SHAKUDO

The Executive's Guide
to Code Agents

Deep Dive into the Ecosystem, Tools, and
Impact of Al Coding Assistants

(oo

shakudo.io ‘ /(f /* CODE \

Introduction

Code agents — also known as Al code assistants or code copilots — are transforming how software is
developed. These Al-driven tools act as “co-pilots” for programmers, capable of generating code,
explaining complex logic, and even autonomously performing coding tasks. Technology leaders are
paying close attention because code agents promise to boost developer productivity, reduce
time-to-market, and alleviate talent shortages. In this whitepaper, we provide an executive-friendly yet
technically in-depth overview of code agents: what they are, why they matter now, how they integrate
into enterprise stacks, and how to navigate the landscape of closed-source vs. open-source solutions.
We’ll explore real-world use cases across industries, discuss implementation considerations, and
introduce an “operating system” approach to adopting these tools. By the end, you’ll understand why

code agents are garnering so much attention.

€ SHAKUDO

What Are Code Agents?

In simple terms, a code agent is an Al-powered software assistant that helps developers write,
understand, and optimize code. These agents use machine learning models — typically large language
models (LLM:s) trained on vast amounts of source code — to provide intelligent coding support. Key

features include:

® Code Suggestions & Autocomplete: As a developer types, the agent predicts and suggests
the next lines or blocks of code, similar to how Gmail autocompletes sentences. This speeds up

coding by reducing keystrokes.

e Natural Language Q&A: Developers can ask the agent questions in plain English (for
example, “How do I parse a CSV in Python?”), and the agent will provide answers or even

write the code snippet.

® Error Detection & Debugging: Advanced agents can flag potential bugs or security issues.

Some can explain error messages or help trace the root cause of a bug in the code.

e Multi-File Edits & Refactoring: Beyond single-line suggestions, modern code agents can
handle larger tasks like refactoring code across multiple files or adding a new feature
throughout a codebase. For instance, an agent might implement a new logging API by
modifying all relevant files consistently — something that traditionally requires significant

coordination.

e Code Generation from Specs: Given a high-level prompt (e.g. “Create a REST API for a
library management system”), code agents can generate entire functions or classes. They can
even produce boilerplate code for new projects, saving developers from writing repetitive

scaffolding.

In essence, code agents extend a developer’s capabilities. They function within IDEs (Integrated
Development Environments) or CLIs (command-line interfaces) to assist in real-time. By leveraging
knowledge learned from millions of code repositories, they help even junior developers produce code
with quality closer to that of senior engineers, and allow senior engineers to work much faster.
Importantly, these agents do not replace human developers — instead, they augment human skills,
handling grunt work and offering suggestions so that engineers can focus on higher-level design and

problem solving.

€ SHAKUDO

The Emergence of Al Code Assistants

Al-based coding assistants have been evolving for years, but 2023—2025 marks a tipping point for

their relevance in enterprises:

e Rapid Advances in Generative Al: The past two years have seen remarkable progress in large
language models (LLM:s). Models like OpenAI’s GPT-4, Google’s Gemini, and open-source
models (Llama 2, CodeGen, etc.) have dramatically improved their coding abilities. They can
understand programming context better and produce correct code more often. This leap in
quality has moved code agents from novelty to practical utility. Gartner notably recognized this
emerging maturity by publishing its first-ever Magic Quadrant for AI Code Assistants in
August 2024. In that report, major vendors like GitHub (Microsoft), AWS, Google Cloud,
and GitLab were all named Leaders, underscoring that the industry now views code agents as
an essential new category of software tools (see Figure 1 below). Such mainstream recognition

signals that the technology is enterprise-ready.

Figure 1: Magic Quadrant for Al Code Assistants

ABILITY TO EXECUTE
®

COMPLETENESS OF VISION As of July 2024 © Gartner, Inc

Gartner

€ SHAKUDO

Figure 1: Gartner’s inaugural Magic Quadrant for AI Code Assistants (July 2024). Leading cloud and
dev platform providers — GitHub (Microsoft), Amazon Web Services, Google Cloud, and GitLab - are all
in the Leaders quadrant. This reflects how quickly AI coding assistants have become a mainstream

investment area, driven by recent advances in Al capabilities.

® Proven Productivity Gains: Early adopters and research studies are reporting impressive

improvements in developer productivity. A 2023 McKinsey study found that software

developers can complete certain coding tasks up to twice as fast with generative Al assistance.
Routine tasks like writing documentation or boilerplate code saw nearly 50% time savings.

Similarly, an MIT-led field experiment across Microsoft, Accenture, and a Fortune 100

manufacturing firm showed that giving developers access to GitHub Copilot increased the
number of tasks they completed by 26% on average. Junior developers, in particular,
benefited the most — with productivity boosts between 27% and 39% — since the AI helped
them overcome knowledge gaps. Such gains outshine many past improvements in software
engineering. In practice, this means projects get delivered faster and engineering teams can

tackle more ambitious backlogs. It’s a key reason CIOs and CTOs are paying attention.

® Widespread Adoption & Vendor Investment: What began as optional experimentation is
quickly becoming standard tooling. As of Q3 2023, 63% of organizations surveyed by

Gartner were already piloting or using Al code assistants in some capacity. Gartner predicts

that by 2028, 75% of enterprise developers will be using AI helpers (up from less than
10% in early 2023) . This surge is fueled by aggressive moves from tech giants: GitHub Copilot
(backed by Microsoft) was one of the first, reaching over a million users. AWS launched
Amazon CodeWhisperer and later Amazon Q to embed Al in the developer workflow on
AWS. Google introduced Duet Al (now evolved into Gemini Code Assist) across Google
Cloud and Google Workspace. These investments validate the technology and continually
push it forward. Even more telling, many of these services are being bundled into enterprise
software suites or offered free up to high usage limits — for example, Google made Gemini
Code Assist free for individuals with generous monthly quotas — indicating a race to capture

market share.

e Developer Talent Shortage & Efficiency Demands: Most enterprises today face a shortage
of skilled software developers. At the same time, they’re under pressure to deliver digital
solutions faster. Code agents are seen as a force multiplier for development teams — doing more
with the talent on hand. By automating repetitive work (e.g. writing boilerplate code, basic

CRUD functions, test cases), these tools free up human developers to focus on core logic and

€ SHAKUDO

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://mitsloan.mit.edu/ideas-made-to-matter/how-generative-ai-affects-highly-skilled-workers#:~:text=The%20researchers%20found%20that%20access,gains%20of%208%25%20to%2013%25.
https://www.gartner.com/en/documents/5298563#:~:text=Key%20Findings,their%20impact%20on%20developer%20productivity.
https://www.gartner.com/en/documents/5298563#:~:text=Key%20Findings,their%20impact%20on%20developer%20productivity.
https://www.gartner.com/en/newsroom/press-releases/2024-04-11-gartner-says-75-percent-of-enterprise-software-engineers-will-use-ai-code-assistants-by-2028

innovation. They also help less-experienced developers produce output closer to
senior-engineer quality, partially bridging the skill gap. In sectors like finance and healthcare,
where compliance requirements mean a lot of extra coding (documentation, validations,
reports), code assistants drastically cut the grunt work. In short, the current business climate -
“deliver more with less” — creates a receptive environment for anything that boosts engineering

efficiency.

Taken together, these factors explain why enterprise adoption of Al coding assistants has accelerated
dramatically in the past 18 months. The technology is hitting an inflection point of capability and
reliability, just as organizations desperately need productivity gains. As a result, we’re seeing code
agents move from early adopter teams to organization-wide deployments. Of course, with high interest
come high expectations. The next sections will help ensure those expectations are met with a clear

understanding of architectures, options, and best practices for enterprise-grade adoption.

€ SHAKUDO

How Code Agents Fit into the Enterprise
Tech Stack

At first glance, a code agent might look like “fust a plugin”in a code editor. In reality, making Al
assistive coding work in an enterprise involves a robust architecture with several components working

in concert. Let’s break down how code agents integrate into a typical enterprise development stack:

/ DEVELOPER INTERFACE \

Al MODELl BACKEND

CONTEXT
AND
89 — KNOWLEDGE
= INTEGRATION

|
TOOLING AND DEVOPS AND
EXECUTION = LIFECYCLE
SANDBOX \-/ INTEGRATION

L N
2d| — 0)

AY 2

1. Developer Interface (IDE/CLI Integration): The developer interacts with the code agent
through an interface such as a VS Code extension, JetBrains IDE plugin, or even a chat-style
CLI. This is where the “magic” happens from the developer’s point of view — code suggestions
appear as they type, or they converse with a chatbot about their code. The plugin captures
context (like the current file, selection, or error message) and sends it to the Al back-end, then
renders the AI’s response (in-line code, answers, etc.). For example, GitHub Copilot provides
extensions for all major IDEs, and Amazon’s Q Developer offers both an IDE plugin and a CLI
tool for chat-driven coding. The goal is to embed AI assistance seamlessly into the developer’s

normal workflow.

2. AI Model Backend (On-Cloud or On-Prem): Behind the scenes, the heart of a code agent is

one or more Al models that generate the responses. This could be a cloud service (e.g.

€ SHAKUDO

OpenATI’s models powering Copilot, or Google’s Gemini model on GCP) or a self-hosted
model running in the company’s own environment. When a developer requests a suggestion,
the IDE plugin calls an API with the prompt (which includes recent code context). The Al
model processes this and returns a completion or answer. In closed-source services, this is a
black box in the cloud. In self-hosted setups, enterprises might run an open-source model like
CodeLlama or StarCoder on their own GPU servers. There are also hybrid approaches — for
instance, an enterprise might use a smaller local model for lightweight tasks (like simple
autocompletion) and route heavier queries to a cloud model for more complex code
generation. Choosing the right model setup is a key architecture decision, balancing

performance, cost, and data privacy.

3. Context and Knowledge Integration: A major factor in an agent’s usefulness is how much
relevant context it has when generating code. In an enterprise scenario, context isn’t just the
open file in the editor - it could include the entire codebase, documentation, or even system
design specifications. Modern code agents incorporate Retrieval Augmented Generation
(RAG) techniques: they use vector databases and embedding models to search a company’s
knowledge (like a repository of API docs or past code snippets) and feed the most relevant
pieces into the prompt for the LLM. For example, if you ask “How do we authenticate users in
our system?”, the agent might retrieve a snippet from your internal auth library and include that
context so the LLM’s answer is based on your actual code, not just general knowledge. This
architecture means additional components: a document store or vector DB for code and text
embeddings, and an embedding model to encode queries and source code into vectors. Many
enterprise setups use tools like Chroma or Weaviate for the vector store, and models like
OpenAT’s text-embedding-ada or local alternatives for generating embeddings. By integrating
these, the code agent becomes much more aware of the project’s specifics, increasing its

accuracy and usefulness.

4. Tooling and Execution Sandbox: The most advanced code agents can go beyond static
suggestions — they can take actions. This is where the concept of Al “agents” (in the Al
research sense) comes in: the ability for the AI to autonomously use tools or run code to
achieve a goal. Some code agents have an architecture that lets them, for instance, execute code
in a sandbox, run test cases, or call external APIs as part of helping the developer. A prime
example is Cursor’s “Agent” mode or Amazon Q’s CLI agent, which can run shell commands,
compile and execute code, then observe the output and continue the task. For this to work, the
architecture includes a managed sandbox environment (perhaps a container or VM) where the

AT’s suggested code can safely run, and a mechanism for the Al to issue commands (with

SHAKUDO

appropriate security controls). This turns the code assistant into an autonomous pair
programmer — for instance, it could scaffold a new project, run npm install, start a dev server,
and then inform the developer once everything is set up. In enterprise, such autonomy is
double-edged: it can save time, but requires guardrails so the Al doesn’t execute dangerous
actions. We’ll discuss guardrails later, but architecturally this means integrating the Al agent

with the DevOps toolchain (CI servers, test frameworks, etc.) in a controlled way.

5. Security and Access Control: Enterprise integration demands that code agents respect
corporate security policies. Source code is one of a company’s most valuable assets, so the
architecture must ensure it isn’t inadvertently leaked. If using a cloud Al service, data
encryption in transit, data retention policies, and possibly on-premise gateways become
important. Many organizations place the Al service behind a proxy or VPN so that only
approved code flows out and responses flow in, with logging for audit. Moreover, identity
management is needed: which developers are allowed to use the code assistant, and with what
permissions? An architecture might integrate with Single Sign-On (SSO) systems so that access
to the Al agent ties into the same identity and access management (IAM) as the rest of the dev

environment. For example, AWS’s reference architecture for Al coding assistants uses JAM

roles and tokens to control which models and actions a user can invoke. In highly regulated
environments, one might also require that all Al suggestions are stored or monitored for
compliance (e.g., to ensure no open-source code with incompatible license is injected). Thus,
things like logging pipelines and even AI output scanners (for IP or security issues) become

part of the full architecture.

6. DevOps and Lifecycle Integration: Finally, a well-integrated code agent plugs into the
broader software development lifecycle (SDLC). This means integration with version control
(git) and CI/CD. Some Al assistants, for example, can automatically generate pull request
descriptions or review code changes. GitHub Copilot Chat can summarize diffs and suggest
improvements. Amazon Q’s /review agent will catch bugs and security vulnerabilities in a
code change before the human reviewers see it. Achieving this requires connecting the Al to
the source control events or APIs. In practice, we’re seeing architectures where the Al agentis a
bot user in the git system that can comment on merge requests, etc. Additionally, when code
agents produce code, enterprises want to track that (for ownership and audit), so tagging
Al-authored code in commit messages or in the code itself (via comments) might be part of the
process. All these considerations mean that rolling out a code agent is not just installing a
browser extension — it’s an end-to-end pipeline integration to make sure the Al is available

where developers need it and its outputs flow into the normal dev process.

SHAKUDO

https://aws.amazon.com/blogs/publicsector/building-an-ai-coding-assistant-on-aws-a-guide-for-federal-agencies/

Al Coding Assistant Platform on AWS
% Virtual private cloud (VPC)

@ DevSecOps Pipaline

o Amazon WorkSpaces w/ IDE

Figure 2: Example reference architecture for an enterprise AI Coding Assistant platform (source: AWS).
In this setup, developers (left) use IDE plugins (e.g., Continue for VS Code) on secure workstations (could
be clond-based Amazon WorkSpaces or local PCs with VPN). The plugin connects to approved AI model
providers within the company’s VPC. Multiple model options are supported: small code completion models
can run on a local server or ECS cluster (green boxes #3) for low-latency suggestions, while more powerful
chat/code generation models are accessed via a centralized gateway (purple “LISA” service and AWS
Bedrock/SageMaker in #4) . All traffic stays within a secure network (VPC, with PrivateLink endpoints)
to meet compliance. This illustrates how enterprise code agent architectures often combine open-source

tools (IDE plugins, local models) with clond AI services, all orchestrated in a secure, flexible manner.

In summary, the architecture of code agents in an enterprise environment is multi-layered. It spans
from the developer’s editor, through Al and search services, to security and DevOps integrations. The
guiding principle is to embed Al assistance deeply into the development workflow, while maintaining
control: control over what the Al can see (data), what it can do (actions), and how it interacts with
existing systems. But the components listed above will be present in one form or another. In the next
section, we will compare popular solutions — both closed-source and open-source — and see how they

realize these architectural components differently, each with pros and cons for enterprise use.

§ SHAKUDO

https://aws.amazon.com/blogs/publicsector/building-an-ai-coding-assistant-on-aws-a-guide-for-federal-agencies/

Closed-Source vs. Open-Source Code
Agents: Navigating the Landscape

The explosion of interest in Al coding tools has led to a rich landscape of options. Broadly, these can be
divided into commercial closed-source products and open-source projects/frameworks. Both
categories aim to provide similar AI coding assistance, but they come with different philosophies and
trade-offs. Enterprise leaders should understand these differences, as they aftect everything from
security to cost to flexibility. Below, we compare the two categories and highlight notable examples of

each.
Popular Closed-Source Code Agents

Closed-source code agents are typically developed by major tech companies or well-funded startups
and are offered as proprietary services (often Saa$ or licensed software). They tend to provide polished
user experiences and integrate deeply with specific platforms or ecosystems. A few prominent

examples:

. B

integrates into VS Code, Visual Studio, JetBrains, etc. It’s powered by OpenAI’s Codex and

GitHub Copilot (Microsoft): The most famous Al pair-programmer, Copilot

GPT-4 models, trained on GitHub’s massive code corpus. Copilot offers real-time code
suggestions and a chat assistant (“Copilot Chat”). It’s a paid service (subscription per user) and
requires sending code to Microsoft/OpenAl’s cloud for inference. Copilot is well-loved for its
ease of use and quality of suggestions, but some enterprises are wary of code leaving their
environment. GitHub has introduced a Copilot for Business with policy controls to address

these concerns.

° @ Amazon Q Developer (AWS): Announced in 2024, Amazon Q is AWS’s entry into
Al coding assistants. It evolved from Amazon’s CodeWhisperer. Q Developer integrates with
JetBrains IDEs and VS Code via a plugin, and uniquely also provides a CLI agent. It’s designed
to handle large projects and multiple tasks: “/dev” agents that implement features with
multi-file changes, “/doc” agents for documentation and diagrams, and “/review” for

automated code review. Being an AWS product, it ties in with AWS cloud services (with JAM

€ SHAKUDO

control, cloud APIs access, etc.), making it attractive to companies already building on AWS.
It’s closed-source and oftered as a managed service (with usage-based pricing). AWS highlights
its enterprise-grade security, since Amazon Q can be configured to not retain code and works

within AWS’s compliance environment.

« ¢ Google Gemini Code Assist (Duet Al for Developers): Google’s solution, part of
its broader Duet Al became generally available in 2024. Gemini Code Assist uses Google’s
cutting-edge Gemini LLM (which is optimized for code) . It offers code completion, chat, and
code generation, and is integrated into Google Cloud’s tools (Cloud Shell, Cloud
Workstations) as well as popular IDEs via plugins. One distinguishing feature is that it can
provide citations for the code it suggests (helpful for developers to verify suggestions). Google
has aggressively priced this — free for individual developers (with high monthly limits) - to
encourage adoption, and offers enterprise tiers with admin controls. Closed-source and hosted

on GCP, it appeals to Google Cloud customers and those who trust Google’s Al capabilities.

A
° x Cursor: Cursor is a new breed of Al-augmented IDE. It’s essentially a code editor
(forked from an open-source editor) with Al deeply integrated. Cursor offers an “agent mode”
where you can give it a high-level goal and it will attempt to generate and edit files to meet that
goal, including running code and iterating — a very agentic approach. While the editor itself
might use open components, the Al service behind Cursor’s agent is closed (they likely use
OpenAl/Anthropic models under the hood). It’s a subscription product targeted at power

users who want an Al-first development environment.

° u Bolt.new (by StackBlitz/Qodo): Bolt.new is an Al-powered web development agent
accessible via browser. It lets users “prompt, run, edit, and deploy full-stack apps”just by
describing what they want. It went viral as a demo of flow-based coding with AI (one could
type “build a to-do app” and Bolt.new scaffolded it live). While there is an open-source core
(StackBlitz has an OSS version called bolt.diy), the hosted Bolt.new service and its specific
models are proprietary. It’s an example of a domain-specific code agent (focused on web apps)

offered as a service.

These closed-source options typically offer convenience and reliability — they often “just work”

out-of-the-box with minimal setup. They come with vendor support and usually integrate nicely if

€ SHAKUDO

you’re within that vendor’s ecosystem (Microsoft, AWS, Google, etc.). However, they have some
drawbacks from an enterprise perspective: you have less transparency into how they work, limited
ability to customize or self-host, and there may be concerns about data (code) leaving your controlled
environment. Costs can also add up (e.g. $10-$20 per developer per month, or usage-based fees for
heavy use). Vendor lock-in is a consideration: if you deeply adopt, say, Copilot with all its bells and

whistles, switching later isn’t trivial.
The Rise of Open-Source Code Agents

On the other side, the open-source community has been incredibly active in the Al code assistant
space. Many developers and organizations prefer open-source solutions for the flexibility, transparency,
and potentially lower cost (no license fees, ability to run on your own hardware). Open-source code
agents can often be self-hosted entirely within an enterprise’s network, alleviating data privacy

concerns. Here are some notable open projects and frameworks:

° @ Cline (Roo): Cline is an open-source autonomous coding agent for VS Code. It has
dual “Plan”and “ct” modes - the agent can first devise a plan (a sequence of steps to
implement a request) and then execute them one by one, modifying code. Cline can read the
entire project, search within files, and perform terminal commands. Essentially, it gives you an
AT “dev team” inside your editor. Early users have been impressed with its ability to create new
files and coordinate changes across a codebase automatically. Cline connects to language
models via a specified API — you can plug in OpenAI GPT-4, or a local model of your choice.
It’s free and extensible (written in TypeScript/Node). The benefit here is you control the

model (and costs), and your code stays local while Cline works with it.

° Aider: Aider is a popular open-source CLI tool for Al-assisted coding. It runs in your
terminal and pairs with GPT models (you bring your API key for an LLM like GPT-4). What
sets Aider apart is that it has write access to your repository — you give it one or multiple
files, and it can modify them or even create new files based on a conversation. For example, you
can say “Refactor these two files to use dependency injection” and Aider will edit both files
accordingly. Thoughtworks praised Aider for enabling multi-file changes via natural language,
something many other tools (especially closed ones at the time) didn’t support. Because it’s
local and open, companies can use Aider without sending code externally (aside from model

API calls, which can point to a self-hosted model). The trade-oft: it’s a bit less user-friendly

€ SHAKUDO

than IDE plugins — developers need to operate it via command line. Still, its fans call it “AI pair

programming in your terminal.”

X

AT agent framework that can “go beyond coding”. It’s designed to be extensible and run

Goose: Goose, released by fintech company Block (formerly Square), is an open-source

entirely locally. Goose can write and execute code, debug errors, and interact with the file
system — much like Cline or Cursor’s agent mode. Since it’s open-source (in Python, under the
hood), enterprises can extend it or integrate it with their own tools. Goose emphasizes
transparency: you can see exactly what the agent is doing, which commands it runs, etc. This is
appealing if you need to enforce strict controls — nothing hidden in the cloud. Block

open-sourced it to spur community collaboration on Al agents.

. O

gained a lot of attention (20K+ GitHub stars by 2025) . It allows developers to create and share

Continue.dev: Continue is an open-source platform and IDE extension that has

custom Al assistants that live in the IDE. Think of Continue as a framework: out-of-the-box
it provides a VS Code and JetBrains plugin that can do code chat and completion using local or
remote models. But it’s built to be highly configurable — developers can add “blocks” (pieces
like prompts, rules, or integrations) and even create domain-specific agents. Continue’s recent
1.0 release introduced a hub where the community and companies can share their custom-built
assistants and building blocks. This means an organization could, for example, create a
specialized code assistant that knows about their internal libraries or coding style and share it to
all devs via Continue. Notably, early enterprise users of Continue include companies like
Siemens and Morningstar, indicating real-world viability. Being open-source, Continue can
run fully in an enterprise environment, and it supports any model — local LLMs or cloud APIs
— giving tremendous flexibility. As the founders put it, “the ‘one-size-fits-all’ Al code assistant
will be a thing of the past” — Continue is about tailor-made Al for your team, rather than

relying on a generic model only the provider can change.

L

“open” alternative to Copilot. While not open-source in the sense of code on GitHub, it is free

Codeium: Codeium is a slightly unique case — it’s a product that brands itself as the

for individual developers and the company touts not training on customer code, etc. (It was
created by Ex-Google engineers and offers plugins for many IDEs). It’s included here because

many view it as an alternative to closed solutions like Copilot, without the Microsoft tie-in.

SHAKUDO

Codeium can be deployed self-hosted for enterprises (an on-prem server that runs the
Codeium model). This gives enterprises a middle ground: a supported, ready-to-use solution
but running in their own cloud for privacy. According to Gartner’s 2024 report, Codeium (by
vendor “Exafunction”) was noted among the Challengers in the AI Code Assistant space,

reﬂecting its growing presence.

+

° @J Open-Source Models (Code LLM:s): In addition to full “assistant” frameworks, the
open-source movement has produced many high-quality code-specialized models. Examples
include StarCoder, CodeGen, PolyCoder, and Meta’s Code Llama. More recently, Alibaba
released Qwen-14B-Coder (and iterative versions up to “Qwen 2.5 Coder”) which in late
2024 achieved top-tier code generation performance and was open for local use. There are also
community-driven models like WizardCoder and Phind CodeLlama. An emerging trend is
smaller models that are fine-tuned for specific languages or use cases, which organizations can
run cheaply themselves. These models can plug into open-source agent frameworks like
Continue or Aider. The likes of DeepSeek-R1 (a distilled model based on Qwen-14B, tailored
for code) hint at a future where even mid-size models (10-15B parameters) perform
impressively on code tasks. Open model availability gives enterprises an option to fully avoid
external API calls — they can deploy these models on secured machines in a VPC, fulfilling the
dream of “A1 behind your firewall.”

Comparing Closed vs Open: Each approach has pros and cons. Here’s a side-by-side look at key

considerations:

Aspect Closed-Source Code Agents Open-Source Code Agents

Data Security Code data is often sent to the Code stays on premises if self-hosted. You
vendor cloud (unless using on-prem = control where the model runs and who
offering). Enterprise plans offer sees the data (great for IP protection).
some assurances, but trust is

required.

€ SHAKUDO

Cost

Transparency

Customization

Integration

Support &
Updates

-~ ALZL
"'ﬁ,g_‘) SHAKUDO

Subscription or usage-based pricing
(can be significant for large teams

over time).

Opaque model and algorithms.
Hard to know why the AI produced
a result. Vendors may train on your

usage data (for improvement).

Limited to vendor’s features.
Roadmap controlled by provider.
Some allow slight config (e.g.
enterprise Copilot lets you block

suggestions with insecure patterns).

Often integrates well with the
vendor's ecosystem (Azure, AWS,
etc.). May not support tools outside

that scope.

Professional support from vendors;
frequent updates managed for you.
Little need for in-house Al expertise

to use.

Generally free software; cost is in
infrastructure (e.g. running GPU servers
for models) and maintenance. Can be

more cost-effective at scale.

Fully transparent — you can inspect the
code agent’s source. Model weights (if
open) can be examined. No hidden data

logging beyond what you set up.

Highly customizable. You can fine-tune
models on your own code, add tools or
rules (as with Continue), integrate with

internal systems uniquely.

You can integrate with anything (with
developer effort). Many OSS agents are
extensible to connect with editors, CI

systems ofyour choice.

Community support (forums, GitHub),
which can be uneven. You need some
in-house expertise to manage models and
updates. On the flip side, you’re not
forced into updates — you control the

versioning.

Performance Vendors may have access to larger,
state-of-the-art models (e.g. GPT-4)
that are not available open-source,
giving potentially better raw
performance. Also can utilize cloud

compute on demand.

Ecosystem Tends to be self-contained (each
vendor pushes their own solution).
Less community-driven innovation

at the user level.

Rapidly closing the gap with new model
releases. You can run models optimized
for your needs. Performance depends on
your computer setup. For many tasks,
open models (like Code Llama, etc.) are

sufficient and improving steadily.

Vibrant community innovation — new
plugins, prompts, and methods appear
constantly on GitHub. Risk of
fragmentation, but also lots of
experimentation (you can benefit from

others’ contributions).

In practice, many enterprises adopt a hybrid approach. For instance, a team might use GitHub

Copilot for general coding but employ an open-source tool like Aider for sensitive projects that cannot

leave the intranet. Or use an open framework like Continue with both an internal model and

occasionally route to an external API for particularly tough problems. The key is that open-source

options provide leverage: they give enterprises bargaining power and technical options beyond what

any single vendor offers. An open ecosystem also tends to innovate faster in niches — e.g., when a new

programming language or framework arises, the community might build an AI helper for it before the

big companies do.

Importantly, favoring open-source is not just a philosophical stance; it often yields practical benefits in

security, cost, and flexibility. As Thoughtworks noted in their Technology Radar, open tools like

Aider can directly edit multiple files across a codebase — a capability many closed tools lack — and since

they run locally with your own API key, you pay only for the actual usage of the AI model, not a

markup. This level of control and capability can be very attractive.

For enterprise leaders, the takeaway is: you have options. If vendor lock-in or data privacy is a

concern, the open-route is viable and getting stronger every month. If immediate productivity

out-of-the-box is paramount and you trust the vendor, the commercial products are mature and

supported. Many organizations will mix and match to get the best of both worlds.

€ SHAKUDO

https://www.thoughtworks.com/en-ca/radar/tools/aider

Real-World Use Cases Across
Industries

AT code agents are a horizontal technology — nearly any industry that develops software can benefit
from them. However, the specific motivations and impact can vary by sector. Let’s look at how code

agents are being applied in a few key industries, and the measurable business outcomes seen so far:

e Financial Services: Banks, insurance companies, and fintechs are using code agents to
accelerate development of both customer-facing applications and internal systems. A big focus
in finance is compliance and security. Al assistants can help by quickly generating code that
adheres to regulatory templates or by scanning code for compliance issues. For example, JPMC
and other big banks have legacy mainframe and COBOL applications — code agents can assist
in modernizing these by suggesting equivalent code in modern languages, significantly
speeding up legacy system refactoring. In fintech, developers use Al to build features faster;
Paytm, alarge digital payments company, integrated GitHub Copilot to boost developer

efficiency. In one case, Paytm used Al assistance in a project called “Code Armor” to secure

cloud accounts - resulting in an over 95% efficiency increase in the time taken to secure
those accounts. This shows the compound benefit: not only faster coding but faster security
hardening, which in finance is priceless. Overall, financial firms report improvements in
development cycle time and fewer bugs leaking into production because the Al can catch
mistakes early. The impact is measured in faster delivery of new digital banking features and

more robust, audited code — ultimately helping them compete in an industry where software

quality and speed are competitive advantages.

< ‘w\u o _p

;‘y

$ SHAKUDO A Comprehensive Guide to Code Agents | 17

https://www.microsoft.com/en-in/aifirstmovers/paytm

e Healthcare & Life Sciences: In healthcare, software must be developed under strict
regulations (think HIPAA compliance, patient data privacy) and often involves complex data
integration (EHR systems, medical devices). Code agents are helping in multiple ways. They
can automatically generate documentation and comments for medical software, ensuring
clarity and auditability (which is critical for FDA approvals in medical devices, for example).
They also assist in writing data transformation code to handle healthcare data standards like
HL7/FHIR - tasks that are tedious but must be done carefully. A code assistant can produce a
draft interface in minutes that might take a developer days to write manually, all while flagging
potential privacy issues in the code. Because of data sensitivity, healthcare organizations lean
toward using these Al tools in a self-hosted manner. For instance, a hospital IT department
might deploy an open-source agent like Continue or Goose on their own servers, connected to
an internal knowledge base of clinical codes, so that developers get helpful code suggestions
without any patient data ever leaving the premises. Even highly regulated government health
agencies have found ways to adopt Al coding assistants: AWS has demonstrated architectures
that meet FedR AMP High and DoD ILS standards for AI development tools, meaning a
healthcare organization can configure an Al code agent platform that satisfies very strict
security requirements. The business impact in healthcare comes as accelerated development
cycles for health I'T projects (some reports going from months to weeks for certain tool
development) and improved code quality (which can translate literally to improved patient
outcomes when the software powering healthcare is more reliable). While concrete numbers
are proprietary, one can imagine the value of shaving off 20-30% of development time for an
EMR module rollout — hospitals can adopt new capabilities sooner, researchers can get their

data pipelines faster (speeding research), etc.

Al

e Manufacturing & Industrial: Manufacturing companies often have a mix of software

development needs: everything from firmware that runs on machines, to the software in PLCs
(programmable logic controllers), to enterprise systems for supply chain and logistics. Many of
these areas involve legacy code and niche programming languages. Al code agents can serve as
on-demand experts for those legacy domains. For example, an industrial manufacturer with

PLC code in Ladder Logic can use an Al assistant to suggest conversions of that logic into

€ SHAKUDO

%

modern languages or to generate test cases that ensure any changes won’t break production.
Additionally, manufacturing firms typically have a lot of custom automation scripts — Al
assistants can generate scripts for tasks like data analysis from factory sensors, or quickly adapt
old code when a new type of sensor or robot is introduced. A notable real-world example: as
referenced earlier, an electronics manufacturing Fortune 100 company participated in a
study with GitHub Copilot and saw a substantial productivity boost. Less experienced
engineers in that company were able to complete nearly 1/3 more tasks with the AI’s help. This
directly translates to faster time-to-market for new product lines, as software that runs
manufacturing processes or is embedded in products gets developed quicker. Furthermore,
quality improvements mean fewer defects in production — a huge cost saver. It’s not hard to
imagine scenarios like an automotive software team using a code agent to quickly comply with
anew MISR A C safety rule across millions of lines of code, something that might have taken a
large team weeks to manually enforce. In essence, for manufacturing, code agents help
modernize and maintain complex software infrastructure with far less effort, and that
yields business outcomes such as reduced downtime (faster fixes), and quicker implementation

of efficiency improvements on the factory floor.

\ Y4

Retail & E-commerce: The retail industry has become highly software-driven, from
e-commerce websites to mobile apps to internal merchandising systems. Speed is the name of
the game - retailers need to roll out new features for shopping experiences constantly
(especially around seasonal peaks) and analyze consumer data in real-time to adjust. Al coding
assistants give retail software teams a boost in churning out these features. For instance,
developers at Nykaa, a major online beauty retailer, started using GitHub Copilot and saw a
20% increase in developer productivity. This led to notable cost savings and faster feature
releases — critical in a competitive retail market where being first with a new app feature (like
AR try-on, personalized recommendations, etc.) can capture customer loyalty. Retail I'T teams
also leverage code agents to integrate multiple systems quickly; if a retailer acquires a new
logistics platform, Al assistants can help generate the integration code (APIs, ETL scripts) far
faster, reducing the integration timeline from perhaps months to weeks. Another scenario is

internal tools — store associates or analysts often need custom software or reports; with Al

SHAKUDO

https://app.research2u.com/insights/1470?token=463c0393-62ea-4c15-a21f-f903349bd622
https://www.microsoft.com/en-in/aifirstmovers/nykaa

assistance, a small internal dev team can deliver on many more of those requests because the Al
handles the routine coding. In terms of measurable impact, besides the 20% productivity boost
example, we also see improvements like shorter onboarding for new developers (because the
Al can act as a mentor, explaining the codebase to them). One retail company noted that with
an Al assistant in place, their new hires were completing tasks independently in days rather
than weeks. Over a year, that kind of efficiency gain can translate to millions in added revenue

by accelerating digital projects and reducing development costs.

These examples just scratch the surface. Other industries are finding creative uses too: telecom
companies using Al agents to configure network code and automate tests for SG software;
automotive companies coding IVI (in-vehicle-infotainment) and autonomous driving software with
Al assistance to ensure adherence to safety standards; education technology firms using code agents
to rapidly develop and personalize learning platforms; and the list goes on. Across all these, some
common themes of measurable impact are emerging: shorter development cycles, higher release
frequency, improved code quality (fewer post-release defects), and even enhanced developer satisfaction
(developers often find mundane tasks less tiring with an Al helper, which can reduce burnout and

attrition).

In quantitative terms, many organizations report Al coding tools contributing to 10-30% faster
development on average, and in certain tasks even 50% or more. These efficiency gains directly affect
business metrics: faster delivery means faster time-to-market and responsiveness; better quality means
less downtime and customer impact from bugs. For leaders, these are compelling numbers — code

agents are not just a cool developer toy, they are a lever for business agility and innovation.

€ SHAKUDO

Implementation and Integration
Considerations

Adopting code agents in an enterprise setting is not a flip-a-switch endeavor. As with any powerful
technology, there are practical considerations and challenges to address to successfully implement
these tools and integrate them into existing workflows. Below we outline some key considerations and

introduce the concept of an “Al & Data Operating System” approach that can streamline adoption.
Key Considerations and Challenges:

® Security & Compliance: Probably the number one concern: ensuring that use of AI
assistants doesn’t violate security policies or compliance requirements. If using a cloud-based
code agent, organizations must ensure no sensitive code or credentials leak through prompts.
This might involve opting for on-prem deployments or using encryption/proxy solutions.
Companies should conduct risk assessments — for example, a bank’s CISO will want to know if
the Al service retains any snippets of the bank’s code (most vendors say no, but due diligence is
needed). Moreover, for regulated industries (healthcare, finance, government), any Al tool
must meet standards like SOC2, HIPAA compliance, FedR AMP, etc. Early in deployment,
legal and compliance teams should be involved to set guidelines on acceptable use (e.g., maybe
Al can be used on frontend code, but not on highly sensitive algorithms without review).
Setting up a “no AI usage” roggle for certain repositories or data might be necessary. Ensuring
that the AI outputs themselves don’t introduce compliance issues is also key — for instance, if it

suggests using an insecure function, that’s a problem. This leads to the next point.

® Quality Control & Al Guardrails: Out-of-the-box, AI models can sometimes produce
insecure or suboptimal code. Enterprises need a way to trust but verify Al outputs. This
might mean integrating A7 guardrails — tools or rules that check the AI’s suggestions. For
instance, one could integrate static analysis (linters, security scanners) that automatically run
on Al-generated code patches. If the Al suggests something that triggers a security lint rule, the
developer is alerted or the suggestion is blocked. Some advanced setups use a second AI model
as a “critic” to review the first model’s output. Microsoft’s Copilot for Business introduced a
vulnerability filtering system that blocks known insecure patterns from being suggested.
Enterprises can implement similar guardrails tailored to their internal coding standards and

security policies. The goal is to prevent an enthusiastic junior developer from blindly accepting

€ SHAKUDO

an Al suggestion that, say, introduces an SQL injection flaw or uses a disallowed library. Part of
implementation is training your developers: instill the mindset that the Al is a junior pair
programmer — helpful but requires code review. Many companies update their code review
guidelines to include “if code was Al-generated, double-check X, Y, Z.” Putting these
guardrails in place early will save headaches later and ensure the code agent remains a net

positive.

e Infrastructure & DevOps Overhead: Running Al coding assistants, especially open-source
ones with local models, can introduce significant DevOps work. Large models need GPUs or
high-memory machines. If every developer is running a heavy model on their laptop, that’s
inefficient; but if you host a shared model server, you need to ensure it’s up 24/7, scaled to
handle requests, and low-latency enough for interactive use. There’s also the integration into
IDEs - pushing configuration to all developers, managing API keys or credentials for the Al
services, updating plugins, etc. Some enterprises solve this with internal developer platforms —
essentially bundling the Al agent into dev environment images. Another aspect is integrating
with existing tools: hooking the Al into your version control or CI means potentially writing
custom scripts or using webhooks/bots. All this can be complex, especially if you plan to
experiment with multiple AI tools (imagine juggling Copilot for some projects, Continue with
alocal model for others, etc.). It’s important to budget time from DevOps and platform
engineering teams to support the rollout of code agents. Monitoring is also critical: You’ll want
to monitor usage (for cost reasons and to see adoption), track latency and failures of Al calls,
and perhaps log Al suggestions (some companies do this to later analyze if the Al is improving
coding outcomes). Without proper infrastructure planning, teams might experience flaky Al
performance, which will sour developers on using it. So treat the code agent like any critical

service in your development toolchain — plan for high availability, monitoring, and support.

e Integration with Developer Workflow: This is more of an organizational/process
consideration. If developers are to use Al assistants daily, the tools must blend into their
existing workflow without disruption. This may require small changes — e.g., encourage use of
the Al in pull request creation or commit message generation, or allow developers to allocate
time to refactoring with the Al In Agile environments, teams might explicitly plan tasks that
leverage Al (e.g., a sprint item: “Use code agent to generate initial unit tests for module X”).
There’s also the question of training: some devs, especially senior ones, might be skeptical or
unfamiliar with prompting an Al Running internal workshops or Al pair programming

sessions can help level up the team’s effectiveness with the tool. One of the hardest integrations

SHAKUDO

is not technical at all - it’s cultural. Enterprises should promote success stories internally (e.g.,
“Team A used the code agent to deliver their feature 2 weeks early”) to encourage adoption.
Conversely, collect feedback on pain points (like “the AI often suggests deprecated functions”)
to improve either through better model configuration or additional guardrails. Integration is
successful when using the code agent becomes a natural part of the development process —

developers should feel “t¢’s there when I need it.”

e Ethical and License Considerations: Enterprises should also consider the provenance of
Al-generated code. Some Al models trained on public code have been known to regurgitate
code verbatim from training data, which could be under GPL or other licenses. This can pose
legal risks if not caught. Ensuring your Al solution has mitigation for this (Copilot, for
example, has a setting to block direct copy suggestions of long snippets) or scanning outputs
for such issues is wise. Ethically, companies should set guidelines — e.g., if the Al generates
code, does the team treat it as they would third-party code (with attribution if needed)? Also,
developers might wonder if using AI will affect their performance evaluations or even job
security. It’s important for leadership to communicate that the goal is to amplify their work,

not surveil or replace them.

The “Operating System for Al and Data” Approach: Introducing Shakudo

¢ SHAKUDO

Considering the challenges above, it’s clear that while the benefits of code agents are huge, the
implementation can become complex. This is where a platform approach can save the day. Instead of
piecemeal integrating dozens of tools and wrangling infrastructure, forward-thinking organizations are

adopting an Al & Data Operating System model. Shakudo is a leading example of this approach.

What is Shakudo? Shakudo is described as “the operating system for data and AI,” and it essentially
provides a cohesive platform in which all your AI and data tools can run fogether in a streamlined way.
Think of it as a layer that sits in your cloud (your VPC) and pre-integrates the building blocks needed
for Al projects — including code agent frameworks, ML models, data stores, and observability - so you
don’t have to stitch them together from scratch. It’s like getting a fully managed DevOps and MLOps

stack, but running within your own secure environment. As the company puts it, Shakudo “securely

€ SHAKUDO

deploy[s] and operate[s] the industry’s leading tools and products inside your infrastructure, next to

your data”. For enterprises eyeing code agents, this approach has several compelling advantages:

e Runs in Your VPC — Full Data Control: Shakudo deploys into your cloud environment
(AWS, Azure, GCP, or on-prem). This means any Al tools, including code agents, are running
next to your data rather than in some external SaaS. For code generation, this is ideal — your
proprietary codebase never leaves your VPC. You can use powerful open-source code models
(like Qwen or Llama) hosted on machines inside your network, or even host certain
proprietary models if licenses allow. Because it’s in your infrastructure, all your existing security
controls (VPC networks, security groups, encryption, IAM roles) apply. Essentially, Shakudo
gives you the convenience of a managed service without relinquishing data residency. For
industries with strict compliance, this setup is non-negotiable — it’s a big reason Shakudo

resonates with enterprises.

® One-Click Deployment of Agent Frameworks & Models: Remember the alphabet soup of
tools we discussed? (Cline, Continue, vector DBs, guardrail services, etc.) Managing those
individually is hard. Shakudo’s platform comes with a catalog of proven components. Want to
use an agent like Continue.dev or Aider? Or need a local LLM like Qwen 2.5 or DeepSeek-R1
for code? Shakudo provides these as modular components that can be spun up and configured
easily, often via a Ul or simple CLI, rather than you manually setting up each one. It’s
essentially an app store of data/Al tools, curated and maintained. Moreover, Shakudo ensures
these components can talk to each other — the vector database is wired to the LLM, which is
wired to the agent interface, etc., with sane defaults and security in place. This drastically cuts
down integration time. Instead of your engineers spending weeks gluing components, they can

get a code agent environment up in hours and start a proof-of-concept immediately.

e DevOps and MLOps Handled: Operating Al in production involves monitoring, scaling,
updating — which can burden your DevOps teams. Shakudo abstracts a lot of this. It monitors
the health of each component (if your local LLM instance crashes, Shakudo can automatically
restart it, for example). It also provides centralized logging and observability for everything. So,
if an Al agent is doing something odd, you have logs/traces across the system to debug.
Shakudo also manages updates — as new versions of models or tools come out, Shakudo can
update those components in a controlled way (with your approval). This is crucial in the
fast-moving Al space: new tools emerge rapidly, and applying updates (or swapping tools) can

be high-overhead if done manually. Shakudo aims for interchangeability of components; for

€ SHAKUDO

instance, today you might run Llama 2 13B, and tomorrow switch to Llama 3 30B - Shakudo
would handle provisioning the new model and integrating it, without you rebuilding your
entire stack. This inherent flexibility de-risks adoption: you’re not stuck with whatever you
start with. As new hot models or agents come out, you can plug them into the Shakudo

platform. In other words, it futureproofs your Al stack against the rapid evolution of this
field.

e Unified Security, Identity, and Governance: Since Shakudo acts as an OS layer, it can
integrate with your enterprise identity systems (like Okta, LDAP, SSO). That means all the Al
and data tools running on it can share a single sign-on and user management. For example, a
developer logs into Shakudo with their corporate SSO and then can access the code assistant,
the data explorer, etc., without separate accounts. From a governance perspective, having
everything in one platform means you can consistently enforce policies. If you decide “these 3
projects can use the Al code agent, but these 2 can’t until further notice,” it’s a matter of
settings in Shakudo rather than chasing down individual tool configs. Also, data access can be
unified: Shakudo connects to your data sources (like code repositories, knowledge bases) in a
central way, so the code agent and other Al components all use the same governed data access.
This avoids scenarios where someone might accidentally give an Al tool broader access than
intended. Observability is similarly unified - e.g., Shakudo can provide an audit log of all AI

agent activities or all prompts given to models, which is useful for compliance and debugging.

e Expert Guidance and Rapid POC-to-Value: Implementing Al, even with great tools, often
requires expertise — deciding which model to use, how to fine-tune it, how to design prompts,
etc. Shakudo offers not just software but also services and best practices. Their team has
experience with these integrations, so they can guide your team to avoid pitfalls. For instance,
they might suggest using a smaller model for autocomplete and a larger one for code chat to
optimize cost-performance, and they’d have the patterns ready to deploy both. They also help
in mapping business problems to Al solutions, ensuring that your proof-of-concept actually
delivers business value quickly. Many organizations struggle by spending months on AI POCs
that never reach production. Shakudo’s approach short-circuits this by having a
production-ready platform from day one and experts to help configure it for your specific use
case. The result is that companies can go from an initial POC to real-world impact in a matter
of weeks, not quarters. This speed matters because it allows you to start reaping ROI (e.g.,

those 20-30% productivity gains) sooner and justifies further investment.

SHAKUDO

In essence, Shakudo provides the plumbing and operating environment to make code agents (and other
Al tools) work in an enterprise context with minimal friction. Instead of each enterprise reinventing
the wheel by building an in-house Al platform, Shakudo delivers a ready-made, yet customizable,

foundation.

A concrete scenario: Suppose you want to equip your development team with an Al pair programmer
that has access to your internal documentation and can enforce your coding guidelines. Without an OS
approach, you'd have to (a) choose an OSS agent or API, (b) set up a vector database of your docs, (c)
host an LLM, (d) wire them into VS Code, (¢) ensure only authenticated devs can use it, (f) set up
monitoring... With Shakudo, you could select a pre-built “AI Code Assistant” stack from their
library, which would deploy, say, Continue.dev plus an instance of Qwen-14B model and a pre-loaded
vector DB for docs, all inside your VPC. It would integrate with your Git auth for data access and with
your SSO for user auth. You'd get a link or plugin config to distribute to developers. Within a day, they
could be using the agent on real work. If later you find a better model or want to add a guardrail, you
update the component in Shakudo and it propagates to the whole setup. This significantly reduces
time-to-adoption and ensures consistency — every developer has the same setup, which is maintained

centrally.

It’s worth noting that Shakudo isn’t limited to code agents — it’s an OS for all data/AI tools. This
means your code agents can live alongside other Al initiatives (like data science notebooks, ETL
pipelines, etc.) in one ecosystem. For enterprises investing big in Al, having one platform to host

everything is more efficient than siloed solutions for each team.

SHAKUDO TNTEGRATIONS ’
EXPLORE 214 g * . N\
DATA STACK X °
COMPONENTS 63 o g,
™ r ; S s b o 0 ® B
N, ® ¥
JOIN THE ECOSYSTEM > v "‘ ’

€ SHAKUDO

https://www.shakudo.io/integrations

The Future of Code Agents and Why a
Flexible Platform Matters

As we look ahead, it’s clear that Al code agents are not a passing fad — they’re poised to become a

standard part of the software development toolkit. However, the specific tools and models that lead

today may evolve or be replaced by even better technologies tomorrow. Here’s where we see the space

headed and why an adaptable platform like Shakudo will be crucial in the long run:

b

® More Autonomy and “Agentic” Behavior: Today’s code assistants mostly react to developer

prompts. The future code agent may take on larger goals proactively. Research and advanced
products are trending toward agents that can carry a task from start to finish (with check-ins).
For example, you might say, “Build me a simple mobile app for inventory management,” and
the agent will generate the backend, the database schema, the API endpoints, and even some
front-end code, testing along the way. We already see glimpses of this in tools like Cursor’s
agent mode or Amazon Q’s ability to generate multi-file projects. In a few years, such
capabilities will be more reliable and widely available. This could revolutionize prototyping and
even how maintenance is done (imagine an agent that can read a ticket in Jira and submit a pull
request addressing it). Enterprises will need to harness this carefully — it’s powerful but needs
oversight. A platform that allows introducing higher autonomy Al, while keeping humans in
the loop and policies enforced, will be vital. You don’t want each team randomly using some
unvetted “super-agent” and executing unknown code. Instead, you'd integrate the new agent
tech into your controlled environment (again, something Shakudo is well-suited for — you can

try a new agent component safely within your sandbox).

Specialized Models and Tools: The general LLMs are becoming commoditized. The frontier
is specialized models: think models fine-tuned for particular programming languages (there
might be a “Java Guru 2026” model that deeply knows Java ecosystems), or models for specific
domains (a model tuned for fintech code, or for embedded C). There will also be tools that
integrate domain knowledge - e.g., an Al that not only knows how to code in Python, but also
knows pharma industry regulations for software. We’re likely to see an expansion of vertical
code agents. In fact, we see early signs: Microsoft’s Copilot X suite hints at integrating
documentation and domain-specific knowledge into the coding assistant; open-source hubs
like Continue are allowing community-built extensions for various domains. For enterprises,

this means that the one-size-fits-all agent might not remain the best solution. You might end up

SHAKUDO

using a mix: a generic code assistant for everyday use, plus a domain-specific Al assistant for,
say, your FPGA coding team, and another for your data analytics pipeline code. Managing this
variety and ensuring each gets the right data and model is a challenge that calls for a unifying
platform. Without it, complexity could spiral — multiple agents each with their own setup. A
centralized OS for Al can manage multiple agent types as simply as it manages one, giving each

team the custom tools they need while keeping everything governable under one roof.

e Continuous Learning and Improvement: Right now, most code agents do not learn from
the specific organization’s code (unless you fine-tune them). In the future, we can expect
enterprise code agents to improve over time by learning from the company’s codebase and
developer feedback (with proper privacy). For instance, an agent could observe that every time
it suggests a certain library, developers switch to another library, and adapt to prefer the latter
for that company. Achieving this requires infrastructure to securely train or adapt models on
enterprise data. This is likely to become a competitive edge — companies with systems to
harness their proprietary data to fine-tune their Al assistants will get more relevant and
accurate assistance. Platforms like Shakudo can facilitate this by providing the pipelines for
fine-tuning or reinforcement learning with feedback, using the data accessible in the platform
(repositories, etc.). In effect, your code agent could become a bespoke Al that knows your
coding standards, internal APIs, and even the quirks of your legacy systems, making it
exponentially more useful. But to get there, you need to be able to experiment with model
training — something a flexible AI OS makes possible, whereas a closed third-party solution

might not offer that option at all.

e Integration with Software Development Lifecycle (SDLC) Tools: We foresee deeper
integration of Al into all stages of software development. Requirements gathering might
involve Al (e.g., converting user stories into specifications or generating UML diagrams
automatically). During coding, as we have now, Al helps write code. For testing, Al will
generate unit and integration tests, and potentially even run and interpret them. During code
review, Al will assist reviewers by highlighting parts of the change that are risky or suggesting
improvements (some of this exists in rudimentary form). In deployment, AI might generate
deployment scripts or infrastructure-as-code from application code changes. Essentially, Al
could become a co-worker in every step of the SDLC. To facilitate this, integration points need
to be built — connecting the Al to project management tools, CI/CD pipelines, monitoring
tools (imagine Al that sees an alert from production and suggests a code fix). A platform

approach shines here because you can integrate Al agents with various tools uniformly.

SHAKUDO

Shakudo, for instance, can host not just the coding agent but also your test suite and
monitoring connectors, enabling composite workflows. The benefit is all AI-driven suggestions
and actions can be tracked and managed centrally. If each tool had its own Al smarts, you'd

struggle to maintain consistency or even know what’s being automated.

e Avoiding Single-Vendor Dependency: The Al landscape is evolving at breakneck speed.
Today’s leader could be tomorrow’s laggard. Enterprises that hitch their wagon to a single
closed solution risk falling behind if that solution doesn’t keep up or changes direction (or
raises prices). By contrast, those who maintain flexibility can swap in better tools as they
emerge. For example, if in 2026 an open-source “CoderGPT” comes out that far surpasses
Copilot, a flexible stack would let you adopt it quickly. We already saw some of this in
2023-2024 with the rise of open models challenging proprietary ones. Also, consolidation and
business changes happen — what if a vendor discontinues a product or undergoes an
acquisition that affects the roadmap? An enterprise locked-in would be stuck. Thus, being
nimble in this space is almost an insurance policy for your engineering org. Shakudo’s
philosophy of tool interoperability squarely addresses this: it’s built so you can “swap tools in
and out with no overhead,” allowing you to incorporate innovations quickly (or remove a
component that isn’t working out) without disrupting your workflows. This kind of
future-proofing is something CTOs and CIOs should weigh heavily. It ensures that adopting

Al now doesn’t create technical debt or sunk cost that prevents adopting berter Al later.

In summary, the future will bring more powerful and specialized code agents, and likely more of them.
The organizations that thrive will be those who can adapt and integrate these new capabilities swiftly
and safely. A platform approach like Shakudo’s is essentially setting your company up to ride the wave
of Al advancement rather than being toppled by it. It provides a stable base (security, integration, data
layer) on top of which you can play with the latest AI Lego blocks. As the space moves from one
breakthrough to the next, having that agility means you’re always getting the best ROI from Al tools

and your developers are always empowered with cutting-edge tech.

€ SHAKUDO

Conclusion and Next Steps

AT code agents are poised to become an indispensable part of enterprise software development. They
bring the promise of faster development cycles, improved code quality, and a more empowered
developer workforce. It’s crucial to pick the right mix of solutions (leveraging the strengths of
open-source where possible), to integrate them with proper security and guardrails, and to remain
flexible for the future. One high-profile example of this shift is Shopify, where CEO Tobi Liitke has
made Al proficiency a non-negotiable expectation across the company. His internal memo declaring
that “using Al effectively is now a fundamental expectation of everyone at Shopify” has become a
reference point for forward-thinking investors, underscoring how Al is reshaping not just tools—but
talent strategies. Platforms like Shakudo provide a compelling way to meet this moment, acting as the

glue and foundation that turns a collection of Al tools into a cohesive, enterprise-ready capability.

For technology leaders, the mandate is clear: start leveraging code agents to drive tangible value,
or risk falling behind competitors who do. The good news is that with the right approach, you can
see benefits in a matter of weeks, not years. Shakudo, as discussed, offers that unified approach —
bringing best-of-breed AI components into your environment, managed for you, and tailored to your
needs. It’s a solution that lets you focus on applying Al to business problems rather than wrangling

infrastructure.
Next Steps:

e [Book a Demo] - See Shakudo in action and discover how an AI & Data Operating System
can seamlessly integrate code agents (and more) into your tech stack. In a live demo, you’ll
witness how quickly you can deploy an Al coding assistant in your own VPC and have it start

contributing to your development process.

® [Join our Al Workshop] - Engage with Shakudo’s experts in a one-day workshop to identify
high-impact opportunities for code agents in your organization. This hands-on session will
help your team outline a roadmap from proof-of-concept to production, tailored to your

specific goals and constraints.

By taking these steps, you position your organization at the forefront of the Al-enabled development
revolution. Code agents, when implemented wisely, are a catalyst for developer productivity and
innovation capacity. With a future-proof platform supporting your journey, you can confidently

embrace this new era of software development — one where humans and Al build the future together.

€ SHAKUDO

https://www.forbes.com/sites/josipamajic/2025/04/08/hire-ai-not-humans-shopify-ceos-radical-mandate-catching-vc-attention/
https://www.shakudo.io/sign-up
https://www.shakudo.io/ai-workshop

	Introduction
	What Are Code Agents?
	The Emergence of AI Code Assistants
	How Code Agents Fit into the Enterprise Tech Stack
	
	Closed-Source vs. Open-Source Code Agents: Navigating the Landscape
	Popular Closed-Source Code Agents
	The Rise of Open-Source Code Agents

	Real-World Use Cases Across Industries
	
	Implementation and Integration Considerations
	Key Considerations and Challenges:
	The “Operating System for AI and Data” Approach: Introducing Shakudo

	The Future of Code Agents and Why a Flexible Platform Matters
	
	Conclusion and Next Steps

