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Abstract
Using smartphone location data and a novel application of publicly available employment data, we map how California communities are 
connected to nearby prisons through the movement of prison staff, and we measure the role these connections play in spreading 
infectious diseases. Leveraging an exogenous prisoner transfer-induced COVID-19 outbreak at San Quentin state prison in June 2020 
as a quasiexperiment, we examine the unidirectional spread of the disease from the prison to surrounding communities. This 
outbreak was unique: its origin from outside Northern California was clearly documented and nonstaff entry and exit was severely 
limited during this time. Our identification strategy compares zip codes connected and unconnected to the prison via staff movement. 
Compared to unconnected zip codes with similar pretransfer COVID-19 rates and demographic characteristics (race/ethnicity, 
education, household income, age, and population), zip codes connected to San Quentin had 13% more new COVID-19 cases in July 
and 30% more in August. Our results suggest that a hypothetical novel infectious disease that emerged in California prisons could 
lead to almost 15,000 community infections within 1 month from staff movements alone. These findings identify the degree to which 
“closed institutions” are—even during lockdowns—epidemiologically porous, highlighting the need for public health interventions to 
reduce the unintended consequences of such connections on the spread of infectious disease.
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Significance Statement

It is well recognized that “closed institutions” like prisons pose infectious disease health risks to their incarcerated residents, especial
ly during outbreaks and epidemics. Less well understood is to what degree vulnerabilities within prisons spread to surrounding com
munities and heighten overall epidemic risks. Using smartphone data to identify and track staff movements during a prisoner 
transfer-induced COVID-19 outbreak at San Quentin prison, we find evidence that even during lockdowns, staff transmit 
COVID-19 cases to their communities, and we show that similar patterns can be found using readily available data from the 
Census Bureau. These findings suggest the importance of targeted public health interventions in prisons, as infectious diseases 
can quickly spread not only within prisons but to their broader local population.
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Introduction
In Brown v. Plata 131 S. Ct. 1910, 563 US 493 (2011), the US 
Supreme Court confirmed what many scholars and advocates 
had long argued—that the American criminal legal system creates 
a substantial public health burden. People who have contact with 
the criminal legal system—through arrest, conviction, and incar
ceration—have worse health outcomes along almost every di
mension (1), with consequences for their community’s health. 
Yet, prison staff—and their frequent movement between prisons 
and communities—is an often under-recognized, but potentially 

important, additional vector of disease transmission (2–4). Two re
cent revolutions in technology and global health—the rise of geo
graphic information system (GIS)-enabled smartphones and the 
COVID-19 pandemic—allow us to directly identify how prison 

staff are connected to surrounding communities and the degree 

to which these connections transmit upper respiratory diseases 

to communities.
The largest COVID-19 outbreaks occurred in “closed institu

tions,” such as prisons, jails, and nursing homes (5, 6). These facil

ities concentrate various vulnerabilities—e.g. confined physical 
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spaces and overcrowding, limited resources and personal protect
ive equipment, and individuals with socioeconomic disadvan
tages and health comorbidities—into places of extreme risk. 
Indeed, US prisons were the sites of 39 of the country’s 50 largest 
COVID-19 outbreaks in 2020 (6). People incarcerated in prisons, 
compared to the general population, were five times as likely to 
experience COVID-19 infection and three times as likely to die 
from COVID-19 (7).

The extent of disease transmission from prison COVID-19 out
breaks to the general population is largely unknown. On the one 
hand, prisons may pose little risk to the general population. 
Beginning in March 2020, prisons across the country locked 
down their facilities, prohibiting visitors and programming. 
Although state agencies made different decisions regarding 
when to reopen (8), they appeared to have responded to general 
population case rates, closing back down when infections were 
rising in facilities and communities. On the other hand, despite 
these lockdowns, prisons are more porous than many realize, 
with staff continually moving back and forth between their homes 
and workplaces (4). Notably, in most jurisdictions, agencies did 
not implement universal staff testing for COVID-19 (9), and 
mask mandates were not consistently enforced (10); consequent
ly, prison staff experienced higher positivity rates compared to the 
general population (11, 12).

The role of prison staff movements in COVID-19 disease trans
mission to their surrounding communities is challenging to iden
tify and isolate from other factors. Studies have shown that 
community rates of COVID-19 are related to nearby prison and 
jail COVID-19 rates (2, 3, 13, 14), that other infectious diseases 
move in and out of prisons (15), and that correctional staff are like
ly important vectors of infection in simulation models (16). 
However, observational studies are commonly limited by endoge
neity issues, and correlations between community and prison in
fections do not necessarily identify prison staff as transmission 
vectors, as opposed to other transmission mechanisms, such as 
recent releases of incarcerated people to their communities 
(9, 10, 17) and routine contacts between incarcerated people and 
communities (e.g. for medical care; 18). Moreover, because prison 
staff likely serve as vectors of both disease entry and exit between 
communities and prisons, isolating the causal pathway of disease 
transmission from prisons to communities (as opposed to the re
verse relationship of communities to prisons) is not possible in 
most observational studies.

We leverage multiple sources of “big data,” specifically smart
phone location data purchased from Veraset and publicly avail
able prison property boundary line data from the Department of 
Homeland Security (DHS) to provide evidence on how connected 
different California communities are to prisons and how those 
connections facilitate disease transmission from prisons to com
munities. These data include high-quality and fine-grained infor
mation on which individuals travel to and from prisons and how 
long they spend in prisons and nonprison locations. We also rep
licate these analyses with publicly available LODES (LEHD Origin– 
Destination Employment Statistics) data from the Census Bureau, 
which contain information on the communities where workers 
covered by unemployment insurance live, measured annually 
and over all physical work locations, to illustrate how researchers 
can effectively model prison connectivity and disease transmis
sion in neighboring communities in future research using either 
data source.

The smartphone GPS data have been previously used to docu
ment the mobility of nursing home employees (19), police officers 
(20), and tech firm employees (21). The data include “pings” 

indicating the location of a smartphone at a particular point in 
time and capture 10 to 20% of the US population. Pings are logged 
whenever a participating smartphone application requests loca
tion information, with the modal time between a phone’s two con
secutive pings being roughly 10 min. To identify people who work 
in prisons, we first define a set of small geographic regions 
(∼153 m × 153 m grid cells called “geohash-7” areas) that overlap 
with or are adjacent to prison boundaries. We then identify all 
smartphones that ping within one of those small areas for at least 
10 min within a single 30-min period. This filters out any transient 
phones that, for example, are driving on a nearby road, and en
sures that we identify people who genuinely stop at the prison. 
We then identify and measure connectivity between the prison 
and zip codes by associating the total time spent in prisons for 
all smartphones that “live” in a certain zip code. We define 
the “home” of a smartphone as the zip code that the phone 
spends the most time when outside of prisons (in June to 
October 2020). Appendix Table S1 presents the number of identi
fied phones for 35 state prisons in June 2020, ranging from 60 
(California Correctional Center) to 648 (California Institution for 
Men). Most prisons had between 100 and 200 identified phones. 
Additionally, we compare these smartphone-derived staff counts 
to LODES-based counts; Fig. 1 shows a strong and positive correl
ation, supporting the validity of our smartphone-based measure 
of prison staff.

It is likely that prison staff, rather than visitors to prisons, drive 
these community connections for three reasons. First, as a 
COVID-19 mitigation policy, California prisons prohibited in- 
person visitors during this time. Second, zip codes connected to 
a specific prison are generally close to that specific prison; for ex
ample, zip codes connected to San Quentin are generally neigh
boring areas close to San Quentin (Fig. 2B); prison staff are more 
likely to live close to their place of employment than visitors are 
to live close to their incarcerated family member or friend. 
Third, the zip codes that our smartphone-based measurement 
identifies as connected to prisons do not closely correspond with 
the zip codes where most prisoners lived prior to incarceration 
(22). For example, Fig. 2A reveals that the greater Los Angeles 
area is only loosely connected to prisons on a day-to-day basis 
during the early pandemic even though it is the most heavily 
populated region of California and is the largest contributor to 
the California prison population. Indeed, the correlation between 
zip codes of prisoner origin and zip codes of staff connections is 
low (0.191). Importantly, these smartphone data show, for the first 
time, which California zip codes were the most connected to pris
ons in June 2020 (Fig. 2).

Quantifying how prisons impact community health requires 
differentiating transmission of infection from communities into 
prisons from transmission from prison into communities. In this 
article, we leverage the fact that the source of one prominent 
COVID-19 outbreak in San Quentin State Prison, in Northern 
California, was exogenous to that facility and local COVID-19 con
ditions. This outbreak was caused by transferring 122 incarcer
ated people from the California Institution for Men, in Southern 
California, to San Quentin while the former facility was experien
cing an outbreak (23). Transferred prisoners tested negative for 
COVID-19 more than 2 weeks before being transferred, were 
placed on overcrowded buses for their transport, and 15 of those 
transferred tested positive for COVID-19 shortly after arriving at 
San Quentin. Prison administrators housed the remaining trans
fers in a housing unit without solid doors and allowed staff to 
work in multiple areas throughout the prison, all of which contrib
uted to a massive outbreak among prisoners at that facility (Fig. 3). 
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Alongside the transfer to San Quentin, it is important to note that 
Corcoran State Prison received 67 incarcerated people from 
California Institution for Men and experienced a more limited out
break among its incarcerated population. Corcoran is a newer 
prison compared to San Quentin, with many cells having solid 
doors believed to limit the spread of respiratory infection among 
incarcerated people (23). We focus on the larger San Quentin out
break, but we also report results on community transmission 
from Corcoran in the Materials and methods section and 
Appendix; while the internal Corcoran outbreak was smaller, 
and Corcoran is not identified in the LODES data, we find slightly 
larger rates of transmission into the community via prison staff.

The California Office of the Inspector General concluded that 
these policy and implementation failures caused a “public health 
disaster at San Quentin State Prison” (10); in this study, we identify 
how these failures also endangered the public health of surround
ing communities, extending beyond the prison walls of San 
Quentin. Using monthly counts of zip code-level new COVID-19 
cases from the California Department of Public Health (CDPH), 
we quantify the importance of prison connectivity in disease 
transmission to neighboring communities by testing whether 
this specific prison outbreak at San Quentin led to a differential in
crease in COVID-19 risk in the specific zip codes most connected to 
San Quentin prison due to staff movement.

Our empirical strategy compares the monthly COVID-19 case 
rates following the transfer between connected zip codes (treated) 
and unconnected zip codes (control) that have similar pretransfer 
zip code-level COVID-19 case rates (obtained from the CDPH) and 
demographic characteristics (race/ethnicity, education, house
hold income, age, and population from the 2015–2019 American 
Community Survey [ACS]), using an unconfoundedness-type of 
strategy (a “doubly robust” [DR] matching method, see Materials 
and methods section) to account for nonlinear COVID-19 trans
mission (24). We define “connected” zip codes as areas where 
our smartphone data suggest a connection to San Quentin. 

There are 93 zip codes that are connected to San Quentin, all rela
tively close to the prison. Appendix Table S2 suggests that, on 
average, these zip codes are more dense, have fewer non- 
Hispanic white residents (46%), have higher household incomes, 
and have higher educational attainment than the unconnected 
zip codes in California. Additionally, they had fewer COVID-19 
cases in May 2020 compared to unconnected zip codes. 
Accordingly, we match and weight treated and control zip codes 
on pretransfer COVID-19 cases and demographic variables.

Results
The data show that, 1 month after prisoners were transferred to San 
Quentin, connected zip codes experienced 62 (SE = 23.9) additional 
COVID-19 cases per 100,000 people, and 2 months later this in
creased to 81 (SE = 20.6) additional cases, before the rate of new 
cases converged to the rate in unconnected zip codes. To put these 
numbers in perspective, when added to the actual rate of new 
COVID-19 infections in unconnected zip codes, our estimated aver
age treatment effects show that connected zip codes had 13% more 
new cases in July 2020 and 30% more new cases in August 2020 
(Fig. 4 and Appendix Table S3). This is roughly equivalent to the 
15% increase in COVID-19 cases observed over 11 weeks when a 
nursing home was “connected” to a new facility by a shared employ
ee in mid-2020 (19), and is similar to the 13% increase in COVID-19 
cases attributed to people cycling in and out of Chicago’s Cook 
County jail in early 2020 (13). Replicating these analyses using pub
licly available LODES data describing communities where paid pris
on staff live provides similar results, corresponding to 23% more 
new cases in connected zip codes in July 2020 and 37% more new 
cases in August 2020 (Fig. 4B, also see Appendix Table S3). Both 
the LODES and our smartphone data can be thought of as contain
ing measurement error in the precise movements of all staff, lead
ing our estimates of COVID-19 transmission to be lower bounds of 
the impact of that movement on disease transmission.

Fig. 1. Correlation between prison-level LODES staff counts and smartphone-derived staff measures. The scatterplot displays the relationship between 
aggregated smartphone counts of prison staff from 27 state prisons and the imputed employment level derived from LODES (LEHD-Original Destination 
Statistics) data. The LODES staff count is estimated based on the total number of jobs in the block groups where prisons are located. If a block group 
contains two prisons, the imputed employment level for each prison is calculated by dividing the total block group job count by the number of prisons. 
LODES data is unavailable for the block groups where eight prisons are located, leading to missing estimates for these facilities.
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Of course, even when using a DR matching method, this in
creased rate of disease transmission could reflect the progression 
of COVID-19 in zip codes that were connected to prisons generally, 
rather than San Quentin specifically. This could be the case if zip 

codes that were demographically similar to zip codes connected to 
San Quentin, but not connected to any prison, also had some other 
characteristic not reflected in our census data covariates that 
drove COVID-19 infections in mid-2020. Examples of this could 

Fig. 2. Zip code connectivity to California state prisons in June 2020. A) Overall connectivity (quartiles in green) to all 35 California state prisons (shown 
with yellow dots) in June 2020 and the top quartile of prisoner origin (outlined in orange), with an inset showing the Los Angeles region is displayed. B) Zip 
codes connected (red) or not connected (blue) to San Quentin State Prison in June 2020, with darker blue indicating higher regression-weighting for 
unconnected zip codes as matched-controls in our analysis are highlighted. All connected prisons have the same weight equal to one.

Fig. 3. Weekly COVID-19 cases per 1,000 in California state prisons. The blue line plots new COVID-19 cases per 1,000 people for California Institution for 
Men, the red line plots new COVID-19 cases per 1,000 people for San Quentin State Prison, and the gray lines plot new COVID-19 cases per 1,000 people for 
other state prisons. The orange line indicates the date (2020 May 28) when the prison transfer happened.
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include the ability to comply with shelter-in-place orders (25), pro
pensity to adopt personal protective equipment (26, 27), or polit
ical affiliation (28).

We explore the potential role of unobserved confounding vari
ables by permuting our measure of connectivity across zip codes 
and reestimating our average treatment effect (ATE). The distri
bution of possible effect sizes suggests that the observed timing 
of COVID-19 transmission is unique to communities connected 
to San Quentin, rather than communities connected to any other 
California prison. A total of 34 out of 1,000 estimates for August 
generated from this permutation test were larger than 81 (Fig. 5).

Additional robustness tests—where we match only on pre
transfer COVID-19 case rates (and not demographics), exclude 
outlier zip codes, vary how we define the treated zip codes, include 
interactions between COVID-19 and demographic variables for 

matching, and examine zip codes connected to Corcoran prison 
(which experienced a more limited outbreak resulting from a 
transfer from California Institution for Men)—are included in the 
Appendix. None of these alternate specifications substantively 
change our findings, suggesting that the data, rather than any mod
eling assumptions and/or the uniqueness of the San Quentin case, 
are driving our estimates.

The fact that we identify a similar—and larger—relationship 
in Corcoran prison requires investigation, especially because 
infrastructure-based COVID-19 mitigation strategies (specifically, 
the ability to house transferred prisoners in cells with solid doors) 
were considered at the time to be more effective in Corcoran than 
in San Quentin (10). We believe there are three possible explana
tions for larger effect sizes in the Corcoran analyses: (i) differences 
in preexisting COVID-19 case rates in places connected to 

Fig. 4. Monthly COVID-19 case rate and ATE of connecting to San Quentin State Prison. A) The average monthly COVID-19 cases per 100,000 people for 
connected and unconnected zip codes defined using the smartphone location data, with COVID-19 case rates weighted by the matching-adjustment 
weights for unconnected zip codes are shown. B) The ATE of connecting to San Quentin State Prison in each month, both estimated using the smartphone 
location data and using the LODES data is presented. The gray dashed line represents baseline period (May 2020).
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Corcoran and San Quentin, (ii) differences in the treatment- 
control match quality across the two prisons, and (iii) differences 
in the amount of staff-prisoner contact in Corcoran and San 
Quentin. First, zip codes connected to Corcoran had higher 
COVID-19 case rates prior to the prison outbreak in May 2020 com
pared to those connected to San Quentin. These preexisting higher 
COVID-19 case rates, combined with the nonlinear characteristics 
of COVID-19 infection, likely contributed to the amplified effect 
sizes observed postoutbreak in Corcoran. Second, the matched con
trol group for Corcoran is less comparable to the treated group than 
in the San Quentin case, with a lower COVID-19 case rate in May 
before the outbreak started. This reduced matching quality may 
lead to an overestimation of the treatment effect, especially given 
the nonlinear COVID-19 dynamic. Third, in our smartphone data, 
we find that Corcoran is associated with higher contact levels 
(i.e. more time spent in Corcoran) among its staff compared to 
San Quentin. While Corcoran had robust structural mitigation 
measures, this high level of contact may offset some of these bene
fits, leading to higher overall contact rates and, consequently, larger 
observed effects on community transmission.

Discussion
Though the COVID-19 pandemic may be historically unique, the 
underlying epidemiology is not; like all upper respiratory infec
tions, COVID-19 is easily transmitted across individuals who 
come into close contact with one another, and the period of infec
tious transmission frequently precedes the appearance of symp
toms. In this article, we document geographic variation in how 
connected California communities are to prison environments 
and show evidence that these connections are relevant to the 
spread of infectious diseases from prisons to communities. We 
use high-quality, directly observed geographic movements of pris
on staff to and from their communities, while also illustrating 
how publicly available data from the Census Bureau identifies 
similar patterns of disease transmission. Our quasiexperimental 
setting means we can plausibly estimate the unidirectional vector 

of transmission from prison to surrounding communities. Of 
course, we focus only on short-term transmission; by construc
tion, we exclude any subsequent transmission from a staff mem
ber’s zip code to other zip codes. This means we estimate a lower 
bound of the total extent to which prisons accelerated the trans
mission of COVID-19 among the general population.

To provide context for the size of this potential source of upper 
respiratory tract infection transmission, we conducted a hypo
thetical, back-of-the-envelope calculation. Suppose that a new 
upper respiratory tract infection appeared in California prisons, 
with infection rates that were equal to COVID-19 in June 2020. 
Based on our zip code connectivity matrix and our estimated aver
age treatment effects, we estimate that the prison staff vector 
would lead to a total of 14,724 community infections statewide 1 
month later and 19,243 infections statewide 2 months later.a

Our analysis shows that disease outbreaks in prison have first- 
order impacts on the communities where prison staff live and 
spend time. Without negating the importance of understanding 
the implications of incarceration for the public health of the sys
tematically disadvantaged communities that lose residents to 
prison, our research shows that prisons can also lead to negative 
public health consequences for the people who work in those fa
cilities and their communities. This is an under-recognized vector 
of disease transmission that can be addressed through careful im
plementation of existing policies and recommended practices, in
cluding better enforcement of mask-wearing, routine staff 
testing, and paid medical leave for prison staff.

Materials and methods
Measuring prison-zip code connectivity
We measure prison-zip code connectivity by combining smart
phone location data with prison facility boundary data from the 
DHS, with a focus on the 35 state prisons operating in California 
in 2020. Given the restrictions on smartphone usage within prison 
facilities, we expand the prison boundary to include neighboring 
geohash-7 (a 153 m × 153 m grid) areas covering the prison 

Fig. 5. ATE distributions for San Quentin State Prison connectivity permutation, August 2020. This figure displays DR estimates matched on pretransfer 
COVID-19 and demographic variables when permutating the connection between zip codes and San Quentin State Prison.
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boundary. In other words, we define “expanded prison boundary” 
as all geohash-7 s covering both the prison fence line and adjacent 
spaces, which usually are parking lots (and sometimes highways, 
see Appendix Fig. S1). The probability of misidentification is min
imal, as California state prisons are typically situated in rural 
areas and well-separated from other infrastructures.

To identify prison staff, we create a “daily presence filter” that 
allows us to exclude smartphones that are simply passing by or 
temporarily near a prison facility. For computational reasons, 
the first step is to identify all smartphones that are within our ex
panded prison boundary at any point. Next, we discretize the data 
into geohash-7 × half-hour intervals, requiring each smartphone 
spend at least 10 min in the same geohash cell during any 30-min 
window. This second filter ensures that we only classify phones 
belonging to individuals who genuinely stop at the prison, rather 
than those who may have entered the boundary momentarily. 
We validated this measurement in three ways. First, we compared 
the number of phones we identify with public sources, including 
LODES data (Fig. 1) and county-level staff counts from the 
Bureau of Labor Statistics’ Quarterly Census of Employment and 
Wages (QCEW), which provides county-level counts of correction
al officers as of June 2020. We find that the number of phones we 
identify is highly correlated with these data sources (Figs. 1 and 
S2). Second, to address the possibility of misclassification, we pre
sent results when excluding phones with only one ping in the pris
on (Table S14), which yields similar estimates to our main finding. 
Third, in Table S9 we demonstrate the robustness of our findings 
by varying the threshold for treated zip codes from 30-min to more 
than 10 h and find similar results across these specifications.

To identify connections between prison staff in San Quentin 
and zip codes, we link geohash-7 s to zip code tabulation areas 
(ZCTAs)—mailing areas covered by zip codes created by the 
Census Bureau and referred to as “zip codes” throughout the art
icle—based on their centroid and define the phone’s home zip 
code as the zip code that the phone spent the most time when out
side of the expanded prison boundaries during June to October 
2020. This approach ensures that transient visits, such as phones 
passing through a highway, do not lead to misclassification of zip 
codes as connected to prisons.

We replicate our analysis using the LODES data, which provides 
information detailing the number of jobs for each home–work
place census block pair. This allows us to identify the home loca
tion of prison staff and create an analogous connectivity measure 
between San Quentin State Prison and zip codes.b Specifically, we 
calculate the total primary jobs for individuals working in the 
block group encompassing San Quentin State Prison in 2020 and 
residing in different census tracts.c We then aggregate the tract- 
level job to the zip code level using a census tract-zip code cross
walk based on the proportion of the tract’s population within each 
zip code. A zip code is similarly considered connected to a prison if 
it has any workers employed at the San Quentin State Prison.

Though LODES offers detailed spatial data on origin–destination 
workflow that enables research on disease transmission, it has lim
itations compared to smartphone location data. LODES data may 
reflect the administrative rather than the actual worksite location 
(29). It is released annually and may lack precision about the timing 
of geographic movements and is subject to confidentiality protec
tions that may introduce noise or suppress information. Indeed, 
employees working in the block group where Corcoran is located 
are not reported in the LODES for this reason. Additionally, while 
less common in correctional settings than other industries, 
LODES does not differentiate between remote and “on site” work. 
All these data concerns could potentially complicate the inferences 

about the impact of connectivity between prisons and local com
munities. For the purposes of tracking disease, either the LODES 
or smartphone data could be more precise measures of worker con
nectivity, depending on the specific context.

Empirical strategy
We investigate the public health impact of prison-zip code con
nectivity by exploiting an exogenous COVID-19 outbreak in San 
Quentin State Prison in June 2020 due to a prisoner transfer 
from California Institution for Men. We examine whether the out
break in San Quentin led to a differential increase in COVID-19 
case rates—collected from the CDPH—in zip codes that were con
nected to San Quentin State Prison (i.e. treated zip codes) com
pared to those without this connection (i.e. control zip codes).d

We follow Callaway and Li (24) and estimate the effect of con
necting to San Quentin State Prison after its outbreak in June 2020 
using an unconfoundedness-type of strategy that compares con
nected zip codes with unconnected, matched zip codes that 
have similar pretransfer COVID-19 and similar demographic char
acteristics. This strategy is motivated by the fact that the spread of 
local COVID-19 cases is highly nonlinear over time. Common 
epidemiological models (e.g. Susceptible-Exposed-Infectious- 
Removed [SEIR], Susceptible-Infected-Recovered-Dead [SIRD]) 
treat COVID-19 transmission as a function of the number of cur
rently infected individuals, the number of susceptible individuals 
in a location, and the transmission properties of COVID-19 (e.g. in
fection rate). Traditional difference-in-differences (DiD) strategies 
may introduce bias as different initial COVID-19 conditions be
tween treated and control zip codes can lead to dynamic differen
ces in how the pandemic evolves in different locations, violating 
the parallel trend assumption underlying the DiD strategy. 
Callaway and Li (24) propose an alternative identification strategy 
that compares locations with similar pretreatment “states” of 
COVID-19 case rates, suggesting this unconfoundedness-type of 
strategy is more suited to examine the nonlinearity of COVID-19 
transmission.

Specifically, this strategy involves estimating the propensity 
score of being connected to San Quentin State Prison (i.e. inverse 
probability weighting [IPW]) and estimating changes in COVID-19 
cases among unconnected zip codes (i.e. outcome regression 
[OR]), using the same set of covariates: pretransfer COVID-19 case 
rates and demographics from the 2015–2019 ACS aggregated to 
the zip code level. It provides a DR estimate of the effect of con
necting to San Quentin prison on community COVID-19 trans
mission, in the sense that the estimate is consistent if either 
the propensity score model or OR model is correctly specified. 
To estimate the average treatment effect on the treated (ATT), 
we first use IPW by weighting the control zip codes based on 
the estimated propensity score, where we estimate the probabil
ity of being connected to the San Quentin conditional on pre
transfer covariates:

P(tr = 1|X) = Λ(Xβ) (1) 

IPW =
Λ(Xβ)

1 − Λ(Xβ)
, (2) 

where Λ() represents the logistic function, X denotes the vector 
of pretransfer covariates. The ATT using the IPW approach is 
given by:

ATTIPW = E(Δy(1)) − E(Δy(0); IPW). (3) 

Next, we employ the OR approach, estimating changes in the 
outcome among the control zip codes conditional on the same 

Zhuo et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/4/6/pgaf180/8158519 by guest on 09 O
ctober 2025

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf180#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf180#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf180#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf180#supplementary-data


set of covariates, and averaging over the distribution of covari
ates for treated zip codes to estimate the ATT:

Δy(0) = X0β + ei (4) 

Δŷ(1) = X1β̂ (5) 

ATTOR = E(Δy(1)) − X1β̂. (6) 

Finally, we integrate both approaches in a DR estimator, which 
combines the strengths of IPW and OR:

ATTDR = E(Δy(1) − X1β̂|tr = 1) − E(Δy(0) − X0β̂|tr = 0; IPW). (7) 

The estimates under this strategy are consistent if either the 
model for the propensity score or OR is correctly specified (i.e. 
DR) (30). Moreover, these DR estimates of the impact of prison 
connectivity are compatible with epidemiological models that 
model the nonlinear spread of COVID-19 cases (24).

In our main analysis, we match treated and control zip codes 
on pretransfer COVID-19 variables, including the cubic polyno
mial functions of the number of cases in May 2020, cumulative 
cases in May 2020, and the logarithm of zip code population 
from 2015–2019 ACS, as well as demographic characteristics, in
cluding percentages of Black, White, and Hispanic residents; the 
percentage of residents with a college degree; median household 
income; and the percentage of residents above age 65, again 
from 2015–2019 ACS. Research shows that the transmission rate 
of COVID-19 could be influenced by neighborhood demographics 
including socioeconomic status such as income and education 
(31, 32), race/ethnicity (31–34), and age (35). Moreover, the extent 
to which observed case counts reflect the true number of infec
tions is influenced by availability and access to tests, which are 
likely patterned by socioeconomic and demographic factors (36). 
Although our preferred specification includes both pretransfer 
COVID-19 and demographic characteristics for matching, the 
Appendix provides results when we match treated and control 
zip codes solely on COVID-19 variables. Appendix Figure S3 illus
trates propensity score distributions before and after weighting 
for treated and control zip codes, showing nearly identical distri
bution for the propensity score among treated and control zip co
des after the weighting. Table S2 also suggests that the pretransfer 
COVID-19 and demographic characteristics are balanced after the 
weighting adjustment.

Notably, our findings are quantitatively similar under alterna
tive specifications. To account for variations in COVID-19 trans
mission rate by demographics, in Appendix Table S4, we 
additionally include interactions between pretransfer COVID-19 
variables and demographic variables during matching in addition 
to the existing covariates. In Appendix Tables S5, S6, and S7, we 
find consistent estimates when excluding zip codes containing 
prisons or excluding zip codes that are linked to other two prisons 
(Avenal State Prison and Chuckawalla Valley State Prison) that 
had reported COVID-19 outbreaks during June 2020, mitigating 
concerns that the results are driven by these specific zip codes. 
In Appendix Fig. S4, we find similar estimates matched on pre
transfer COVID-19 variables when permuting our measure of con
nectivity across zip codes and reestimating our ATE.

We also explore alternative definitions of treated groups. For 
instance, we define a connection in June 2020 using varying time 
duration cutoffs (i.e. zip codes are connected to a prison if phones 
from that zip code spend more than 0.5, 1, 1.5, 2, 2.5, 5, and 10 h in 
prisons) in Appendix Tables S8 and S9. In Appendix Table S10, we 
define treated groups based on preperiod connections from March 

2020 to May 2020 instead of connections in June 2020. Appendix 
Tables S11 and S12 report estimates from alternative estimators 
in addition to the DR estimators, including the inverse propensity 
weighting estimator and the OR estimator. In Appendix Table S13, 
we replicate results when defining home zip codes using the zip 
code where the phone spent the most time from January to 
October 2020 (instead of the second half of 2020). In Appendix 
Table S14, we report results when we exclude phones with only 
one ping inside San Quentin State Prison in June 2020. Finally, in 
Appendix Table S15, we find a similar increase in case rates for 
zip codes connected to Corcoran State Prison compared to uncon
nected zip codes, which experienced a smaller internal COVID-19 
outbreak. Across these analyses, our preferred strategy matches 
on both pretransfer COVID-19 and demographics (rather than 
COVID-19 case rates alone). Overall, the similarity of our esti
mates suggests that, in the summer of 2020, facility-level vari
ation in prisoner protection from COVID-19 was greater than 
facility-level variation in protection for staff.

Notes
a Specifically, we define a prison as having experienced an outbreak if 

the number of new cases in that prison exceeds 100 in June 2020. 
Under this definition, 8 out of 35 state prisons experience a prison 
outbreak. We then estimate how these prison outbreaks will lead 
to increase in COVID-19 case rates in zip codes that are connected 
to prisons experiencing outbreak.

b Actual prison locations are reported in the LODES in California be
cause of the structure of the California Department of Corrections 
and Rehabilitation (CDCR) payroll. This is not the case for govern
ment employees in all states.

c The boundary of the block group containing San Quentin State 
Prison closely matches the boundary of San Quentin itself.

d Technically, the COVID-19 case rate data are available at the zip 
code level, which we matched to ZCTAs using the zip code-ZCTA 
crosswalk provided by the department of Housing and Urban 
Development. In cases where a single ZCTA is associated with mul
tiple zip codes (representing <2% of the observations), we use the 
maximum COVID-19 case rate among these zip codes.
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Data Availability
All data used in this article are publicly available. ACS 5-year es
timate and LEHD Origin–Destination Employment Statistics 
Data are available from the US Census Bureau (37, 38). Prison 
boundary data are available from DHS (39), QCEW are available 
from Bureau of Labor Statistics (40). Smartphone ping data are 
available by purchase from Veraset LLC (41). Replication materi
als containing all code required to reproduce our analyses and 
results are available at Harvard Dataverse: https://doi.org/10. 
7910/DVN/2PUGRA.
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