

In Vitro platforms iPSCs-based for drug screening and drug discovery

Dr. Gad D. Vatine, Department of Physiology and Cell Biology, Faculty of Health Sciences, The Regenerative Medicine and Stem Cell Research Center, Zlotowski Center of Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Technology

The blood brain barrier (BBB) is a multi-cellular neuro-vascular unit (NVU) that forms a highly selective barrier between the blood circulation and the central nervous system (CNS). As a result, CNS drug delivery is a major challenge in efficient drug development. Until now models failed to mimic the heterogeneity of the BBB within the different brain regions. *In vivo* animal models are poor predictors of human BBB penetrability. *In vitro* systems currently available fail to mimic the heterogeneity across different regions of the CNS.

Dr. Gad Vatine and his team developed a novel, one of a kind approach to establish brain region-specific NVU platforms for drug screening and discovery. The platforms developed at Ben-Gurion University (BGU) consist of a dual-compartment system, based on Transwell® and microelectrode array (MEA). The top, derived from human induced pluripotent stem cells (iPSCs), are seeded on a porous membrane and form a monolayer that displays physiologically relevant barrier properties. At the bottom, the electrophysiological properties of CNS region-specific primary rat neural cells are measured in real time. Barrier properties were shown to vary across the different region-specific platforms, indicating that these innovative platforms are highly valuable for drug discovery since region-specific BBB permeability and neuronal activity are taken into account.

Advantages

- Novel and easy to use.
- Cost-effective.
- In vitro platforms that simulate physiologically relevant BBB properties and heterogeneity of the different regions of the CNS.

Applications

- Drugs screening platforms that examine BBB penetration.
- Personalized drug screening platforms that consider the diversity in brain penetrability among individuals.

Patent

WO2021/15259A1