Lasso regression model using
∆Q(V)101−1 features

(h) Lasso regression model using
DCIR features from cycles 2, 102

(i) Lasso regression model using all
features

(j) NuSVR model using ∆Q(V)101−1

features
(k) NuSVR model using DCIR fea-
tures from cycles 2, 102

(l) NuSVR model using all features in
the study

Figure A.1: A parity plot comparison for multiple architectures. The first column of figures uses the 
original six feature ∆Q(V) set from Severson et al., the second column of figures uses the novel augmented 
DCIR ∆Q(V) features developed in this study, and the third column of figures uses all features. Each row 
represents a new architecture.
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Appendix B. Model Validation

In addition to the ”Leave One Triplicate Out” cross validation strategy employed in 
the manuscript, we perform traditional 5 fold cross-validation for direct comparison. The 
following parity plots and table are equivalent analyses to that presented in the main text, 
but with sklearn’s standard KFold cross validator with 5 splits (80/20 training/testing 
split). Shown in the parity plots of Fig. B.1 are the compiled test set predictions of all 
5 test folds, and the reported MAE and R2 are the averaged values of all test folds.
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(a) Model performance using ∆Q(V)101−1 fea-
tures with 5fold cross-validation.
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(b) Model performance using DCIR ∆Q(V)102−2

features with 5fold cross-validation.
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(c) Model performance using full feature set with
5fold cross-validation.

Figure B.1: A parity plot comparison for elastic net model performance using (a) the original six feature 
∆Q(V) set from Severson et al, (b) the novel augmented DCIR ∆Q(V) feature set, and (c) the full 
feature set described in the manuscript to predict EOL85.

Features EOL80 EOL85 EOL90

∆Q(V)101−1 359± 433 (0.06) 259± 333 (-0.01) 134± 136 (0.26)
Non-DCIR features 366± 438 (0.03) 256± 331 (0.01) 122± 113 (0.44)
DCIR-based features 202± 168 (0.80) 109± 119 (0.85) 40± 38 (0.94)

All features 163± 127 (0.87) 145± 165 (0.73) 46± 63 (0.88)

Table B.1: Model performance for Elastic Net architecture using a standard 5-fold cross validation 
technique

Appendix C. Feature correlation

Feature correlation (on a log scale) for DCIR-based univariate features is shown in Fig 
C.1. For simplicity, only data for one pulse has been shown. The Pearson correlation
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coefficient for each has been provided as well. Generally speaking, we do not observe high
feature correlation with the end of life of a battery, suggesting that principal component
analysis to reduce the feature space is a key component of the machine learning workflow.

(a) (b)

(c) (d)

(e) (f)

Figure C.1: Feature correlation (log scale) of univariate DCIR-based features used in the study. For 
simplicity, only features from the first DCIR pulse have b een s hown, c omputed f rom cycles 2  and 102. 
The six univaraite features are (a) minimum, (b) maximum, (c) mean, (d) variance, (e) skew, and (f) 
kurtosis of the mini ∆Q(V ) curve curved obtained from the first DCIR pulse, as explained in the main 
manuscript. The Pearson’s correlation coefficient has been displayed on  each plot as  well.
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