



# Site-specifically wired engineered glucose dehydrogenase

Prof. Lital Alfonta, Department of Life Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Israel

## Technology

Prof. Alfonta developed improved glucose sensing enzyme wired to an electrode allowing more accurate and sensitive glucose measurements. A designed fusion enzyme in a combination with a biocatalytic function from a redox enzyme domain fused to a natural minimal electron transferring domain. The catalytic domain used is the  $\alpha$  sub-unit of a Flavin adenine dinucleotide dependent glucose dehydrogenase (FAD-GDH) from *Burkholderia Cepacia*. It is a thermostable enzyme and known as non-sensitive to oxygen. The minimal electron transferring unit is the c-type cytochrome domain MCR-2, from a protein called MamP which originates from magneto-tactic bacteria. MCR-2 is one of the shortest natural c-type cytochromes known today (23 amino-acids) and thus can be used to achieve DET. Using genetic code expansion, non-canonical amino acids (ncAAs) was introduced into FGM. The recombinant protein was then coupled to an electrode by absorption or by site-specific wiring though the ncAA. Several sites specifically wired mutant enzymes were compared to each other and to a non-specifically wired enzyme, and the surface and activity analyses suggest that the site-specific wiring through different sites maintains the correct folding of the enzyme and have a positive effect on the apparent electrochemical electron transfer rate constant. The glucose sensing achieved was more accurate for glucose with high sensitivity at the tens of micro-molars regime which makes it suitable for wearable biosensing devices. Moreover, higher selectivity was observed towards glucose with low/no reaction to other sugars and commonly used medications that can be influence the measurement.

### Application

The current enzymes and wiring to the electrode can replace the ones being used in invasive, minimally invasive, and non-invasive glucose sensors, including continuous glucose (CGM) sensors to gain more accurate and sensitive measurements.

### Advantages

- High specificity, selectivity, and sensitivity.
- The use of unnatural amino acids (UAAs) with a designated residue that allows biorthogonal chemical modification resulting in a precise and controlled site-specific wiring of the enzyme to the electrode.
- The enzyme can be used to measure glucose from different body fluids such as blood, sweat, tears and urine.
- Can easily replace the current enzymes being used and integrated into existing monitoring devices.
- Resolves the problem of inaccurate Glucose measurement caused by different medications such as Paracetamol (acetaminophen), dopamine, ascorbic acid (vitamin C), and mannitol.

#### Patents

WO2019026082A1; WO2022249186A1