
Best Practices for
Prompt
Engineering
September 2024 | Guides |

Table of Contents
1. Claude: Best Practices for Prompt Engineering
 .. 2

1.1. Use XML Tags
 ... 2

1.2. Be Direct, Concise, Specific, and Allow Claude to Say "I Don't Know”
 3

1.3. Specify the Output Format .. 3

1.4. Assign Claude a Role (System Prompts)
 ... 4

1.5. Use Examples or Few-Shot Learning
 .. 5

1.6. Allow Claude to Think (Chain of Thought)
 .. 6

1.7. Chain Complex Prompts
 ... 6

1.8. Tips for Handling Long Contexts
 .. 7

2. Mistral: Best Practices for Prompt Engineering
 .. 8

2.1. Understand Mixtral’s Capabilities
 .. 9

2.2. Use Clear and Specific Instructions ... 9

2.3. Experiment with Iterative Refinement
 ... 9

2.4. Leverage Mixtral’s Advanced Features
 .. 10

2.5. Provide Facts, Examples, and Formats .. 11

3. Llama: Best Practices for Prompt Engineering
 .. 12

3.1. Explicit Instructions ... 13

3.2. Zero-Shot Prompting .. 14

3.3. Few-Shot Prompting
 ... 15

3.4. Role Based Prompts
 .. 15

3.5. Chain of Thought Technique
 .. 16

3.6. Self-Consistency
 ... 16

3.7. Retrieval-Augmented Generation
 ... 17

3.8. Program-Aided Language Models ... 17

3.9. Limiting Extraneous Tokens
 .. 18

References .. 19

Datasaur Best Practices for Prompt Engineering i

1. Claude: Best Practices for Prompt

Engineering
Claude is a family of large language models developed by Anthropic. Claude
models have three

key capabilities:

Advanced reasoning

Claude can perform complex cognitive tasks that go beyond simple pattern
recognition or

text generation

Code generation

Start creating websites in HTML and CSS, or debugging complex code bases

Multilingual processing

Translate between various languages in real-time, practice grammar, or create
multi-lingual

content

We are often familiar with creating prompts for the GPT series and tend to use the
same style

when working with other models. However, when using Claude, we
need to make some

adjustments because Claude's models are trained using
different methods or techniques.

It's important to understand that prompts that work well with GPT may not be as
effective with

Claude. According to Anthropic's documentation, Claude performs
best with prompts that are

clear, direct, and detailed. To achieve better results
with Claude, it's essential to tailor your

prompts accordingly. The complexity of
your prompts should match the complexity of your task,

the more complex the
task, the more detailed your instructions should be. Here are some

prompt
engineering techniques for Claude AI:

1.1. Use XML Tags
We are used to creating prompts in various formats for GPT. However, Claude
models are more

familiar with XML tags because these models have been finetuned
with XML tags. Therefore, it's

important to include tags like < > and </> to
9. Limiting Extraneous Tokens
References
Best

Practices for Prompt Engineering 3
differentiate between instructions, examples, questions,

context, output format,
and input data.

Datasaur Best Practices for Prompt Engineering 2

Summarize the text below.

<text> {input text to summarize here} </text>

1.2. Be Direct, Concise, Specific, and Allow
Claude to Say "I Don't
Know”
Instead of telling the models what to avoid, it's better to use affirmative
instructions to specify

what the model should do rather than saying what it
shouldn't do.

Summarize the content within the <text> tags provided below:

<text> {input text to summarize here} </text>

We should also allow Claude to say "I don't know" to prevent hallucination and avoid generating

inaccurate or misleading information.

If you’re unsure about the answer, it’s okay to say “I don’t

know.” Please provide your best response based on the

information available, If you can’t provide an answer, clearly

state “I don’t know”

1.3. Specify the Output Format
Claude's models generally tend to be chatty. This can be a problem if we need the
model to follow

a specific output format. To address this, we can use an assistant
message to ensure that Claude

models start their responses consistently.

Summarize the content and classify it into one of these

categories:

Datasaur Best Practices for Prompt Engineering 3

Technology, Healthcare, Finance, or Education.

The content is provided within <text> tags below:

<output>

- Summary: [Your concise summary of the text]

- Classification: [Your chosen category]

</output>

<text> {input text to summarize here} </text>

Assistant:

1.4. Assign Claude a Role (System Prompts)
We can assign Claude a role to mimic the style or character of an expert, such as
an elementary
teacher, content writer, or any other relevant persona. This defined
role can also help improve the
model's performance.

You are expert content writer tasked with summarizing and

classifying a given text. Summarize the content and classify it

into one of these categories: 

Technology, Healthcare, Finance, or Education.

The content is provided within <text> tags below:

<output>

- Summary: [Your concise summary of the text]

- Classification: [Your chosen category]

</output>

<text> {input text to summarize here} </text>

Assistant:

Datasaur Best Practices for Prompt Engineering 4

1.5. Use Examples or Few-Shot Learning
Some articles suggest that providing Claude with examples is a powerful way to
guide it in
generating the best response. We should identify a general example
relevant to our use case and
observe how this leads to more accurate and
consistent results. While using more examples can
improve outcomes, it may also
increase cost and latency.

You are expert content writer tasked with summarizing and

classifying a given text. Summarize the content and classify it

into one of these categories: 

Technology, Healthcare, Finance, or Education.

The content is provided within <text> tags below:

<output>

- Summary: [Your concise summary of the text]

- Classification: [Your chosen category]

</output>

<example>

 <text>

 SECTION 1. LIABILITY OF BUSINESS ENTITIES PROVIDING

 USE OF FACILITIES TO NONPROFIT ORGANIZATIONS, Cont...

 </text>

 <output>

 - Summary: Shields a business entity from civil

 liability Cont...

 - Classification: Finance

 </output>

</example>

<text> {input text to summarize here} </text>

Assistant:

Datasaur Best Practices for Prompt Engineering 5

1.6. Allow Claude to Think (Chain of Thought)
We can instruct the Claude model to think before answering a question. By adding a new output
format, we can allow Claude to share its thought process or provide reasoning before giving a
conclusion or final answer. This technique can reduce errors, especially in math, logic, analysis, or
other complex tasks.

You are expert content writer tasked with summarizing and

classifying a given text. Summarize the content and classify it

into one of these categories: 

Technology, Healthcare, Finance, or Education.

The content is provided within <text> tags below:

Please explain your reasoning step by step within the

<thinking> tags.

Then, provide your final answer within the <answer> tags.

The content is provided within the <text> tags below:

<output>

- Summary: [Your concise summary of the text]

- Classification: [Your chosen category]

</output>

<text> {input text to summarize here} </text>

Assistant:

1.7. Chain Complex Prompts
We can break down complex tasks into steps to help Claude perform better on
such tasks, as
shown here:

You are expert content writer tasked with summarizing and

classifying a given text.

Datasaur Best Practices for Prompt Engineering 6

Summarize the content and classify it into one of these

categories: 

Technology, Healthcare, Finance, or Education.

Please explain your reasoning step by step within the

<thinking> tags.

Then provide your final answer within the <answer> tags.

The content is provided within the <text> tags below:

<output>

- Summary: [Your concise summary of the text]

- Classification: [Your chosen category]

</output>

<text> {input text to summarize here} </text>

Please follow these steps:

Extract key points and main ideas from the <text> tags.

Provide a concise summary based on the key points and main

ideas from step 1.

Extract important keywords to classify the content.

Classify the content based on the keywords identified in step

3.

Assistant:

1.8. Tips for Handling Long Contexts
If we're dealing with longer documents, we should place our key question or
instruction at the end
of the prompt.

<doc>

 {text document here}

</doc>

Datasaur Best Practices for Prompt Engineering 7

You are expert content writer tasked with summarizing and

classifying a given text. Summarize the content and classify it

into one of these categories: 

Technology, Healthcare, Finance, or Education.

The content is provided within the <text> tags below:

<output>

- Summary: [Your concise summary of the text]

- Classification: [Your chosen category]

</output>

Assistant:

2. Mistral: Best Practices for Prompt
Engineering
In general, there are two versions of the Mistral model, each available in various
parameter sizes:

Mistral
 
Mistral offers different model variations in various sizes:

Mistral 7B: Ideal for tasks such as answering questions, generating
outlines, or
interpreting text. It is a strong performer in multilingual
capabilities, reasoning, math, and
code generation.

Mistral Large: It reaches top-tier reasoning capabilities. It can be used for
complex
multilingual reasoning tasks, including text understanding,
Best Practices for Prompt
Engineering 8
transformation, and code generation.

Mixtral
 
Mixtral is an upgraded and larger model compared to Mistral:

Mixtral 8x7B: Suitable for real-time applications, demonstrating strong
capabilities in
mathematical reasoning, code generation, and multilingual
tasks. It supports languages
such as English, French, Italian, German, and
Spanish.

Mixtral 8x22B: With its massive parameter size, this model excels in
understanding subtle
nuances in natural language. It provides more
intelligible and logically relevant responses,
making it ideal for tasks like
experimental writing, complex question answering, and writing
synopses.

Datasaur Best Practices for Prompt Engineering 8

2.1. Understand Mixtral’s Capabilities
Review Model Strengths: Mixtral is particularly strong in generating creative
text,

understanding complex instructions, and maintaining conversational
context over longer

interactions. Familiarize yourself with these strengths to
leverage them effectively.

Task Specialization: Mixtral models excel in tasks such as summarization,
translation, and

content creation. Tailor prompts to these specific tasks for
better results.
However Mixtral

models can be used to do classification tasks with step-bystep
instructions and few-shot

examples.

2.2. Use Clear and Specific Instructions
Direct Commands: Use straightforward and unambiguous language. Avoid vague terms. For

example, instead of asking, "Can you summarize this?" you could say, "Summarize the key

points of the following article in three bullet points."

Contextual Prompts: Provide necessary context within the prompt to reduce ambiguity. If

you're asking the model to generate a story, include details like the genre, characters, and

setting.

Example:

Write a 100-word story in the style of a detective novel set in

1920s New York.

2.3. Experiment with Iterative Refinement
Test and Refine : Start with a simple prompt and gradually refine it based on the output. Adjust

the prompt length, wording, or structure if the initial results are not satisfactory.

Iterative Feedback: Use the model’s responses as feedback for prompt adjustment. If the

output is too generic, add more details or constraints to the prompt.

Datasaur Best Practices for Prompt Engineering 9

Example:

Initial Prompt:

Describe a futuristic city.

Refined Prompt:

Describe a futuristic city 100 years from now, focusing on its

architecture, transportation, and environmental features.

2.4. Leverage Mixtral’s Advanced Features
Chain-of-thought: For complex instructions, break down the instructions into step-by-step

smaller instructions.

Role Assignment: Assign specific roles or perspectives to the model to guide its response

style. For example, ask the model to respond as an expert in a particular field.

Example:

Instructions: 

Summarize:

In clear and concise language, summarize the key points and

themes presented in the essay.

Interesting Questions:

Generate three distinct and thought-provoking questions that

can be asked about the content of the essay. For each question:

- After “Q”: “, describe the problem

- After “A”: “, provide a detailed explanation of the problem

 addressed in the question.

- Enclose the ultimate answer in <>.

Write a report

Using the essay summary and the answers to the interesting

questions, create a comprehensive report in Markdown format.

Datasaur Best Practices for Prompt Engineering 10

Role Assignment: You are environmental scientist. Explain the

impact of climate change on ocean currents.

2.5. Provide Facts, Examples, and Formats
Provide facts: Include facts within the prompt to improve the context accuracy of model’s

result.

Input Examples: Include examples within the prompt to show the model the type of response

you expect.

Structured Output Requests: If you need the output in a specific format (e.g., bullet points,

JSON), clearly specify this in your prompt.

Example:

Prompt example:

You are a mortgage lender customer service bot, and your task is

to create presonalized email responses to address customer

questions. Answer the customer’s inquiry using the provided

facts below. Ensure that your response is clear, concise, and

directly addresses the customer’s question. Address the customer

in a friendly and professional manner. Sign the email with

“Lender Customer Support.”

#Facts

30-year fixed-rate: interest rate 6.403%, APR 6.484%

20-year fixed-rate: interest rate 6.329%, APR 6.429%

15-year fixed-rate: interest rate 5.705%, APR 5.848%

10-year fixed-rate: interest rate 5.500%, APR 5.720%

7-year ARM: interest rate 7.011%, APR 7.660%

5-year ARM: interest rate 6.880%, APR 7.754%

3-year ARM: interest rate 6.125%, APR 7.204%

30-year fixed-rate FHA: interest rate 5.527%, APR 6.316%

30-year fixed-rate VA: interest rate 5.684%, APR 6.062%

#Email

{insert customer email here}

Datasaur Best Practices for Prompt Engineering 11

Provide a summary of the following text in three bullet points.

Text: [Insert Text Here]

3. Llama: Best Practices for Prompt
Engineering
Llama 3.1 is the latest iteration of Meta's Large Language Model (LLM) series, representing a
significant advancement in AI technology. This open-source model is designed to be highly
versatile and powerful, catering to a wide range of applications from natural language processing
to specialized domain tasks. Here are the key features and variants of Llama 3.1:

Key Features of Llama 3.1

Multilingual Support: Llama 3.1 supports eight languages, including English, German, French,
Italian, Portuguese, Hindi, Spanish, and Thai, making it accessible and useful for a global
audience.

Extended Context Length: The model boasts an extended context length of 128k tokens,
allowing it to process and understand much longer pieces of text for more complex tasks and
analyses.

Tool Calling Capabilities: The instruct-tuned models in Llama 3.1 are finetuned for tool calling,
making them suitable for agentic use cases. They come with two built-in tools (search and
mathematical reasoning with Wolfram Alpha) and support custom JSON functions for further
extensibility.

Improved Instruction and Safety Measures: The instruct models have been optimized to
follow user instructions more effectively. With the introduction of Llama Guard 3 and Prompt
Guard, Meta is offering robust tools to improve the safety and security of AI applications built
with Llama 3.1.

Variants of Llama 3.1

Llama 3.1 is available in three sizes: 8B, 70B, and 405B parameters, each offered in both base and
instruct-tuned versions. This variety allows users to choose the model that best fits their specific
needs, whether it's for efficient deployment and development, large-scale AI applications, or
synthetic data generation

1. llama-3.1-8b - base pretrained 8 billion parameter model

2. llama-3.1-70b - base pretrained 70 billion parameter model

Datasaur Best Practices for Prompt Engineering 12

3. llama-3.1-405b - base pretrained 405 billion parameter model

4. llama-3.1-8b-instruct - instruction fine-tuned 8 billion parameter model

5. llama-3.1-70b-instruct - instruction fine-tuned 70 billion parameter model

6. llama-3.1-405b-instruct - instruction fine-tuned 405 billion parameter model

(flagship)

Here are the best practices crafting effective prompts from Llama Prompting guides:

Be clear and concise: Your prompt should be easy to understand and provide enough

information for the model to generate relevant output. Avoid using jargon or technical terms

that may confuse the model.

Use specific examples: Providing specific examples in your prompt can help the model better

understand what kind of output is expected. For example, if you want the model to generate a

story about a particular topic, include a few sentences about the setting, characters, and plot.

Vary the prompts: Using different prompts can help the model learn more about the task at

hand and produce more diverse and creative output. Try using different styles, tones, and

formats to see how the model responds.

Test and refine: Once you have created a set of prompts, test them out on the model to see

how it performs. If the results are not as expected, try refining the prompts by adding more

detail or adjusting the tone and style.

Use feedback: Finally, use feedback from users or other sources to continually improve your

prompts. This can help you identify areas where the model needs more guidance and make

adjustments accordingly.

3.1. Explicit Instructions
Detailed, explicit instructions produce better results than open-ended prompts:

a. Stylization

Explain this to me like a topic on a children’s educational

network show teaching elementary students.

I’m a software engineering using large language models for

summarization. Summarize the following text in under 250 words:

Datasaur Best Practices for Prompt Engineering 13

Give your answers like an old timey private investigator

hunting down a case step by step:

b. Formatting

Use a bullet points.
 

Return as a JSON object.

Use less technical terms and help me apply it in my work in

communications.

c. Restrictions

Only use academic papers.

Never give sources older than 2020.

If you don’t know the answer, say that you don’t know.

3.2. Zero-Shot Prompting
Large language models like Llama 3 are unique because they are capable of following
instructions and producing responses without having previously seen an example of a task.
Prompting without examples is called "zero-shot prompting".

Text: This was the best movie I've ever seen! \n The sentiment

of the text is:

Datasaur Best Practices for Prompt Engineering 14

3.3. Few-Shot Prompting
Adding specific examples of your desired output generally results in more accurate, consistent

output. This technique is called "few-shot prompting".

In this example, the generated response follows our desired format that offers a more nuanced

sentiment classifer that gives a positive, neutral, and negative response confidence percentage.

You are a sentiment classifier. For each message, give the

percentage of positive/neutral/negative. Here are some samples:

Text: I liked it

Sentiment: 70% positive 30% neutral 0% negative

Text: It could be better

Sentiment: 0% positive 50% neutral 50% negative

Text: It’s fine

Sentiment: 25% positive 50% neutral 25% negative

3.4. Role Based Prompts
Llama will often give more consistent responses when given a role. Roles give context to the LLM

on what type of answers are desired.

You are a virtual tour guide currently walking the tourists

Eiffel Tower on a night tour. Describe Eiffel Tower to your

audience that covers its history, number of people visiting

each year, amount of time it takes to do a full tour and why do

so many people visit this place each year.

Datasaur Best Practices for Prompt Engineering 15

3.5. Chain of Thought Technique
Simply adding a phrase encouraging step-by-step thinking "significantly improves the ability of
large language models to perform complex reasoning". This technique is called "CoT" or "Chain-
of-Thought" prompting.

You are a virtual tour guide from 1901. You have tourists

visiting Eiffel Tower. Describe Eiffel Tower to your audience.

Begin with

1. Why it was built

2. Then by how long it took them to build

3. Where were the materials sourced to build

4. Number of people it took to build

5. End it with the number of people visiting the Eiffel tour

annually in the 1900's, the amount of time it completes a full

tour and why so many people visit this place each year.

Make your tour funny by including 1 or 2 funny jokes at the end

of the tour.

3.6. Self-Consistency
LLMs are probablistic, so even with Chain-of-Thought, a single generation might produce
incorrect results. Self-Consistency introduces enhanced accuracy by selecting the most
frequent answer from multiple generations (at the cost of higher compute):

John found that the average of 15 numbers is 40.

If 10 is added to each number then the mean of the numbers is?

Report the answer surrounded by three backticks, for example:

```123```

Datasaur Best Practices for Prompt Engineering 16



3.7. Retrieval-Augmented Generation
Retrieval-Augmented Generation, or RAG, describes the practice of including information in the 

prompt that has been retrieved from an external database. It's an effective way to incorporate 

facts into your LLM application and is more affordable than fine-tuning which might also 

negatively impact the foundational model's capabilities.

Given the following information about temperatures in Menlo 

Park:



2023-12-11 :  52 degrees Fahrenheit



2023-12-12 :  51 degrees Fahrenheit



2023-12-13 :  55 degrees Fahrenheit



What was the temperature in Menlo Park on 2023-12-12?







# Sure! The temperature in Menlo Park on 2023-12-12 was 51 

degrees Fahrenheit.







What was the temperature in Menlo Park on 2023-07-18 ?







# Sorry, I don't have information about the temperature in 

Menlo Park on 2023-07-18. The information provided only 

includes temperatures for December 11th, 12th, and 13th of 

2023.

3.8. Program-Aided Language Models
LLMs, by nature, aren't great at performing calculations. While LLMs are bad at arithmetic, they're 

great for code generation. Program-Aided Language leverages this fact by instructing the LLM to 

write code to solve calculation tasks.

Datasaur Best Practices for Prompt Engineering 17



Python code to calculate: ((-5 + 93 * 4 - 0) * (4^4 + -7 + 0 * 

5))







Here is the Python code to calculate the given expression:







((-5 + 93 * 4 - 0) * (4**4 + -7 + 0 * 5))







# Calculate the expression inside the parentheses



a = -5 + 93 * 4 - 0



b = 4**4 + -7 + 0 * 5







# Multiply a and b



result = a * b







# Print the result



print(result)

3.9. Limiting Extraneous Tokens
A common challenge is generating a response without extraneous tokens (e.g. "Sure! Here's 
more information on...").



By combining a role, rules and restrictions, explicit instructions, and an example, the model can be 
prompted to generate the desired response.

You are a robot that only outputs JSON.



You reply in JSON format with the field 'zip_code'.



Example question: What is the zip code of the Empire State 

Building?



Example answer: {'zip_code': 10118}



Now here is my question: What is the zip code of Menlo Park?

Datasaur Best Practices for Prompt Engineering 18



References
https://www.anthropic.com/claude


https://docs.anthropic.com/en/docs/build-with-claude/promptengineering/overview


https://www.vellum.ai/blog/prompt-engineering-tips-for-claude


https://anakin.ai/blog/claude-prompt-engineering/


https://docs.mistral.ai/guides/prompting_capabilities/


https://www.promptingguide.ai/models/mixtral


https://llama.meta.com/docs/how-to-guides/prompting/


https://github.com/meta-llama/llama-cookbook/blob/main/recipes/quickstart/

Prompt_Engineering_with_Llama_3.ipynb


https://www.deeplearning.ai/short-courses/prompt-engineering-with-llama-2/

About Datasaur
Datasaur is a private LLM provider and data labeling platform designed for companies to build 

their AI ecosystem with ease and efficiency. It assists organizations and universities in setting up 

custom LLMs and annotating data more efficiently and accurately through automation, quality 

control, and human-in-the-loop workflows. For more information, visit www.datasaur.ai.​

Schedule a demo

https://www.anthropic.com/claude
https://docs.anthropic.com/en/docs/build-with-claude/promptengineering/overview
https://www.vellum.ai/blog/prompt-engineering-tips-for-claude
https://anakin.ai/blog/claude-prompt-engineering/
https://docs.mistral.ai/guides/prompting_capabilities/
https://www.promptingguide.ai/models/mixtral
https://llama.meta.com/docs/how-to-guides/prompting/
https://github.com/meta-llama/llama-cookbook/blob/main/recipes/quickstart/Prompt_Engineering_with_Llama_3.ipynb
https://github.com/meta-llama/llama-cookbook/blob/main/recipes/quickstart/Prompt_Engineering_with_Llama_3.ipynb
https://www.deeplearning.ai/short-courses/prompt-engineering-with-llama-2/
http://www.datasaur.ai
https://datasaur.ai/talk-to-sales

