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Abstract

Access to high-quality data for analysis is the foundation for organizations to make
more effective and efficient decisions. Although the necessary data often already ex-
ists, this data is managed across different organizations, departments, or IT systems,
making it inaccessible.
At the SINE Foundation, we address the support of inter-organizational data collab-

oration through a specific privacy-enhancing technology (PET), namely secure multi-
party computation (MPC). This paper discusses the challenges that organizations face
when implementing inter-organizational data collaboration, and explains howMPCcan
address these challenges. It also presents selected use cases from the public and pri-
vate sectors in areas such as public services and sustainability.

1 Introduction

Enhancing data access and data collaboration holds significant potential for all societal
sectors, particularly for increased economic growth and a more sustainable economy.
The EU Data Act, which will grant everyone the universal right to access data from con-
nected devices within the EU-27, will generate economic growth of 2% of GDP (or 270
billion euros annually) according to an EU study [7]. For the provision of data previously
accessible only to the public sector (Open Data), the OECD quantifies the direct and in-
direct value contribution for the EU economic region at 140 billion euros annually [20].
Despite a multitude of studies demonstrating their benefits, a significant share of public
and private organizations do not engage in data collaboration practices [20, 15].
This report focuses on voluntary and inter-organizational data collaboration, par-

ticularly with regard to sensitive and/or high-value data sets. In Section 2, we start with
a list of challenges that prevent data collaboration in public and private sectors. In Sec-
tion 3, we then briefly explain our chosen privacy-enhancing technology, namely secure
multi-party computation (MPC), and discuss howMPC can address these challenges. In
Section 4, we present SINE’s data collaboration framework comprising two main open-
source building blocks. Thereafter in Section 5, we discuss potential use cases of this
technology we consider, both in the public sector and in sustainability-related data col-
laboration. In Section 6, we conclude with future directions.

2 Challenges in Data Collaboration

Variouschallengescomplicate thesuccessful implementationof inter-organizationaldata
collaboration in public and private sector organizations. These challenges becomemore
relevant when the data is of higher quality, value, or sensitivity:
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Fear of loss of control: Organizations fear losingcontrolover theirdata,whichcouldcause
unforeseen damages [15, 13].

Trade secrets: Private sector organizations in particular are concerned that sharingdata
could indirectly reveal trade secrets [13].

Data valuation: Companies cite uncertainties in determining the economic value of their
data as an impediment to data collaboration and exchange [20, 13].

Risk of losing reputation and trust: Data security breaches cancause lastingdamage to
the trust in institutions and companies [5].

Free riding: Private and public sector organizations are willing to contribute data if they
receive benefits in return and if the beneficiaries of their data also share data recip-
rocally [20, 13].

Compliance, particularly in data protection: Ina recentsurvey inGermany, 56%ofcom-
panies cite data protection concerns as a reason to oppose data sharing [15].

Trust in infrastructure: Conveyingand instilling trustworthiness inusers isanopenchal-
lenge to this date [17]. Regular approaches such as certifications, do not appear to
be sufficient either [27].

Lack of alignment, unclear incentives: Especially in voluntary settings, the collaborat-
ing parties need to find alignment and incentives for them to provide the necessary
and appropriate data [13]. Incentives for truth-telling, i.e., providing accurate data,
needs to be considered and addressed use case by use case.

Even when all organizations have aligned interests, there are technical barriers to col-
laborating on sensitive and high-value datasets.

Technical complexity and lack of standards: Industry reports claim that the complexity
of existing IT landscapes, in combination with the lack of standards that support
data collaboration, significantly increases IT expenditures for private companies [1,
6, 13, 24].

Lack of trusted third parties: When multiple organizations send their data to a trusted
third party for analysis, they expose themselves to potential unauthorized access,
breaches, or insider threats. Advanced certification schemes are not sufficient to
overcome this trust issue [27, 13].

Lack of trusted third parties and lock-in risks: When multiple organizations send their
data to a trusted third party for analysis, they expose themselves to potential unau-
thorized access, breaches, or insider threats. Advanced certification schemes are
not sufficient to overcome this trust issue [27, 13]. Additionally, centralizing sensi-
tive data such as supply chain information on a single platform creates significant
lock-in effects, where organizations become overly dependent on one provider’s in-
frastructure, pricingmodels, and technical standards.

As a result, organizations are forced to choose between protecting their data and ob-
taining valuable insights. A solution is needed that allows meaningful computation on
sensitive data without ever exposing it, ensuring both privacy and usability in collabora-
tive environments.
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3 SecureMulti-Party Computation (MPC)

Securemulti-party computation (MPC) enables organizations and individuals to perform
computationsonsensitivedata collaboratively,without ever exposing themtoeachother.
This capability unlocks completely newapproaches to reconcile utility and confidentiality
tradeoffs, allowing data-driven collaboration while maintaining full control over private
information.

3.1 MPC Protocols

At its core, MPC is built on cryptographic protocols that allow multiple parties to jointly
compute a function over their private inputs while keeping those inputs hidden from one
another. Depending on the nature of the computation and the security guarantees re-
quired, various MPC protocols can be applied.

Security models: MPC protocols operate under different security models, such as
semi-honest (wherepartiesmight try to learn the inputsof anotherparty, butareassumed
to follow the protocol) [29, 30, 11, 2] or malicious (where parties are not assumed to fol-
low the protocol and can behave arbitrarily to learn other parties’ inputs). Protocols with
malicious security can be further categorized into protocols with honest majority (more
than half of the parties are honest) [11, 4], dishonest majority (less than half of the parties
are honest) or full threshold (up to all but one of the parties can be corrupt) [26, 9, 10].
The protocols in these categories guarantee that the honest parties’ inputs are protected
even in the presence of malicious behavior. The choice of the model directly affects the
complexity and computational cost of the solution.

Computation types: MPC protocols can express any computable function but use dif-
ferent representations depending on how the function is structured:

• Boolean circuits [29, 30, 11, 2]: Represent functions using logical gates. While
capable of expressing any computation, they are generally more efficient for func-
tions that involvemakingdecisions, comparing values, and followingdifferent paths
based on conditions.

• Arithmetic circuits [4, 10, 14]: Use addition and multiplication operations over a
defined mathematical field. Like Boolean circuits, they can represent any function,
but they are often more efficient for computations involving numerical operations,
such as summation, averaging, or statistical analysis.

The choice between Boolean and arithmetic circuits does not limit what can be com-
puted – both are universal models of computation. Instead, the selection hinges on what
the function does: arithmetic circuits naturally align better with tasks with arithmetic
computations, while Boolean circuits can streamline logic-based operations.

3.2 MPC for Inter-Organizational Data Collaboration

MPC addresses several challenges of inter-organizational data collaboration.
First, MPC eliminates the need for a trusted third party by allowing multiple parties

to perform computations on their private inputs without ever exposing them. Unlike tra-
ditional cryptographic systems, MPC does not rely on centralized key management or
trusted third parties. Instead, data is split into encrypted data (“shares”) such that the
parties compute directly on those. No single party possesses the full data or decryption
keys, which removes single points of failure and reduces the risks associated with cen-
tralizing sensitive information.
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Second, MPC ensures transparency, agency, and control by allowing each party to
see which joint task (i.e., the function or algorithm) will be computed and which parties
are to receive the result before contributing their data.
Third,datasovereigntyandprivacyare inherentlymaintained inMPC, sinceonly the

final computation output is revealed. The security guarantees of MPC protocols ensure
that private data remains protected – depending on the protocol, even if up to all parties
except one are compromised and colluding.
Finally, MPC fundamentally changes the economics of data collaboration. Tradi-

tional data-sharing settings require significant upfront costs, time, and effort, especially
if a trusted third party is necessary. The costs of these arrangements occur upfront in
such settings, while the potential benefits of data collaboration remain unknown or insuf-
ficiently quantifiable. Secure multi-party computation (MPC) allows parties to perform,
validate, and quantify potential benefits with lower upfront costs. The governance com-
ponent remains critical for every MPC calculation, as organizations must establish con-
sensus on data input formats, categorization schemes, and other semantic standards.
The ability to perform informed cost-benefit analyses earlier is especially beneficial in
low-trust environments or competitive industries where direct data collaboration is in-
feasible due to confidentiality concerns or regulatory barriers.
In summary, MPC enables secure, cost-effective, and privacy-preserving collabora-

tion by embedding privacy into the computation itself. It eliminates the need for trusted
intermediaries, reducescomplianceandnegotiationcosts, andensures thatdata remains
both useful and protected – addressing the classic tradeoff between utility and confiden-
tiality in data-driven collaboration.

4 SINE’s Technology Stack for Secure Data Collaboration

SINE is developingopen source software and services tomakeMPCmoreusable for inter-
organizational data collaboration on sensitive data, especially related to health and envi-
ronmental impact such as emissions transparency, or impact investing.
In this section, we introduce Polytune, SINE’s MPC engine, and Garble, a compiler for

translating functionalities described in a high-level language to MPC programs. It is im-
portant to note that Polytune and Garble are integrated building blocks but can also be
used independently of each other.

4.1 Polytune

Implemented in Rust, Polytune [23] is an open-sourceMPCEngine that implements a se-
cure multi-party computation protocol that protects the inputs of the computing parties
even if all but one of the participants are corrupted and collude. The underlying protocol
of Wang et al. [26] guarantees security and confidentiality of the input data even in the
case of full threshold corruption among the participants. This means that even if all but
one of the parties are dishonest and collude, i.e., alter computations and try to infer confi-
dential data, they cannot learn any information about the honest party’s inputs other than
what the output of the computation reveals. In this case, an attack is detected and the
computation fails, safeguarding the integrity of the process.
Security was Polytune’s primary focus during its first stages of development. We

therefore deferred performance optimizations to later stages and maintained strict ad-
herence to Wang et al.’s protocol. We currently work on heavily optimizing our protocol
implementation to achieve better scalability and performance for real-world use cases.
Wang et al. [26] mention an extension to the original protocol that allows not only one

party, but an arbitrary subset of pre-defined participants to retrieve the correct output of
the computation. Toenable real-world use cases that require flexibility in determining the
output parties, we contacted the authors of [26] who specified this extension, which we
incorporated into Polytune.
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Polytune’s architecture balances advanced cryptographic techniques with flexibility,
providing a robust foundation for privacy-preserving computation where data confiden-
tiality is critical.

4.2 Garble

To reduce the complexity in writing software for Polytune and MPC in general, SINE pro-
vides an open source high-level description language and Boolean circuit compiler. This
language, called Garble [22], enables software engineers to write MPC programs in a
high-level language inspired by the Rust programming language. These high-level pro-
gram descriptions are then compiled into Boolean circuits – the fundamental building
blocks used by garbled circuit-based MPC protocols (such as the Wang et al.’s proto-
col [26] implemented in Polytune).
Thecompiler focusesonoptimizingBooleancircuitsbyminimizing thenumberofAND

gates, a crucial factor for the performance of MPC protocols. One key feature of Garble is
its support for private join operations, which allow twoormore parties to compute the join
or intersection of their datasets without revealing any additional information about their
private inputs. This is based on the sort-compare-shuffle protocol by Huang et al. [12].
Inmany use cases cross-organizational data aggregation is to be performed, i.e., the join
is not returned but specific entries in the join are counted or aggregated in a certain way.
In these cases, the final shuffle step of the sort-compare-shuffle protocol can be omitted
since the joined output is directly used in subsequent computations.

4.3 Example Usage

We do not prescribe any form of communication strategy in Polytune, but provide ex-
amples to demonstrate different Polytune integration scenarios https://polytune.org/
examples/channel.html, including a HTTP channel-based implementation and a second
using WASM for Polytune integration into a browser. This version is also deployed at
benchmarking.sine.dev.
Moreover, we aimat providing an easy-to-configuremethod for data analysis – a flexi-

ble componentdesigned to simplify andstreamline thedeploymentofMPCcomputations
across diverse use cases. It allows stakeholders to define and manage secure computa-
tion sessions by specifying:

• What private computation to perform in Polytune – defined as a Garble program.

• Who participates in the computation – identified by IP addresses and ports.

• Who can access the result – agreed upon in advance.

• Which format the inputs and output are provided–we give examples to accessing
these from a database or provided by an HTTP API.

These can be defined dynamically and adapted when necessary. To lower the barrier
toadoption, Polytune’scodebase includesexampleconfigurations (https://github.com/
sine-fdn/polytune/tree/main/examples) that demonstrate howdifferentMPCcomputa-
tions can be initiated and managed. This makes integrating secure multi-party compu-
tation into real-world workflows both intuitive and efficient.

5 Use Cases

At SINE, we explore use cases where secure data collaboration unlocks valuable insights
for data-driven decision-making. Our use case explorations demonstrate that privacy-
preserving technologies are not only a compliance measure but also a driver of new op-
portunities.
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5.1 Privacy-Preserving Data Analysis in the Public Sector

As part of the ATLAS project [8], funded by the German Federal Ministry of Research,
Technology and Space (former Federal Ministry of Education and Research), SINE’s role
is to implement open-source technologies for the privacy-preserving analysis of munic-
ipal data and implement use cases with the German public sector. Our project partner
published an intermediate report on the use case identification process [18], which we
use as inspiration for this section. Even though identifying a suitable use casewhere real-
world data was allowed to be used in a pilot turned out to bemore complex than expected
due to data protection law uncertainties and concerns, we have identified multiple direc-
tions where MPC could provide interesting and valuable insights. Among others, a main
concernwas the unresolved debate ifMPC is a pseudonymization or anonymization tech-
nique according to the GDPR [3, 21].

Measles vaccination data correctness: Under theGermanMeasles Protection Act, cer-
tain groups must provide proof of measles vaccination, otherwise public health of-
fices are notified and follow-up actions are initiated. In this pilot, we aim to corre-
late measles vaccination data from the school entry examination database with the
vaccination database to identify missing reports. It is expected that this will reduce
unnecessary follow-up checks by the health department. We are piloting this use
case in 2025 with the health department of Frankfurt amMain, Germany.

Preventative care and social status: Though preventative health check-ups are gener-
ally covered by health insurance in Germany, attendance is not compulsory. Corre-
lating these preventive health data with other datasets, such as socioeconomic or
socio-democratic data, could give insight into what influences participation in pre-
ventive care and help tailor public health campaigns to underserved groups.

Early childhood support and school entry exam: The school entry examination dataset
inGermany is akeydataset in childhealth, thatprovidescomprehensive information
on early development,medical history, etc. The impact of early childhoodpreventa-
tivemeasurescouldalsobecorrelatedwith thesedatasets, i.e., to see ifmissedearly
childhoodpreventative examinationshavean impact ondevelopmental delays, spe-
cial education needs, etc.

The value of preventative care in education: Several ideas arosewhile considering cor-
relating school entry examination data with educational success data. Interesting
directions could be: analyzing how pre-existing conditions affect school success,
how kindergarten attendance affects educational progress, and what the impact of
support programs on educational outcome is.

Disaster protection: Disaster response teams must support individuals with special
needs during evacuations, such aswhen unexploded ordnance is discovered during
construction. We identified several cases in which MPC can assist civil protection
agencies with capacity planning andmission optimization.

These examples illustrate just a fraction of the potential applications for privacy-
preserving data analysis in the public sector. Many other use cases could be envisioned
across healthcare, education, social services, and crisis management, helping policy-
makers make data-driven decisions while respecting privacy regulations.

5.2 Secure and Collaborative Verification of Emissions Data withMPC

For regulatoryandclimatemitigationpurposes, companies require access tocarbon foot-
prints at product level [24, 16]. Different industry initiatives [28, 25] promote the use of
so-called product carbon footprints (PCFs) for this purpose. PCFs quantify and declare
a product’s greenhouse gas emissions, typically expressed in carbon dioxide equivalents
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Figure 1: Scopes 1, 2, and 3 as introduced by the Greenhouse Gas Protocol [19]

(CO2e), generated throughoutaproduct’s lifecycleof rawmaterial extraction, production,
and distribution (see Figure 1).
Specifically, to calculate a PCF, information about the carbon intensities of all pre-

products, and their distribution, needs tobeknown. Suchemissionsarealso calledScope
3 emissions. Formany product categories, Scope 3 emissions are 80%ormore of a prod-
uct’s total carbon footprint. To improve the accuracyof aPCF, the emissions, especially in
Scope 3, should be calculated from actual measurements, also called primary data [16].
Crucially, tomakePCFsusableand trusted for carbonmitigationmanagementpur-

poses [24, 16], they need to be verifiable. However, companies then often face a critical
challenge: while accurate carbon footprint calculations require transparency, including
data from multiple stakeholders, sharing primary data is not feasible, since it frequently
contains trade secrets – such as supply chain details, production processes, and energy
consumption patterns – that businesses cannot disclose, even for collaborative environ-
mental efforts [24].
MPC can address the privacy and transparency dilemma by enabling collaborative

calculations over encrypted data, especially emissions and primary data as its input
data. The following are some of the use cases that could be possible with MPC.

Detecting statistical outliers in PCF values: Customers collaborate to compare thePCF
values received by their suppliers – while keeping each supplier’s PCF private. This
helps identify anomalies and ensure realistic carbon footprint reporting.

Benchmarking product PCFs: Producers can securely compare their PCF values to in-
dustry benchmarks, allowing e.g., classification into leading, typical, or lagging cat-
egories. This enables fair comparisons without exposing proprietary data.

Validating inputs to PCF calculations: MPCcan also be used to benchmark key inputs –
such as energy use, waste, and logistics – against expected ranges to detect irreg-
ularities.

Benchmarking and comparing product CO2 intensities: Some companies attempt to
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lower reported PCFs by reallocating emissions. MPC can help compare CO2 emis-
sions relative to retail cost, ensuring that reported figures are realistic.

Aligning PCF data with verified corporate emissions: This use case cross-checks a
company’s PCF data with its verified emissions reports (e.g., CSRD reports). By
comparing PCFswith revenue and reported emissions usingMPC, stakeholders can
detect gaps and ensure consistency in a privacy-preservingmanner.

Verifying Primary Data Share (PDS): A customer seeks assurance that a producer’s re-
ported primary data (e.g., material use, emissions, or energy consumption) is ac-
curate, while the producer wants to prove its validity without revealing sensitive de-
tails. Using MPC, the producer and customer – along with other producers in the
value chain– collaborate to securely compute thePCF.This allows verificationwith-
out exposing proprietary data, ensuring trust and transparency in sustainability re-
porting.

PCF Calculation fromScope 1 and Scope 2 emissions only: Since Scope 3 emissions
(indirect emissions from the supply chain) make up the majority of a company’s
footprint, complete verification is difficult. If a full manufacturing graph were avail-
able, PCFcalculationscouldbeverifiedusingonlyScope 1and2emissions, reducing
complexity.

Using open-source PCF calculationmethods: In this process, the PCF is verified
through collaboration between producers and customers. The customer checks
the PCF by running an open-source calculation and comparing the results against
statistical outliers. The customer or verification system can also validate the inputs
to ensure they are within expected ranges.

MPC provides an approach to verifying sustainability claims without compromising
sensitive business information. By enabling secure, collaborative calculations, MPC al-
lows stakeholders to benchmark emissions, detect inconsistencies, and validate car-
bon footprint data with greater confidence. As regulatory requirements for emissions
transparency continue to grow, leveragingMPC for verification can help companiesmeet
compliance standards while maintaining competitive confidentiality. Ultimately, this ap-
proach fosters amore trustworthy and data-driven sustainability landscape, where busi-
nesses can work together to reduce their environmental impact without exposing propri-
etary data.

6 Future Directions

Privacy-enhancing technologies such as secure multi-party computation (MPC) offer a
promisingsolution formanycarbonaccountingchallenges, enablingorganizations tocol-
laborate on environmental data while maintaining confidentiality. As sustainability re-
porting demands increase and supply chain emissions become harder to ignore, MPC
provides a path to shared insights driven by primary data, without compromising com-
petitive advantages. It is important to note that MPC primarily addresses technical and
privacybarriers rather than fundamental incentivemisalignments. Effective implementa-
tion requires robust governance frameworks that establish clear participation incentives,
data quality standards, and equitable value distribution among participants1.
The technology’s potential in sustainability contexts remains largely unexplored. We

invite researchers, sustainability professionals, and industry leaders to investigate appli-
cations for cross-organizational data collaboration on sensitive primary data. Early ex-
perimentation and cross-sector dialogue will be crucial for realizing the transformative
potential of privacy-enhancing technologies such as MPC in climate action.

1https://sine.foundation/datacommons
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