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Large-scale datasets have enabled highly accurate machine learning interatomic potentials
(MLIPs) for general-purpose heterogeneous catalysis modeling. There are, however, some
limitations in what can be treated with these potentials because of gaps in the underlying
training data. To extend these capabilities, we introduce AQCat25, a complementary dataset
of 13.5 million density functional theory (DFT) single point calculations designed to improve
the treatment of systems where spin polarization and/or higher fidelity are critical. We also
investigate methodologies for integrating new datasets, such as AQCat25, with the broader
Open Catalyst 2020 (OC20) dataset to create spin-aware models without sacrificing gen-
eralizability. We find that directly tuning a general model on AQCat25 leads to catastrophic
forgetting of the original dataset’s knowledge. Conversely, joint training strategies prove
effective for improving accuracy on the new data without sacrificing general performance.
This joint approach intfroduces a challenge, as the model must learn from a dataset contain-
ing both mixed-fidelity calculations and mixed-physics (spin-polarized vs. unpolarized). We
show that explicitly conditioning the model on this system-specific metadata, for example
by using Feature-wise Linear Modulation (FiLM), successfully addresses this challenge and
further enhances model accuracy. Ultimately, our work establishes an effective protocol for
bridging DFT fidelity domains to advance the predictive power of foundational models in
catalysis.
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Introduction

Over the past three decades, computational approaches that couple first-principles density functional
theory (DFT) with microkinetic modeling have become a cornerstone of modern heterogeneous catalysis
research by providing a framework for rational catalyst design'=. Numerous studies have linked atomic-
scale surface chemistry to macroscopic kinetic observables, enabling the elucidation of complex reaction
mechanisms for a variety of critical industrial heterogeneous catalytic processes including, but not lim-
ited to, ammonia synthesis®’, methanol synthesis®?, Fischer-Tropsch synthesis'®", selective hydrogena-
tion'?13, steam reforming of methane ', the water-gas shift reaction'®!”, and ethylene epoxidation'®1%.
Many of these studies have leveraged unifying concepts such as d-band theory and the Brgnsted-Evans-
Polanyi relations2°—23, which correlate the binding and transition-state energies of elementary reactions,
facilitating the construction of volcano plots that predict optimal catalyst performance, in some cases
even leading to experimentally validated discovery of new catalysts?4?%. Despite these successes, the
prohibitive cost of DFT largely limits its application to relatively simple networks of reactions taking place
over idealized low-index facets of unary and binary catalyst materials>23.

Machine learning interatomic potentials (MLIPs) have emerged as an attractive alternative o esti-
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Figure 1: A summary of the AQCat25 dataset and models. Spin polarization has been included for 12
important elements. A plane wave cutoff of 500 eV is used. Six new elements are added, when compared
to the Open Catalyst 2020 dataset (OC20 dataset)?® as well as 20 transition state adsorbates. Models
were jointly tuned/trained from scratch on OC20 and AQCat25 to achieve good performance on their
validation and test splits, respectively.

mate electronic structure properties at near-quantum accuracy for a small fraction of the computational
cost?’=32 These models learn the interactions required to predict the potential energy landscape of
atomistic systems from large-scale public databases of DFT calculations33—3¢. State-of-the-art models for
heterogeneous catalysis are made possible by Meta FAIR’s Open Catalyst 20, 22, and 25 datasets 263738,
which collectively consist of nearly 300 million single-point DFT calculations of adsorbate-surface inter-
actions relevant for reactions of carbon, hydrogen, oxygen, and nitrogen over a diverse catalyst space
spanning most of the periodic table. The infroduction of machine learning methods into computational
catalysis workflows has begun to enable studies of reaction network complexity 3?42 and catalyst struc-
tural dynamics #>~4% that were completely inaccessible just 10 years ago.

Although the sheer scale of these datasets has necessitated some compromises in the fidelity of the
underlying fraining data, convergence of the resulting adsorption energies benefits from error cancel-
lation and has been validated with respect to most DFT settings, with plane-wave cutoff and smearing
width requiring some improvements to accurately capture total energies of non-metals#®. One of the
most significant gaps in existing large-scale heterogeneous catalysis datasets is the treatment of mag-
netism. Since spin-polarized DFT calculations are considerably more expensive than spin-unpolarized
calculations, spin is often omitted in the interest of scale and throughput#’. The consequence of this
choice is that the resulting models are not suitable for many industrially relevant catalytic processes such
as ammonia synthesis® and Fischer-Tropsch synthesis ', which rely on on earth-abundant first-row transi-
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tion metals (e.g., iron, cobalt, and nickel) that exhibit especially strong spin polarization effects on binding
energies and activation barriers*®=5. As the field moves towards discovering new, low-cost, and sus-
tainable catalytic materials to replace precious metals, the importance of treating magnetic effects when
training foundational MLIPs becomes increasingly paramount.

Alongside progress in data generation, developments in machine learning architectures, often based
on equivariant graph neural networks, have improved performance on atomistic tasks. For heterogeneous
catalysis, models like eSEN®2, EquiformerV25% and EScAIP®* have achieved state-of-the-art results. A
significant leap towards broader universality is the Universal Model for Atoms (UMA)®5, trained on ~500
million structures across diverse chemical domains (molecules, materials, catalysts). UMA modifies the
eSEN architecture with additive embeddings for global context (charge, spin, DFT task) and a Mixture
of Linear Experts (MoLE) routed by this context plus element composition. UMA’s core design goal is to
accurately reproduce the original physics of each training task (e.g., spin-unpolarized OC20), operating
as a multi-task surrogate rather than a model explicitly designed to perform cross-fidelity corrections
between different levels of theory. A distinct advantage of total energy models like UMA is their ability to
better capture, among other effects, restructuring of bare catalyst slabs 4.

Other approaches have focused on integrating low- and high-fidelity data for related tasks, such as
by augmenting node features with a fidelity one-hot encoding and applying both common and fidelity-
specific weights in modified linear layers®® or utilizing a model’s intrinsic global state feature to embed
fidelity context during message passing°. For example, Ko and Ong demonstrated that a single multi-
fidelity model trained with a small fraction of high-fidelity data could achieve similar accuracy to a single-
fidelity model requiring eight times the amount of costly high-fidelity training data®®. Alternatively, other
methods utilize architectural separation, such as dynamically using separate prediction heads branching
from a shared backbone for each fidelity level7-%8,

While recent work has produced model architectures that can incorporate spin®”-%9=%4, their pre-
dictive power is limited by the absence of high-quality, spin-polarized training data for heterogeneous
catalysis. Given the success of methods for adapting models to new data3/%°—%?, alongside advance-
ments in fraining universal models from diverse datasets, we see a clear opportunity o develop improved
foundational models specifically for spin-polarized, high-fidelity catalytic systems.

Here, we present the AQCat25 dataset and baseline AQCat25-EV2 models (Figure 1), which improve
upon the performance of EquiformerV2-31M and EquiformerV2-153M adsorption energy MLIPs for het-
erogeneous catalysis in three key ways: increasing the fidelity of the reference DFT calculations, explicitly
incorporating spin polarization for magnetic elements, and introducing new elements to the model do-
main that are underrepresented in existing datasets. Through this work, we demonstrate data-efficient
methodologies for building multi-fidelity MLIPs that span distinct physical regimes (such as spin polariza-
tion) to new domains of chemistry while ensuring that the models maintain accuracy and generalizability
across a wide range of catalysts and reactions. The dataset, models, and code are available publicly to
support further developments by the academic community.

Methods

Density functional theory

DFT calculations were performed using the Vienna Ab Initio Simulation Package (VASP)7°—73. A plane-
wave cutoff energy of 500 eV was applied, and Gaussian smearing with a width of O.1 eV was used. The
revised Perdew-Burke-Ernzerhof (RPBE) ”47® functional was chosen for its performance on heterogeneous
catalyst systems, and the system’s geometry was optimized using the conjugate gradient algorithm. For
systems containing Ce, Co, Cr, Cu, Fe, Mn, Mo, Ni, Os, Ru, V, or W, spin polarization was enabled to
account for magnetic effects. For a full list of VASP parameters, please see the Supplementary Information.

Although these settings represent a significant increase in fidelity over previous large-scale datasets
and are considered nominal for catalysis research, we acknowledge that even higher-fidelity calculations
are possible. However, any increase in per-calculation fidelity must be weighed against the loss of dataset
diversity for a fixed computational budget. For foundational MLIPs that must generalize across a vast
chemical space, this trade-off is critical.

Bulk selection

The AQCat25 bulk materials database was constructed by first updating and then expanding the OC20
dataset. Initially, the Materials Project (MP)’®”/ database was queried for all structures containing only
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elements present in the OC20 dataset, subject to the constraints of a maximum of three unique elements
per material and an energy above the convex hull (Ey) of 0.1 eV/atom or less. Structures from the
original OC20 dataset not found in this query were retained only if they were structurally unique. To
expand the chemical space, a second query was performed using the same stability and size constraints
but including six additional elements: Li, Ba, La, Ce, Mg, and F. The resulting set of new materials was then
subsampled to ensure balanced representation. Up to 500 structures were randomly selected for each
group containing a single new element, and up to 20 structures for each group containing a combination
of new elements. The dataset was assembled by combining the updated OC20 dataset materials, the
preserved unique structures, and the sampled new materials. Finally, the dataset was filtered to only
contain bulks with up to 30 atoms per unit cell. Data splits were then assigned by attempting o preserve
the original designations for all OC20 dataset materials and distributing new materials based on chemical
composition to maintain consistency with the established OC20 dataset splitting methodology.

Adsorbate-slab selection

The number of single points and systems that make up the splits and data types included in the AQCat25
dataset is shown in Table 1. Here, a system is defined as a unique adsorbate-slab pair for that subsplit.

Dataset splits

Primary split | Secondary Split N systems | N single points

Relaxations 24,624 6,959 k

In Domain Rattled 8,189 947 k
Transition states 2,854 676 k

Molecular Dynamics 2,098 249 k

OC20 fidelity, spin on relaxations 4,831 863 k

OOD adsorbate relaxations 1,913 577 k
Validation OOD material relaxations 991 318 k
OOD both relaxations 994 295 k

OOD adsorbate relaxations 992 347 k
Test OOD material relaxations 994 316 k
OOD both relaxations 988 356 k

ID 19,273 1,282 k

ID OC20 fidelity, spin on 4,868 273 k
Slabs OOD validation 497 29 k
OOD test 498 36 k

Totals 47 k 13.5 M

Table T: The number of systems and single points across data splits. The total system count reflects the
number of unique adsorbate-slab combinations.

The dataset is structured into three primary splits: in-domain (ID), out-of-domain (OOD) validation, and
OOD test. Each OOD split is further categorized by the type of novelty introduced, either in the adsorbate
or in the material slab. This strategy is designed to evaluate the model’s ability to generalize to novel
systems it has not seen during training, in the same manner as the OC20 dataset?®. The ID split contains
configurations where both the adsorbate and the material slab are present in the training set. The test
and validation ID splits serve as a baseline for the model’s performance on familiar data and are sampled
from the same distribution of the training set. Both OOD splits are designed to test the ability of machine
learning models to generalize. The OOD validation set is used for hyperparameter tuning, while the OOD
test set provides a final, unbiased evaluation of the model’s performance on unseen data.

The following categories are included in both OOD splits: (1) OOD adsorbate, (2) OOD material, (3)
OOD both. For OOD adsorbate, the material slab is ID, but the adsorbate is new and does not appear in
the training data. The test OOD adsorbates also do not appear in the validation split and the validation
OOD adsorbates also do not appear in the test split. For OOD material, the adsorbate is ID, but the bulk
lattice structure (not necessarily its composition) used to construct the slab is new and does not appear
in the training set. For OOD both, the adsorbate and the material slab are new and do not appear in the
training set. The same segregation for validation and test also applies.
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Sampling diverse states

To ensure models frained with this dataset have a robust understanding of different structural and en-
ergetic states, we employed several calculation types for data generation. The dataset samples both
high-energy, off-equilibrium states and low-energy, near-equilibrium states. To sample low-energy states
we performed adsorbate-slab structure relaxations. Relaxation calculations involve iteratively optimizing
atomic positions to find a local energy minimum. A DFT call is made to determine forces, and atoms
are moved along these force vectors. This process is repeated until the maximum force on any atom
is less than 0.03 eV/A or a maximum of 800 steps are reached. These trajectories sample a range of
configurations from high to low forces. All OOD validation and test set calculations are relaxations.

To sample high-energy states we took three approaches: (1) running molecular dynamics (MD) cal-
culations, (2) placing transition state (TS) systems, and (3) rattling atoms. To sample high-energy states
accessible at elevated temperatures, we performed MD calculations. Starting from a relaxed structure,
we ran 80 steps of MD at 900 K. To provide the model with examples of highly distorted configurations
relevant to chemical reactions, we extracted transition state structures from the OC20NEB dataset’®.
These adsorbates were placed on new surfaces, followed by a short 5-step relaxation. This process gen-
erates data with high forces and energies, supporting the training of models that can handle reactive
states. To further augment high-force data, we generated rattled configurations by randomly perturbing
atomic positions. Two methods were used: (1) rattling all atoms and (2) rattling only adsorbate atoms, with
displacements sampled from a normal distribution (o = 0.05, 0.1, 0.15, or 0.2 A). Some rattled systems
underwent a single DFT calculation, while others had a short 5-step relaxation. Systems whose max ab-
solute force or absolute adsorption energy exceeds 50 eV/A and 10 eV were excluded from training and
evaluation.

Additional data

To explore the opportunity to train models with less costly DFT data, we considered data that include spin
polarization but with settings that otherwise match the OC20 dataset?®. Notable differences between this
data and the rest of the AQCat25 dataset are that we used a plane wave cutoff of 350 eV and Methfessel-
Paxton smearing with a width of 0.2 eV. This data aids in understanding how the model handles the
distinct physical regimes defined by fidelity and spin polarization. This dataset complements the existing
high-fidelity spin-on/off (AQCat25) and spin-off OC20 data by filling a missing quadrant. Adsorption
energies were computed using high-fidelity adsorbate references for all spin on systems. We found this
to have little impact on the final target energies from preliminary tests.

We also wanted to form an understanding of model performance on the task of finding the minimum
adsorption energy for an adsorbate-slab combination. To do this we constructed a small dense dataset,
similar to the OC20dense dataset presented by Lan et al.”?. For this dataset we selected 109 adsorbate-
slab pairs. Adsorbates were selected to be disassociation reactants from the OC20NEB dataset’®. Slabs
were selected randomly, but we selected the materials they were cut from more strategically. We included
five unary materials, five binary non-metal materials, 46 binary intermetallics, 30 ternary intermetallics,
and 23 ternary non-metals. Within these categories, the bulks were also randomly selected from the
bulk database. For each adsorbate-slab pair, we performed 50 placements using the random site with
heuristic placement mode in fairchem®. These placements were relaxed with the same DFT settings as
the broader AQCat25 dataset. The relaxed states were filtered using the same algorithms presented by
Lan et al.”? to find desorption, dissociation, intercalation, and significant surface change.

System enumeration

All systems were prepared using the publicly available fairchem package®°. Slab enumeration was per-
formed using the underlying pymatgen®82 algorithm. Adsorbate placement was performed heuristically
at random sites. Rattled systems were perturbed after adsorbate placement using the rattle functionality
in ASE®384_ For TS systems, they were placed as normal adsorbed intermediates would be by preparing
a new adsorbate database with TS entries.

Machine Learning Experiments

A challenge in this work is fraining a single MLIP that can accurately predict energies and forces across a
dataset containing multiple DFT settings. The combined training data spans four distinct physical regimes:
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high-fidelity spin-on, high-fidelity spin-off, low-fidelity spin-on, and the original low-fidelity spin-off. We
therefore explored methods to introduce this DFT context, namely spin treatment and calculation fidelity,
directly to the model. Inspired by the effectiveness of Feature-wise Linear Modulation (FiLM)8® and simi-
lar successful techniques®® for multi-task learning, the baseline models presented in this paper focus on
adapting the EquiformerV2 (EV2) architecture®3 using this approach. We did not focus on fine-tuning
UMAS5 models because of licensing issues, but we expect those to have even better performance than the
models presented here. The Feature-wise Linear Modulation (FiLM) technique®® provides an expressive
conditioning mechanism. Rather than adding context via feature concatenation, FiLM applies a learned,
feature-wise affine transformation (yF + 3) that can scale, shift, or suppress activations. This strategy of
deep, additive modulation is similar in principle to the additive embedding mechanism successfully em-
ployed by the UMA family of models®°. To evaluate performance on AQCat25 while retaining knowledge
from OC20, we used the EV2°3 model architecture with three variants and three training protocols. The
variants were: (i) EV2 (unmodified), (i) EV2-inFiLM, which applies additive FiLM®&® shifts to the scalar ((=0)
channels at the input, and (i) EV2-in+midFiLM, which applies the same modulation at the input and after
each equivariant block. The protocols were: direct fine-tuning of OC20-pretrained checkpoints, cotun-
ing those checkpoints with OC20 replay, and cotraining from scratch on mixed data from both AQCat25
and OC20.

It is important to note how baseline performance was assessed in this context: evaluations of pretrained
models on AQCat25 used the provided structures directly, without re-optimizing lattice constants using
OC20 DFT settings. These metrics represent the performance inherited for subsequent tuning rather
than the inherent capability of the OC20 model on these specific materials had geometries been fully
relaxed with consistent settings. Similarly, all evaluations performed on the OC20 validation subset utilized
structures with OC20-optimized lattice constants.

Architecture

EV2 is an E(3)-equivariant transformer over atomic
graphs: atoms form nodes, edges use pairwise dis- -
tances and spherical harmonics, attention layers are
equivariant, and feed-forward layers use S? activa-
tions®386—88  Energies are predicted by a scalar
head, and forces are predicted directly via a vector
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small AQCat25 low-fidelity spin-on stream, mixed with OC20 spin-off data at OM/2M/20M scales.

Cotraining from scratch We trained EV2, EV2-inFiLM, and EV2-in+midFiLM from random initialization
on the same composite streams used for cotuning.

Hyperparameters, controls, and compute

Optimization and architectural settings are summarized in Tables 7 and 8. For each training run, 8 xH100
NVIDIA GPUs were used. Unless noted, the force term dominated the objective; the default loss ratio was
Ag:Ap = 4:100. To reduce the computational cost for the extensive model adaptation experiments, the
AQCat25 dataset component was subsampled. Models were trained in single precision for a consistent
comparison across the numerous experimental conditions and ablations. For tuning experiments, we
tested stronger regularization by increasing weight decay and by lowering the learning rate; both choices
produced early plateaus and higher validation errors on AQCat25 relative to fully thawed baselines. Except
for models trained from scratch solely on AQCat25, energy and force targets were normalized using
mean/standard deviation values from the OC20 distribution, as this yielded slightly improved performance
in preliminary tests. We also tried incremental thawing schedules that kept the backbone frozen while
adapting only input embeddings (to accommodate new elements), followed by gradual unfreezing. These
schedules underperformed fully thawed tuning on AQCat25.

Additionally, we explored alternative conditioning mechanisms and found that a simpler baseline in-
volving direct concatenation of context embeddings performed competitively with FiLM when cotuning
with limited (2M) OC20 data replay. We further experimented with more complex architectural modi-
fications aimed at adapting the pretrained weights, including adding separate prediction heads routed
by the conditioning flags and incorporating lightweight adapter modules within the transformer blocks.
However, these approaches did not yield significant performance enhancements over the FiLM-based
conditioning and fully thawed training strategies presented here. Finally, we do not claim hyperparame-
ter or schedule optimality. Alternative warmup/decay, replay curricula, batch-composition policies, weight
decay, EMA, or gradient clipping may yield further gains. Our goal here is a consistent and reproducible
setup that enables clear comparison across regimes and architectures for the baseline models being
presented.

Results and Discussion

Dataset composition

Some summary statistics about the AQCat25 dataset and how it compares to the OC20 dataset are shown
in Figure 3. As can be seen in Figure 3b, there is a significantly higher proportion of non-metal systems and
lower proportion of metal systems in the AQCat25 dataset compared to the OC20 dataset. The proportion
of the other two categories, however, (non-metal & metalloid and metalloid) are roughly equal. Because
non-metal systems typically have poorer performance compared to intermetallics8%, we will look at key
model performance metrics split over these material categories. The adsorption energy and maximum
force distributions (Figure 3c-d) reveal that the AQCat25 dataset is biased towards higher force, higher
energy systems when compared to OC20. This can be explained by the more aggressive approach
taken when sampling high-force systems. Here, we used larger standard deviations to sample rattled
configurations and also included the high energy fransition state like systems.

Optimizing Data Generation Strategies for Fine-tuning

We wanted to explore opportunities to improve our data generation strategy to maximize model perfor-
mance while minimizing the cost associated with dataset generation and model fine-tuning. To do this,
we looked at the change in model performance as a function of two variables: number of DFT single
points seen per system and number of slabs. For heterogeneous catalyst systems, there are two types of
diversity the models must generalize across: (1) the adsorbates and (2) the material surfaces the adsor-
bates are adsorbed fo. The latter is much more complex. We initially adopted a scheme of performing
four adsorbate-slab relaxations per slab to reduce the number of slab relaxations that needed to be per-
formed as this data is not directly used in model training for referenced energy models. This turned out
to be a suboptimal choice, however, because material diversity is important to tackle. For the future, we
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Figure 3: Summary statistics on the AQCat25 dataset and some comparisons to the OC20 dataset?®.
(a) Element counts showing the frequency with which each element appears in the dataset. (b) The
proportion of systems that fit into four material-type categories for the entire training splits OC20 dataset
and AQCat25. (c & d) The distribution of adsorption energies and maximum forces across the training
split of AQCat25 and the 2M training subsplit of OC20.

would choose to perform one adsorbate-slab calculation per slab. In Figure 4, we show the relationship
between model force performance, number of slabs seen, and number of DFT single points seen per
system. Models were directly tuned starting from the publicly available 3IM parameter EV2 model (All +
MD)®3,

The amount of data used to frain the models directly impacts the cost to train and to iterate be-
tween architectures and ablations. Gasteiger and colleagues have shown the OC20-2M subset to be
representative of the full OC20 dataset, primarily because it preserved the underlying chemical diver-
sity?0. Other approaches use more complex stratified sampling (based on feature-space clustering) to
ensure that diverse, high-energy, and uncommon configurations are explicitly captured to improve model
robustness?'. Given the precalculated training data, we explored the opportunity to reduce model train-
ing costs by sampling the frames along adsorbate-slab relaxation trajectories. Sampling was performed
using force-stratified selections of the trajectory to obtain a representative distribution of systems. For
consistency, models were trained for a nearly constant number of total gradient updates, approximately
equivalent to the number of steps in one epoch of the largest split. Further, the data ablation for sampling
frames from trajectories (Figure 4a) was designed to probe redundancy in highly autocorrelated data and
thus only applied to the relaxations and MD data; the rattled and transition state data were included en-
tirely for each model. To enable a cleaner evaluation of the data cost-benefit trade-off for tuning, without
confounding the results with the model’s ability to learn new, unseen elements, we restricted the subsam-
pling experiments to AQCat25 systems with elements already seen by the 3IM pretrained model. Figure
4a reports the validation MAE from the final training checkpoint, which highlights the risk of overfitting.
Conversely, Figure 4b plots the MAE from the best-performing model during training for each slab count
(averaged over all k values) against the data generation cost. As can be seen in Figure 4a, for small
numbers of slabs, sampling a subset of frames rather than using the full trajectory actually leads to better
force MAE values. This is likely due to a high propensity for overfitting, which is shown in Figure 10 and
remedied by sampling. At larger slab numbers, the differences are minor but the cost to train will be
lower if sampling is performed. For energy MAE there is not a substantial trend with changing sample size
(see Figure 11). Therefore, sampling frames is a useful cost-saving strategy. We adopted a subsampling
approach for the model adaptation experiments presented in subsequent sections. However, for those
experiments, we employed random sampling per trajectory rather than the force-stratified approach. We
found this yielded slightly improved performance, likely due to increasing the representation of low-force,
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Figure 4: An exploration of opportunity for cost reduction in model fraining (a) and data generation (b-
e) by directly fine-tuning 3IM parameter Equiformer v2 models. (a) The validation force mean absolute
error (MAE) obtained when training models on random subsamples of the data for four dataset sizes. (b)
The incremental compute cost for increasing dataset size. (c) The pretrained 31M parameter Equiformer v2
model energy MAE on force percentile segregated data from the AQCat25 validation dataset. (d) Evolution
in force percentile segregated energy MAE for fine-tuned models trained on variable first k frames from
the dataset. (e) The trade-off between cost to generate training data and model performance when
considering terminating relaxations after first k steps.

near-equilibrium frames that are critical for downstream adsorption energy tasks.

Unsurprisingly, having more unique slabs in the dataset improves performance. However, there is a
cost trade-off o be made, which is explored in Figure 4b. Comparing 250 to 1,000 and 1,000 to 4,000
there is a large improvement in the metrics. Going from 4,000 to 10,000 slabs, however, we are beginning
to enter the domain of having diminishing returns on our computational investment, indicating that the
number of slabs we calculated in this daftaset was a reasonable choice. Nonetheless, this experiment
primarily assessed convergence with respect to the number of unique slabs, not the total number of unique
adsorbate-catalyst combinations, which warrants further investigation. Here, the additional compute cost
is referenced to the 250-slab dataset. This value serves as a proxy for the total computational investment,
which is expected to correlate with the true data generation cost and illustrates the trend of diminishing
returns.

The apparent redundancy revealed by randomly sampling offers a potential opportunity: what if in-
stead of optimizing full relaxation trajectories we instead only calculate the first k points? This could greatly
reduce the compute cost to generate the data, but it infroduces a potential new problem. It biases the
relaxation data towards higher force states which could cause models trained on the data to have poor
performance on low force systems. To investigate this, we divided the validation set info force percentiles
and examined changes in performance on the different percentiles. As a baseline, we first assessed the
pretrained model performance in Figure 4c. Performance decreases with increasing force percentile with
the exception of the highest force percentile considered, which has better performance than even the
lowest force percentile. This is likely a reflection of the underlying OC20 dataset that contains, MD, rattled
systems, and relaxations. MD and rattled data have high forces, while relaxations contain many frames
in the low force regime. Figure 4d shows the evolution of model performance on the force percentile
segmented validation split with an increasing number of frames sampled. Please note that here the data
ablation also only applied to relaxations; all models were trained on the TS-like and rattled data, but none
included the MD data. Performance overall improves with the number of frames sampled but it does not
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occur in a way that disproportionally affects specific force segments from 0-99%. The one exception to
this is the highest force percentile which modestly improves with increasing k. This is because all models
used were trained using the very high force data (rattled and TS). Performance in this percentile is most
influenced by high force data.

Using the first k relaxation frames presents an interesting trade-off between compute cost and model
performance which is captured in Figure 4e. By only calculating between 40 and 80 frames instead
of up to 800, we can achieve a Pareto optimum in model performance and compute cost for dataset
generation. This would be our recommendation for future data generation campaigns. This exploration
also revealed the advantage of training total energy models when designing a dataset to fine-tune models
with cost in mind. If just 41 adsorbate-slab frames are computed, on average 75% of the compute would
be spent relaxing the slab completely. At 81 frames, this cost decreases to 63%, but it is still substantial.
For total energy models, this cost is not necessary because relaxed slab energies are not needed fo train.
We also recommend designing datasets to train total energy models for future campaigns.

Model Adaptation Strategies
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Figure 5: Test force and energy MAE on AQCat25 test and a system-stratified subsample of the OC20
validation OOD both split for three different models: a pretrained (on OC20 only) 3IM parameter EV2
model, a 3IM parameter EV2 directly fine-tuned (FT) on AQCat25, and a 153M parameter EV2 directly
fine-tuned on AQCat25

Although fotal energy models offer a clear path forward for more efficient data generation, this study
focused on the adsorption energy target. Though arguably a more challenging learning task, as the model
must implicitly account for the bare slab reference energy and any restructuring, adsorption energy may
offer a significant convenience in established catalysis workflows. It also provides a well-defined target
that isolates the adsorbate-surface interaction, which is ideal for developing a mixed fidelity/mixed physics
adaptation protocol. Moreover, our overall objective is to create an MLIP that is broadly applicable, so we
also wanted to understand model performance on the OC20 validation set. To assess the performance
drift on the original OC20 task during these and subsequent experiments, we utilized a system-stratified
subsample of the OC20 Val OOD Both split. This subset, which was sized to be comparable fo individual
AQCat25 validation splits (~300k frames), is a computationally efficient metric for relative comparisons
between models. The resulting MAE values, however, may not reflect absolute performance on the full
OC20 distributions. An evaluation of performance for a pretrained 3IM parameter EV2 model and two
directly fine-tuned (FT) EV2 models with 31IM and 153M parameters on AQCat25 test and the subsampled
OC20 validation split are shown in Figure 5. We find that direct fine-tuning delivers reasonable AQCat25
errors, but deviation from the OC20 baseline on its validation split is significant. As anticipated, increasing
model capacity from 3IM to 153M parameters generally improves energy metrics on the AQCat25 test
set. This is also true for increasing the energy loss weight (Ag) (see Table 6). The 153M model with
Ag = 100 yields the best energy MAE meftrics in these direct fine-tuning experiments (Table 6). However,
the gains achieved by the larger 153M model may not justify its increased computational cost for practical
applications, and this larger model still suffers from a significant performance drift for the original OC20
task.

To mitigate this drift, we explored opportunities to cotune and cotrain models using both subsamples
of the AQCat25 dataset and the OC20 dataset. The models evaluated in this context, including those
jointly trained with no additional OC20 data, incorporate the low-fidelity, spin-on data alongside the
high-fidelity AQCat25 data. As seen in Figure 6b and d, we observe that OM models (models trained
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Figure 6: Model performance under cotuning and cotraining on AQCat25 and OC20. Part (a) shows the
percentage of AQCat25 test set energies within 0.2 eV of the DFT value, while part (c) shows the force
MAE on the AQCat25 test set, both as a function of the amount of OC20 data seen during training. Parts
(b) and (d) explore the energy and force MAE trends on the OC20 validation set.

without OC20 data) exhibit a substantial deviation from the baseline OC20 performance (dashed black
line). Unsurprisingly, the exclusion of the spin-off OC20 dataset leads to poor performance on OC20
validation relative to baseline metrics, even with the inclusion of the small lowfi spin-on set. Therefore, to
produce a model that performs well across all domains (high/low fidelity, spin on/off) within a practical
model size, we investigate cotuning and cofraining (from scratch) strategies that incorporate two amounts
of the original OC20 data. Figure 6 summarizes the effect of including this OC20 data under two training
regimes and three architecture variants.

Adding OC20 data consistently reduced deviation from the OC20 baseline on the examined validation
split. For both cotuning and cotraining from scratch, the energy and force MAE trend toward the baseline
as the amount of OC20 data increases for both energies and forces (Fig. 6b and d). We do not see
this exact trend on the AQCat25 test split (Figure 6a and c). In this case for energies we are showing
the percent of frames that have an absolute energy error less than or equal to 0.2 eV. For this metric, a
perfect model would have 100%. This was done because we observed that the energy values had strong
outliers. One group of systems contributing to this phenomenon are those where the slab is organic
(entirely composed of non-metals). This approach as an alternative to MAE, is an unbiased way fo ensure
strong outliers do not skew the results. We have included some additional Figures in the Supplementary
Information to explore this metric further with different cutoffs (0.1, 0.3, 0.4, 0.6, and 0.8 eV instead
of 0.2 eV) and using the MAE for the energies instead on the test and validation splits. It seems as
though the results are sensitive o this metric, so we will only make broad conclusions. The percentages
of errors within the threshold for AQCat25 energies are largely unchanged when increasing data for
cotfuning, whereas with cotraining they increase (performance improves). For forces, there is a drastic
increase in performance with more OC20 data for cotraining. For cotuning with FiLM there is a modest
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improvement in forces when including OC20 data, but a substantial degradation when cotuning without
FiLM. An economic approach when considering cost to train and performance on both AQCat25 test and
OC20 validation is achieved when cotuning with 2M OC20 examples. Cotraining from scratch with FiLM
improves performance for systems that have higher errors though, so a tradeoff exists.

These patterns follow from standard behavior under distribution shift and multi-domain supervision.
OC20 is broader and uses different DFT settings than AQCat25. Fine-tuning only on AQCat25 moves the
parameters toward that narrower distribution and forgets OC20-specific features. Adding replay during
cotuning without FiLM counteracts forgetting but also pulls the solution toward OC20 conventions, which
explains the performance degradation on AQCat25 forces in Figure 6c. Introducing FiLM provides a
framework to distinguish these distributions, which rectifies the decrease in the force metric. Starting from
scratch changes the optimization path. The performance trends are strongly dependent on the OC20
data size used. Unsuprisingly, at OM, jointly tuning clearly outperforms jointly training from scratch, but
as OC20 data is added, their performance becomes sensitive to the metric. While tuning holds a slight
advantage at a very strict O.1eV low-error threshold, the models cotrained from scratch show an advantage
at higher cutoffs (e.g., 0.6-0.8 eV), indicating they are more effective at capturing outliers (see Figures 16a-
f. FiILM makes the domain information explicit. Conditioning on spin and fidelity yields feature rescaling
that reduces gradient interference between magnetic vs. non-magnetic and high- vs. low-fidelity cases.

Exploring robustness and generalization

We also explored the robustness and generalizability of models to form a more complete assessment of
model usability. To do this, we constructed an additional validation set aimed at assessing the ability of
the models to identify the global minimum energy for a given adsorbate-slab combination in line with
the approach presented by Lan et al’?. We further explored differences in model performance when
segmenting the data by interesting splits, namely the material type (metal-only, non-metal, metalloid,
and metalloid+non-metal), whether spin was on or off, and whether the elements in a material were all
included in OC20 or not.

Global minimum adsorption energy
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Figure 7: Parity plots between the DFT minimum adsorption energy and ML adsorption energy for a base-
line pretrained 31M parameter EV2 model (left), the result of directly tuning that model on the AQCat25
dataset (center), and cofraining a 3IM parameter EV2-in+midFilm model from scratch on both 20M ex-
amples from OC20 and the AQCat25 dataset (right).

The ultimate use of the MLIPs trained here will be for practical catalyst discovery where an important
figure of merit is the global minimum adsorption energy. We explored this using the dense DFT validation
set with 50 relaxations each for 109 adsorbate-slab combinations. We performed ML relaxation infer-
ence starting from the same initial configurations as DFT. The relaxed states were filtered using the same
algorithms presented by Lan et al.”” to find desorption, dissociation, intercalation, and significant surface
change. Figure 7 compares the performance of three 3IM parameter models on this task, using only the
ML-predicted energies without DFT single-points on the ML-relaxed structures. On the left is the pre-
trained 31M EV2 model (trained on OC20 All+MD), taken from the publicly available fairchem checkpoint.
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For this model, inference on systems containing new elements were omitted since performance would be
poor. In the center is a directly fine-tuned EV2 model. On the right is the EV2-in+midFilM model, which
was cotrained using 20M OC20 examples and the AQCat25 dataset. As a point of comparison, when the
OC20dense’” dataset was released, the EV2 model was not available. The best performing model was
eSCN-MD-Large and on this task it had a 56.5% success rate with an energy MAE of 0.17 eV7?. Here,
success rate is defined as the percent of systems where the minimum adsorption energy found by ML is
within 0.1 eV of the DFT value. ML success metrics alone were included in a later release as 60.8% for
an EV2 model of unspecified size, 68.4% for the UMA-S model, 71.1% for the UMA-M model, and 74.4%
for the UMA-L%5. The success metric and MAEs have been annotated on the plots. We see the trend we
would expect to see between models, with increasing performance from left to right. This further validates
the usefulness of the models, and also supports the fact that the loss function and training metrics are
well designed and correlate with our downstream use case.

Evaluating material and magnetic subsplits
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Figure 8: Comparison of Energy MAE (meV, left) and Force MAE (meV/,&, right) across different model
training strategies and data subsets. Performance is evaluated for cotuning vs. cotraining, varying in-
cluded OC20 data amounts (OM, 2M, 20M), and different architectures (vanilla EV2, EV2-inFiLM, EV2-
in+midFiLM). Subsets include spin treatment, element novelty relative to OC20, and material type.

To further probe the robustness of the models presented and identify potential systematic biases re-
lated to specific chemical or physical properties, we next evaluate performance across distinct subsets
of the test data. Specifically, we analyze error trends based on the material type, whether the elements
contained were all included in OC20, and whether spin polarization was treated during the calculation.
The results of this are shown in Figure 8 with model energy MAE on the left and force MAE on the right.
The data presented here are evaluated on the AQCat25 test split for all rows except the OC20 validation
split, which is the same subsample of the OC20 OOD both split discussed above.

This analysis exposed a segment of the dataset that has very poor performance for energies: organic
materials. Materials that only contain H, O, N, C, S, P, F, Cl, Br, I, and/or Se have very poor metrics as
seen in the "Organics” row of Figure 8. This poor performance, however, does not extend to forces. This
is likely because of the referencing scheme used. These materials are more able fo restructure and it
is therefore far more likely that the relaxed slab state is very different than the adsorbate-slab along the
relaxation trajectory. These materials are not necessarily of catalytic interest, so it could be beneficial to
be more selective when including them in the dataset. Certainly total energy models would be better
suited to handle these systems because they remove dependence on the referenced state. Because of
the significance of the errors on these systems, we removed them from all other splits presented in the
figure. An alternative version of this figure has been included in the Supplementary Information where
the organics are not segmented out. Without removing organics, we observe trends that are opposite to
those expected and presented here.

Here, we see that across the board model metrics for forces and energies are better for spin off than
spin on. For most cases, when we compare the EV2 model to its corresponding EV2 + FiLM model, there
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is an improvement in spin on. Performance on systems where all elements appear in OC20 is better
than systems that contain at least one new element. Aligned with existing precedent, the models more
accurately predict energies and forces on metals when compared to other material types. Metalloids are
slightly better treated than non-metals. Interestingly, energies for non-metals + metalloids are worse than
non-metals, but the forces are not.

The models jointly trained from scratch outperform corresponding jointly tuned models by ~1 eV on
the challenging organic material split, but achieve slightly worse performance on the other material splits
excluding this category. The difference in optimization path and data exposure leads to these models
marginally sacrificing performance on the broader set of materials to recover performance on this difficult
class. Notably, as seen previously, the jointly trained from scratch model with 20M additional OC20
samples achieves the highest performance on the practical catalysis tasks described in Figures 6a and 7.

A summary of model performance for the models discussed here and some others is shown in Table
2. Model names denote the architecture (EV2 31M default, inFiLM, or in+midFiLM) and training protocol,
where 'ft’ signifies fine-tuning an OC20-pretrained model and its absence means cotraining from scratch.
Dataset identifiers specify OC20 data added (+OC20-2M/20M). Direct tuning experiments excluded the
low-fidelity spin-on subset.

Table 2: Model Performance Metrics (Energy in meV, Forces in meV/A)

Category Model All All SpinOn  Spin On  Spin Off  Spin Off OC20 Val OC20 Val
E-MAE F-MAE E-MAE F-MAE E-MAE F-MAE E-MAE F-MAE
Pretrained EV2-0OC20 1268 98.63 1205 131.40 1378 37.06 301 19.32
Direct Tuning  EV2-OC20-ft-AQCat25-highfi only 376 18.46 337 21.63 419 14.80 440 59.13
EV2-OC20-ft-AQCat25-highfi only (153M) 350 17.59 339 20.41 362 14.34 433 52.84
Cotuning EV2-OC20-ft-AQCat25 383 18.65 342 21.81 428 15.00 415 53.73
EV2-inFiLM-OC20-ft-AQCat25 379 18.30 346 21.23 415 14.91 396 41.34
EV2-OC20-ft-AQCat25+0C20-2M 411 20.36 335 23.71 495 16.48 304 21.23
EV2-inFiLM-OC20-ft-AQCat25+0C20-2M 430 16.93 335 19.90 536 13.49 300 19.90
EV2-OC20-ft-AQCat25+0C20-20M 444 22.14 340 26.30 559 17.34 300 20.12
EV2-inFiLM-OC20-ft-AQCat25+0C20-20M 414 17.21 328 20.28 510 13.66 301 19.62
EV2-inFiLM-OC20-ft-AQCat25+0C20-20M (A g = 100) 412 21.03 325 24.32 508 17.22 289 21.79
Cotraining EV2-AQCat25 425 27.38 396 29.86 457 24.53 558 68.06
EV2-AQCat25+0C20-2M 376 24.60 360 28.01 394 20.68 330 27.69
EV2-inFiLM-AQCat25+0C20-2M 392 20.57 345 23.79 442 16.86 321 24.86
EV2-in+midFiLM-AQCat25+0C20-2M 395 20.53 348 23.75 447 16.80 322 24.83
EV2-AQCat25+0C20-20M 380 22.65 361 26.85 402 17.81 297 21.51
EV2-inFiLM-AQCat25+0C20-20M 367 16.83 334 19.90 403 13.28 290 20.35
EV2-in+midFiLM-AQCat25+0C20-20M 349 16.98 337 20.05 363 13.44 290 20.46

Conclusion

This work tackled a significant gap limiting the application of large-scale MLIPs in heterogeneous cataly-
sis: the proper treatment of magnetism and enhanced electronic fidelity to accurately model and discover
novel catalysts containing earth-abundant, spin-polarized elements such as Fe, Co, and Ni. We demon-
strated that while direct fine-tuning of a pretrained OC20 model on AQCat25 provides performance on
the new data it leads to a significant degradation of performance on the original OC20 domain. We found
that by combining the targeted high-fidelity physics captured in AQCat25 with the extensive chemical and
structural diversity present in a large portion of the OC20 data, jointly training successfully enhances ac-
curacy on the AQCat25 test set while mitigating degradation on the evaluated OC20 validation metrics.
We further confirmed the applicability of our models for the practical catalysis task of identifying the global
minimum adsorption energy on a diverse set of surfaces. This training methodology, utilizing multi-fidelity
data and explicit conditioning, offers a promising path toward practical and broadly applicable MLIPs for
heterogeneous catalysis.
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Supplementary Information

VASP parameters

The VASP parameters are summarized in Tables 3 and 4. The Bloch vectors (kpoints) were set using the
lattice vectors using the same technique implemented in the fairchem repository for slabs and adsorbate-
slab systems. The z-direction is set to 1, while x and y are set using Equation 1. For bulks, this calculation
was also applied to the z-direction. For systems containing Ce, Co, Cr, Cu, Fe, Mn, Mo, Ni, Os, Ru, V, or
W, spin polarization was enabled to account for magnetic effects.

k = maz [L‘lcom}

Variable | Sefting Slabs Systems | Setting Bulks
IBRION 2 1
NSW 800 250
ISIF 0] 7
ISPIN lor2 lor2
ISYM 0] 0
ALGO Normal Normal
ISMEAR 0 0
SIGMA 0.1 0.1
EDIFFG -0.03 1E-5
ENCUT 500 500
PREC Accurate Accurate
POTIM 0.5 0.5
NELM 250 250
EDIFF 1E-4 1E-4
SYMPREC 1E-10 1E-5
LREAL Auto False

Table 3: VASP parameters.

Variable Setting
TEBEG 900
TEEND 900
MDALGO 1
ANDERSEN PROB 0.0
NSW 80
POTIM 2
IBRION 0
NELMIN 4

Table 4: MD specific VASP parameters.
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Adsorbate referencing

The adsorbate gas phase references were constructed using the energies of CO, Hs, H2O, and Ns. Cal-
culations were performed with the molecules separately in vacuum cubes of 10, 20, and 30 A. There
was noft a significant energy difference between 20 and 30A. so 30A was taken to be converged. The
resulting per atom/element energies are summarized in Table 5.

Atom | Energy [eV]

H -3.4944
O -71590
C -1.2654
N -8.1351

Table 5: Adsorbate per atom energy corrections.
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Element counts OC20 versus AQCat25

Figure 9 shows a comparison between the frequency with which elements occur in the AQCat25 and
OC20 datasets. There are some notable differences like the presence of the six additional elements in
AQCat25, the higher relative presense of boron in AQCat25, and the lower presense of Tc in AQCat25.
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Figure 9: Element counts for all of the train splits of OC20 and AQCat25.
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Sampling
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Figure 10: Model overfitting for direct tuning using the 3IM parameter (left) and 153M parameter
Equiformer v2 model. Sampling frames (as indicated by the k-values) reduces overfitting.
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Figure 11: Complementary parts to the figure describing subsampling in the main text.

Figure 11 shows: (a) Energy MAE which does not show a substantial trend with changing k for random
subsampling, but is improved by increasing the number of slabs. (b) The AQCat25 validation force MAE
for the pretrained 31M parameter Equiformer v2 model across stratified force bins, which shows roughly
the same trend as energy: performance decreases on higher force systems with the exception of very high
force frames which have better performance. (c) The AQCat25 validation force MAE for naively fintuned
models using different values of first k samples of the AQCat25 dataset to fine-tune.
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Additional direct tuning metrics

Table 6: Model performance metrics for direct tuning (energy in meV, forces in meV/A)

AllE-MAE  All F-MAE  Spin On E-MAE  Spin On F-MAE  Spin Off E-MAE  Spin Off F-MAE  OC20 Val E-MAE  OC20 Val F-MAE

CategoryModel

3M Ap =4 376 18.46 337 21.63 419 14.80 440 59.13
Ap =100 372 20.48 349 23.90 398 16.52 458 57.67
Ag = 100, with lowfi spin-on 383 18.65 342 21.81 428 15.00 415 53.73

153M Ap =4 350 17.59 339 20.41 362 14.34 433 52.84

Ag =100 343 19.71 335 22.77 352 16.16 420 47.07
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Effect of toggling fidelity and spin flags
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Figure 12: Effect of toggling conditioning flags during inference on predicted energy delta (AE). The left
panel shows the impact of switching between spin_on and spin_off flags, while the right panel shows
switching between high and low fidelity flags. Colors distinguish between ferromagnetic (FM, grey) and
nonmagnetic (NM, yellow) systems based on their ground truth magnetic state (from the MP) and spin
treatment in the dataset. Toggling the spin flag has a much larger effect on FM systems, including FM
systems labeled as spin-off in the fraining data.

We also wanted to ablate the impact of the spin and fidelity flags on the resultant energies. Toggling
the spin flag induces large energy shifts in opposite directions for systems categorized as ferromagnetic
by the MP, depending on their original spin treatment: destabilizing correctly labeled spin-on systems
(energy increases) and stabilizing incorrectly labeled spin-off systems (energy decreases). In contrast,
NM systems show minimal energy changes when the spin flag is toggled, indicating the model correctly
associates strong spin effects primarily with the FM materials (even those that excluded the elements that
we categorized as necessitating spin treatment). Further analysis is needed to fully validate that the model
has learned the correct underlying physics across domains. For instance, the observed asymmetry could
simply reflect that evaluating FM systems with spin turned off represents a significant deviation from the
training data distribution. The model may underperform in this regime because it has primarily learned
patterns associated with spin-polarized FM states and lacks sufficient training examples or capacity to
accurately model the less common or physically distinct spin-unpolarized state for these materials.
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Model Training Parameters

Table 7: Architectural hyperparameters for the EquiformerV2 models, including FiLM specifics. We refer
to the EquiformerV2 paper®? for a complete description of all architectural components, including nor-
malization and activation functions.

Hyperparameter Value

Core EquiformerV2 Architecture

Number of Transformer blocks 8 (31M), 20 (153M)

Embedding dimension d¢npeq 128
fi(jL) dimension dg¢in_hidden 64
Hidden dimension in feed forward networks d¢¢, 128

Number of attention heads 8

Maximum spherical harmonic degree (L,qz) 4 (31M), 6 (153M)
Maximum spherical harmonic order (M,,4.) 2 (31M), 3 (153M)
Dropout rate 0.1

Stochastic depth 0.1

Cutoff radius (A) 12.0

Maximum number of neighbors 20
FiLM Architecture Addendum (EV2-FiLM)

Auxiliary feature embedding dimension 16

MLP hidden dimension for modulation 128

MLP dropout 0.1

FiLM modulation strategy Cotuning: Input layer only
Training from Scratch:
- Input layer only

- Input layer & all Transformer blocks

Table 8: Training and optimization hyperparameters for each experimental strategy.

Parameter Direct Finetuning Cotuning Training from Scratch
Pre-trained Checkpoint OC20 All+MD OC20 All+MD  None
Optimizer
Optimizer AdamW AdamW AdamW
Weight decay 1x1073 1x1073 1x1073
Learning rate (31M) 7x107° 7x107° 4x10~4
Learning rate (153M) 8 x 107° 8 x 107° 4 %1074
LR scheduling Cosine annealing with linear warmup
Warmup epochs 0.01 0.01 0.1
Model EMA decay 0.999 0.999 0.999
Batch Size & Epochs
Batch size per GPU (31M) 20 20 20
Batch size per GPU (153M) 6 6 6
Gradient accumulation (153M) 3 steps 3 steps 3 steps
Effective batch size (31M) 160 160 160
Effective batch size (153M) 144 144 144
Max epochs 30 30 30
Loss & Regularization
Energy coefficient (Ag) 4,100 4 4
Force coefficient (A\r) 100 100 100
Gradient clipping norm threshold 5 5 100




SANDBOX

Probing the impact of spin and fidelity
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Figure 13: An investigation of the impact of fidelity being the same as OC20 (left), spin being off, rather
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than on (center), and both spin and fidelity being ablated simultaneously.

We also wanted to investigate the impact of spin and fidelity on the resultant energies. It is difficult to
do this in a well posed way because the underlying bulk structure can be impacted by these DFT settings,
so making a direct comparison is difficult. To attempt to do so, here we performed DFT single points on
the DFT relaxed (with AQCat25 settings elections) adsorbate-slab configuration and the DFT relaxed slab
(again with AQCat25 settings elections). The energies presented here are the difference between these
two energies to exploit a cancellation of error from any differences in the true lattice constant. The single
points were performed specifically ablating the settings highlighted. For fidelity (Fig. 13 - leff), 500 spin-
on systems and 500 spin-off systems were selected and single points were performed with ENCUT =
350 eV, and Methfessel-Paxton smearing with a width of 0.2 eV. For spin (Fig. 13 - center) 1000 systems
with spin on were selected and single points were performed with spin off. For both spin and fidelity,
1000 systems with spin on were selected and single points were performed with the alternative fidelity
and spin off. This can give some idea of the independent and combinatorial impact of these two factors

on the DFT result.
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SANDBOX

Minimum adsorption energy task segmented by element category and spin cate-
gory
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Figure 14: Model performance for finding the global minimum adsorption energy segmented by whether
elements appear in OC20 (old elements) or not (new elements) - top and by whether the system was run

with spin on or spin off - bottom.

The results looking at the dense dataset but split over whether the system was spin off (Figure 14 or
on and whether the system contains new elements reveals that there are not any strong discrepancies
between these groups. This is in alignment with Figure 8.
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Material and spin splits when including organics
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Figure 15: The same results presented in Figure 8, but without segregating the organic (fully non-metal)
materials.

When looking at the results including the organic materials, we see that the trends we would expect
to see disappear. We would expect that performance on spin off systems should be better in most cases
since that is the majority of data seen by the model, but because organic materials were all treated as
spin off, the performance on spin off is dragged down. Metrics on non-metals are also pulled down. The
same opposing trend is observed for new and in-OC20 elements. These organic materials will always be
classed as in-OC20 element materials, and we see that performance is actually better on new elements
because they drag down results for in-OC20 elements.




SANDBOX

Additional looks at cotuning and cotraining energy metrics

Figure 16 shows the evolution of performance with changing energy cutoff. The cutoff is used to determine
the proportion of systems with absolute energies errors less than the value. For the most strict cutoff,
cotuning with FiLM has an advantage. For looser thresholds, cotraining has an advantage. Figure 17
shows the energy and force MAE metrics on val and test for the cotuned and cotrained models. For
forces, the trends are the same between the two. This is not true, however, for energies. This inspired
us to investigate the cause which is that some very high energy errors are skewing the result. This is
captured in Figure 8, which shows that performance is poor for organic materials. Cotraining models
perform better on these materials at the expense of a slight reduction for other material classes. This
shows that the trends for energy performance are sensitive to the metric selected.
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Figure 16: The evolution of trends with changing energy cutoff thresholds.
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Test Validation
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Figure 17: Performance of contuned and cotrained models on test and val for energies (top) and forces
(bottom).




