
Best Practices for 
Prompt Engineering
September 2024 |



Index

Claude: Best Practices for Prompt Engineering


�� Use XML Tags


�� Be Direct, Concise, Specific, and Allow Claude to Say "I Don't Know”


�� Specify the Output Format


�� Assign Claude a Role (System Prompts)


�� Use Examples or Few-Shot Learning


�� Allow Claude to Think (Chain of Thought)


�� Chain Complex Prompts


�� Tips for Handling Long Contexts


Mistral: Best Practices for Prompt Engineering


�� Understand Mixtral’s Capabilities


�� Use Clear and Specific Instructions

�� Experiment with Iterative Refinement


�� Leverage Mixtral’s Advanced Features


�� Provide Facts, Examples, and Formats

Llama: Best Practices for Prompt Engineering


�� Explicit Instructions

�� Zero-Shot Prompting

�� Few-Shot Prompting


�� Role Based Prompts


�� Chain of Thought Technique


�� Self-Consistency


�� Retrieval-Augmented Generation


�� Program-Aided Language Models

�� Limiting Extraneous Tokens


References



Claude: Best Practices for Prompt
Engineering

Claude is a family of large language models developed by Anthropic. Claude
models 
have three key capabilities:�

� Advanced reasoning�
� Claude can perform complex cognitive tasks that go beyond simple pattern


recognition or text generation�
� Code generation�
� Start creating websites in HTML and CSS, or debugging complex code bases�
� Multilingual processing�
� Translate between various languages in real-time, practice grammar, or create


multi-lingual content




We are often familiar with creating prompts for the GPT series and tend to use the

same style when working with other models. However, when using Claude, we
need 
to make some adjustments because Claude's models are trained using
different 
methods or techniques.




It's important to understand that prompts that work well with GPT may not be as

effective with Claude. According to Anthropic's documentation, Claude performs
best 
with prompts that are clear, direct, and detailed. To achieve better results
with Claude, 
it's essential to tailor your prompts accordingly. The complexity of
your prompts 
should match the complexity of your task—the more complex the
task, the more 
detailed your instructions should be. Here are some prompt
engineering techniques 
for Claude AI:

1. Use XML Tags

We are used to creating prompts in various formats for GPT. However, Claude
models 
are more familiar with XML tags because these models have been finetuned
with 
XML tags. Therefore, it's important to include tags like < > and </> to
9. Limiting 
Extraneous Tokens
References
Best Practices for Prompt Engineering 3
differentiate 
between instructions, examples, questions, context, output format,
and input data.



2. Be Direct, Concise, Specific, and Allow Claude to Say "I Don't
Know”

Instead of telling the models what to avoid, it's better to use affirmative
instructions to 
specify what the model should do rather than saying what it
shouldn't do.

We should also allow Claude to say "I don't know" to prevent hallucination and

avoid generating inaccurate or misleading information.

3. Specify the Output Format

Claude's models generally tend to be chatty. This can be a problem if we need the

model to follow a specific output format. To address this, we can use an assistant

message to ensure that Claude models start their responses consistently.



4. Assign Claude a Role (System Prompts)

We can assign Claude a role to mimic the style or character of an expert, such as
an 
elementary teacher, content writer, or any other relevant persona. This defined
role 
can also help improve the model's performance.

5. Use Examples or Few-Shot Learning

Some articles suggest that providing Claude with examples is a powerful way to

guide it in generating the best response. We should identify a general example

relevant to our use case and observe how this leads to more accurate and
consistent 
results. While using more examples can improve outcomes, it may also
increase cost 
and latency.



6. Allow Claude to Think (Chain of Thought)

We can instruct the Claude model to think before answering a question. By adding

a new output format, we can allow Claude to share its thought process or provide

reasoning before giving a conclusion or final answer. This technique can reduce

errors, especially in math, logic, analysis, or other complex tasks.



7. Chain Complex Prompts

We can break down complex tasks into steps to help Claude perform better on
such 
tasks, as shown here:



8. Tips for Handling Long Contexts

If we're dealing with longer documents, we should place our key question or

instruction at the end of the prompt.

Mistral: Best Practices for Prompt Engineering

In general, there are two versions of the Mistral model, each available in various

parameter sizes:

�� Mistral


Mistral offers different model variations in various sizes:


� Mistral 7B: Ideal for tasks such as answering questions, generating
outlines, or 
interpreting text. It is a strong performer in multilingual
capabilities, reasoning, 
math, and code generation.�

� Mistral Large: It reaches top-tier reasoning capabilities. It can be used for

complex multilingual reasoning tasks, including text understanding,
Best 
Practices for Prompt Engineering 8
transformation, and code generation.



�� Mixtral


Mixtral is an upgraded and larger model compared to Mistral:

� Mixtral 8x7B: Suitable for real-time applications, demonstrating strong

capabilities in mathematical reasoning, code generation, and multilingual
tasks. 
It supports languages such as English, French, Italian, German, and
Spanish.�

� Mixtral 8x22B: With its massive parameter size, this model excels in

understanding subtle nuances in natural language. It provides more
intelligible 
and logically relevant responses, making it ideal for tasks like
experimental 
writing, complex question answering, and writing synopses.

1. Understand Mixtral’s Capabilities

� Review Model Strengths: Mixtral is particularly strong in generating creative
text, 
understanding complex instructions, and maintaining conversational
context over 
longer interactions. Familiarize yourself with these strengths to
leverage them 
effectively.�

� Task Specialization: Mixtral models excel in tasks such as summarization,

translation, and content creation. Tailor prompts to these specific tasks for
better 
results.
However Mixtral models can be used to do classification tasks with step-
bystep
instructions and few-shot examples.

2. Use Clear and Specific Instructions

� Direct Commands: Use straightforward and unambiguous language. Avoid vague 
terms. For example, instead of asking, "Can you summarize this?" you could say, 
"Summarize the key points of the following article in three bullet points.�

� Contextual Prompts: Provide necessary context within the prompt to reduce 
ambiguity. If you're asking the model to generate a story, include details like the 
genre, characters, and setting.

Example:



3. Experiment with Iterative Refinement

� Test and Refine: Start with a simple prompt and gradually refine it based on the 
output. Adjust the prompt length, wording, or structure if the initial results are not 
satisfactory�

� Iterative Feedback: Use the model’s responses as feedback for prompt 
adjustment. If the output is too generic, add more details or constraints to the 
prompt.

Example:

Initial Prompt:

Refined Prompt:

4. Leverage Mixtral’s Advanced Features

� Chain-of-thought: For complex instructions, break down the instructions into 
step-by-step smaller instructions�

� Role Assignment: Assign specific roles or perspectives to the model to guide its 
response style. For example, ask the model to respond as an expert in a particular 
field.

Example:



5. Provide Facts, Examples, and Formats

� Provide facts: Include facts within the prompt to improve the context accuracy of 
model’s result�

� Input Examples: Include examples within the prompt to show the model the type 
of response you expect�

� Structured Output Requests: If you need the output in a specific format (e.g.�
� bullet points, JSON), clearly specify this in your prompt.

Example:

Prompt example:



Llama: Best Practices for Prompt Engineering

Llama 3.1 is the latest iteration of Meta's Large Language Model (LLM) series,

representing a significant advancement in AI technology. This open-source model

is designed to be highly versatile and powerful, catering to a wide range of

applications from natural language processing to specialized domain tasks. Here

are the key features and variants of Llama 3.1:

Key Features of Llama 3.1

�� Multilingual Support: Llama 3.1 supports eight languages, including English, 
German, French, Italian, Portuguese, Hindi, Spanish, and Thai, making it 
accessible and useful for a global audience�

�� Extended Context Length: The model boasts an extended context length of 
128k tokens, allowing it to process and understand much longer pieces of text 
for more complex tasks and analyses�

�� Tool Calling Capabilities: The instruct-tuned models in Llama 3.1 are finetuned 
for tool calling, making them suitable for agentic use cases. They come with 
two built-in tools (search and mathematical reasoning with Wolfram Alpha) and 
support custom JSON functions for further extensibility.



�� Improved Instruction and Safety Measures: The instruct models have been 
optimized to follow user instructions more effectively. With the introduction of 
Llama Guard 3 and Prompt Guard, Meta is offering robust tools to improve the 
safety and security of AI applications built with Llama 3.1.

Variants of Llama 3.1

Llama 3.1 is available in three sizes: 8B, 70B, and 405B parameters, each offered

in both base and instruct-tuned versions. This variety allows users to choose the

model that best fits their specific needs, whether it's for efficient deployment and

development, large-scale AI applications, or synthetic data generation

1. llama-3.1-8b - base pretrained 8 billion parameter model

2. llama-3.1-70b - base pretrained 70 billion parameter model

3. llama-3.1-405b - base pretrained 405 billion parameter model

4. llama-3.1-8b-instruct - instruction fine-tuned 8 billion parameter model

5. llama-3.1-70b-instruct - instruction fine-tuned 70 billion parameter model

6. llama-3.1-405b-instruct
- instruction fine-tuned 405 billion parameter 
model (flagship)

Here are the best practices crafting effective prompts from Llama Prompting

guides:

�� Be clear and concise: Your prompt should be easy to understand and provide 
enough information for the model to generate relevant output. Avoid using 
jargon or technical terms that may confuse the model�

�� Use specific examples: Providing specific examples in your prompt can help 
the model better understand what kind of output is expected. For example, if 
you want the model to generate a story about a particular topic, include a few 
sentences about the setting, characters, and plot�

�� Vary the prompts: Using different prompts can help the model learn more 
about the task at hand and produce more diverse and creative output. Try 
using different styles, tones, and formats to see how the model responds�

�� Test and refine: Once you have created a set of prompts, test them out on the 
model to see how it performs. If the results are not as expected, try refining the 
prompts by adding more detail or adjusting the tone and style�

�� Use feedback: Finally, use feedback from users or other sources to continually 
improve your prompts. This can help you identify areas where the model needs 
more guidance and make adjustments accordingly.



1. Explicit Instructions

Detailed, explicit instructions produce better results than open-ended prompts:

a. Stylization

b. Formatting

c. Restrictions

2. Zero-Shot Prompting

Large language models like Llama 3 are unique because they are capable of

following instructions and producing responses without having previously seen an

example of a task. Prompting without examples is called "zero-shot prompting".



3. Few-Shot Prompting

Adding specific examples of your desired output generally results in more

accurate, consistent output. This technique is called "few-shot prompting".

In this example, the generated response follows our desired format that offers a

more nuanced sentiment classifer that gives a positive, neutral, and negative

response confidence percentage.

4. Role Based Prompts

Llama will often give more consistent responses when given a role. Roles give

context to the LLM on what type of answers are desired.



5. Chain of Thought Technique

Simply adding a phrase encouraging step-by-step thinking "significantly improves

the ability of large language models to perform complex reasoning". This

technique is called "CoT" or "Chain-of-Thought" prompting.

6. Self-Consistency

LLMs are probablistic, so even with Chain-of-Thought, a single generation might

produce incorrect results. Self-Consistency introduces enhanced accuracy by

selecting the most frequent answer from multiple generations (at the cost of

higher compute):



7. Retrieval-Augmented Generation

Retrieval-Augmented Generation, or RAG, describes the practice of including

information in the prompt that has been retrieved from an external database. It's

an effective way to incorporate facts into your LLM application and is more

affordable than fine-tuning which might also negatively impact the foundational

model's capabilities.

8. Program-Aided Language Models

LLMs, by nature, aren't great at performing calculations. While LLMs are bad at

arithmetic, they're great for code generation. Program-Aided Language leverages

this fact by instructing the LLM to write code to solve calculation tasks.



9. Limiting Extraneous Tokens

A common challenge is generating a response without extraneous tokens (e.g.

"Sure! Here's more information on...").



By combining a role, rules and restrictions, explicit instructions, and an example,

the model can be prompted to generate the desired response.



References

�� https://www.anthropic.com/claud�

�� https://docs.anthropic.com/en/docs/build-with-claude/promptengineering/

overvie�

�� https://www.vellum.ai/blog/prompt-engineering-tips-for-claud�

�� https://anakin.ai/blog/claude-prompt-engineering�

�� https://docs.mistral.ai/guides/prompting_capabilities�

�� https://www.promptingguide.ai/models/mixtra�

�� https://llama.meta.com/docs/how-to-guides/prompting�

�� https://github.com/meta-llama/llamarecipes/blob/main/recipes/quickstart/

Prompt_Engineering_with_Llama_3.ipyn�

�� https://www.deeplearning.ai/short-courses/prompt-engineering-with-llama-2/

datasaur.ai

https://datasaur.ai

