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Abstract

Using smartphone location data and a novel application of publicly available employment data, we map how California communities are
connected to nearby prisons through the movement of prison staff, and we measure the role these connections play in spreading
infectious diseases. Leveraging an exogenous prisoner transfer-induced COVID-19 outbreak at San Quentin state prison in June 2020
as a quasiexperiment, we examine the unidirectional spread of the disease from the prison to surrounding communities. This
outbreak was unique: its origin from outside Northern California was clearly documented and nonstaff entry and exit was severely
limited during this time. Our identification strategy compares zip codes connected and unconnected to the prison via staff movement.
Compared to unconnected zip codes with similar pretransfer COVID-19 rates and demographic characteristics (race/ethnicity,
education, household income, age, and population), zip codes connected to San Quentin had 13% more new COVID-19 cases in July
and 30% more in August. Our results suggest that a hypothetical novel infectious disease that emerged in California prisons could
lead to almost 15,000 community infections within 1 month from staff movements alone. These findings identify the degree to which
“closed institutions” are—even during lockdowns—epidemiologically porous, highlighting the need for public health interventions to
reduce the unintended consequences of such connections on the spread of infectious disease.
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Significance Statement

Itis well recognized that “closed institutions” like prisons pose infectious disease health risks to their incarcerated residents, especial-
ly during outbreaks and epidemics. Less well understood is to what degree vulnerabilities within prisons spread to surrounding com-
munities and heighten overall epidemic risks. Using smartphone data to identify and track staff movements during a prisoner
transfer-induced COVID-19 outbreak at San Quentin prison, we find evidence that even during lockdowns, staff transmit
COVID-19 cases to their communities, and we show that similar patterns can be found using readily available data from the
Census Bureau. These findings suggest the importance of targeted public health interventions in prisons, as infectious diseases
can quickly spread not only within prisons but to their broader local population.

Introduction

In Brown v. Plata 131 S. Ct. 1910, 563 US 493 (2011), the US
Supreme Court confirmed what many scholars and advocates
hadlongargued—that the American criminallegal system creates
a substantial public health burden. People who have contact with

important, additional vector of disease transmission (2-4). Twore-
cent revolutions in technology and global health—the rise of geo-
graphic information system (GIS)-enabled smartphones and the
COVID-19 pandemic—allow us to directly identify how prison
staff are connected to surrounding communities and the degree

the criminal legal system—through arrest, conviction, and incar-
ceration—have worse health outcomes along almost every di-
mension (1), with consequences for their community’s health.
Yet, prison staff—and their frequent movement between prisons
and communities—is an often under-recognized, but potentially

to which these connections transmit upper respiratory diseases
to communities.

The largest COVID-19 outbreaks occurred in “closed institu-
tions,” such as prisons, jails, and nursing homes (5, 6). These facil-
ities concentrate various vulnerabilities—e.g. confined physical
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spaces and overcrowding, limited resources and personal protect-
ive equipment, and individuals with socioeconomic disadvan-
tages and health comorbidities—into places of extreme risk.
Indeed, US prisons were the sites of 39 of the country’s 50 largest
COVID-19 outbreaks in 2020 (6). People incarcerated in prisons,
compared to the general population, were five times as likely to
experience COVID-19 infection and three times as likely to die
from COVID-19 (7).

The extent of disease transmission from prison COVID-19 out-
breaks to the general population is largely unknown. On the one
hand, prisons may pose little risk to the general population.
Beginning in March 2020, prisons across the country locked
down their facilities, prohibiting visitors and programming.
Although state agencies made different decisions regarding
when to reopen (8), they appeared to have responded to general
population case rates, closing back down when infections were
rising in facilities and communities. On the other hand, despite
these lockdowns, prisons are more porous than many realize,
with staff continually moving back and forth between their homes
and workplaces (4). Notably, in most jurisdictions, agencies did
not implement universal staff testing for COVID-19 (9), and
mask mandates were not consistently enforced (10); consequent-
ly, prison staff experienced higher positivity rates compared to the
general population (11, 12).

The role of prison staff movements in COVID-19 disease trans-
mission to their surrounding communities is challenging to iden-
tify and isolate from other factors. Studies have shown that
community rates of COVID-19 are related to nearby prison and
jail COVID-19 rates (2, 3, 13, 14), that other infectious diseases
move in and out of prisons (15), and that correctional staff are like-
ly important vectors of infection in simulation models (16).
However, observational studies are commonly limited by endoge-
neity issues, and correlations between community and prison in-
fections do not necessarily identify prison staff as transmission
vectors, as opposed to other transmission mechanisms, such as
recent releases of incarcerated people to their communities
(9, 10, 17) and routine contacts between incarcerated people and
communities (e.g. for medical care; 18). Moreover, because prison
staff likely serve as vectors of both disease entry and exit between
communities and prisons, isolating the causal pathway of disease
transmission from prisons to communities (as opposed to the re-
verse relationship of communities to prisons) is not possible in
most observational studies.

We leverage multiple sources of “big data,” specifically smart-
phone location data purchased from Veraset and publicly avail-
able prison property boundary line data from the Department of
Homeland Security (DHS) to provide evidence on how connected
different California communities are to prisons and how those
connections facilitate disease transmission from prisons to com-
munities. These data include high-quality and fine-grained infor-
mation on which individuals travel to and from prisons and how
long they spend in prisons and nonprison locations. We also rep-
licate these analyses with publicly available LODES (LEHD Origin-
Destination Employment Statistics) data from the Census Bureau,
which contain information on the communities where workers
covered by unemployment insurance live, measured annually
and over all physical work locations, to illustrate how researchers
can effectively model prison connectivity and disease transmis-
sion in neighboring communities in future research using either
data source.

The smartphone GPS data have been previously used to docu-
ment the mobility of nursing home employees (19), police officers
(20), and tech firm employees (21). The data include “pings”

indicating the location of a smartphone at a particular point in
time and capture 10 to 20% of the US population. Pings are logged
whenever a participating smartphone application requests loca-
tion information, with the modal time between a phone’s two con-
secutive pings being roughly 10 min. To identify people who work
in prisons, we first define a set of small geographic regions
(~153 mx 153 m grid cells called “geohash-7" areas) that overlap
with or are adjacent to prison boundaries. We then identify all
smartphones that ping within one of those small areas for at least
10 min within a single 30-min period. This filters out any transient
phones that, for example, are driving on a nearby road, and en-
sures that we identify people who genuinely stop at the prison.
We then identify and measure connectivity between the prison
and zip codes by associating the total time spent in prisons for
all smartphones that “live” in a certain zip code. We define
the “home” of a smartphone as the zip code that the phone
spends the most time when outside of prisons (in June to
October 2020). Appendix Table S1 presents the number of identi-
fied phones for 35 state prisons in June 2020, ranging from 60
(California Correctional Center) to 648 (California Institution for
Men). Most prisons had between 100 and 200 identified phones.
Additionally, we compare these smartphone-derived staff counts
to LODES-based counts; Fig. 1 shows a strong and positive correl-
ation, supporting the validity of our smartphone-based measure
of prison staff.

Itis likely that prison staff, rather than visitors to prisons, drive
these community connections for three reasons. First, as a
COVID-19 mitigation policy, California prisons prohibited in-
person visitors during this time. Second, zip codes connected to
a specific prison are generally close to that specific prison; for ex-
ample, zip codes connected to San Quentin are generally neigh-
boring areas close to San Quentin (Fig. 2B); prison staff are more
likely to live close to their place of employment than visitors are
to live close to their incarcerated family member or friend.
Third, the zip codes that our smartphone-based measurement
identifies as connected to prisons do not closely correspond with
the zip codes where most prisoners lived prior to incarceration
(22). For example, Fig. 2A reveals that the greater Los Angeles
area is only loosely connected to prisons on a day-to-day basis
during the early pandemic even though it is the most heavily
populated region of California and is the largest contributor to
the California prison population. Indeed, the correlation between
zip codes of prisoner origin and zip codes of staff connections is
low (0.191). Importantly, these smartphone data show, for the first
time, which California zip codes were the most connected to pris-
ons in June 2020 (Fig. 2).

Quantifying how prisons impact community health requires
differentiating transmission of infection from communities into
prisons from transmission from prison into communities. In this
article, we leverage the fact that the source of one prominent
COVID-19 outbreak in San Quentin State Prison, in Northern
California, was exogenous to that facility and local COVID-19 con-
ditions. This outbreak was caused by transferring 122 incarcer-
ated people from the California Institution for Men, in Southern
California, to San Quentin while the former facility was experien-
cing an outbreak (23). Transferred prisoners tested negative for
COVID-19 more than 2 weeks before being transferred, were
placed on overcrowded buses for their transport, and 15 of those
transferred tested positive for COVID-19 shortly after arriving at
San Quentin. Prison administrators housed the remaining trans-
fers in a housing unit without solid doors and allowed staff to
work in multiple areas throughout the prison, all of which contrib-
uted to a massive outbreak among prisoners at that facility (Fig. 3).
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Fig. 1. Correlation between prison-level LODES staff counts and smartphone-derived staff measures. The scatterplot displays the relationship between
aggregated smartphone counts of prison staff from 27 state prisons and the imputed employment level derived from LODES (LEHD-Original Destination
Statistics) data. The LODES staff count is estimated based on the total number of jobs in the block groups where prisons are located. If a block group
contains two prisons, the imputed employment level for each prison is calculated by dividing the total block group job count by the number of prisons.
LODES data is unavailable for the block groups where eight prisons are located, leading to missing estimates for these facilities.

Alongside the transfer to San Quentin, it is important to note that
Corcoran State Prison received 67 incarcerated people from
California Institution for Men and experienced a more limited out-
break among its incarcerated population. Corcoran is a newer
prison compared to San Quentin, with many cells having solid
doors believed to limit the spread of respiratory infection among
incarcerated people (23). We focus on the larger San Quentin out-
break, but we also report results on community transmission
from Corcoran in the Materials and methods section and
Appendix; while the internal Corcoran outbreak was smaller,
and Corcoran is not identified in the LODES data, we find slightly
larger rates of transmission into the community via prison staff.

The California Office of the Inspector General concluded that
these policy and implementation failures caused a “public health
disaster at San Quentin State Prison” (10); in this study, we identify
how these failures also endangered the public health of surround-
ing communities, extending beyond the prison walls of San
Quentin. Using monthly counts of zip code-level new COVID-19
cases from the California Department of Public Health (CDPH),
we quantify the importance of prison connectivity in disease
transmission to neighboring communities by testing whether
this specific prison outbreak at San Quentin led to a differential in-
crease in COVID-19risk in the specific zip codes most connected to
San Quentin prison due to staff movement.

Our empirical strategy compares the monthly COVID-19 case
rates following the transfer between connected zip codes (treated)
and unconnected zip codes (control) that have similar pretransfer
zip code-level COVID-19 case rates (obtained from the CDPH) and
demographic characteristics (race/ethnicity, education, house-
hold income, age, and population from the 2015-2019 American
Community Survey [ACS]), using an unconfoundedness-type of
strategy (a “doubly robust” [DR] matching method, see Materials
and methods section) to account for nonlinear COVID-19 trans-
mission (24). We define “connected” zip codes as areas where
our smartphone data suggest a connection to San Quentin.

There are 93 zip codes that are connected to San Quentin, all rela-
tively close to the prison. Appendix Table S2 suggests that, on
average, these zip codes are more dense, have fewer non-
Hispanic white residents (46%), have higher household incomes,
and have higher educational attainment than the unconnected
zip codes in California. Additionally, they had fewer COVID-19
cases in May 2020 compared to unconnected zip codes.
Accordingly, we match and weight treated and control zip codes
on pretransfer COVID-19 cases and demographic variables.

Results

The data show that, 1 month after prisoners were transferred to San
Quentin, connected zip codes experienced 62 (SE = 23.9) additional
COVID-19 cases per 100,000 people, and 2 months later this in-
creased to 81 (SE=20.6) additional cases, before the rate of new
cases converged to the rate in unconnected zip codes. To put these
numbers in perspective, when added to the actual rate of new
COVID-19 infections in unconnected zip codes, our estimated aver-
age treatment effects show that connected zip codes had 13% more
new cases in July 2020 and 30% more new cases in August 2020
(Fig. 4 and Appendix Table S3). This is roughly equivalent to the
15% increase in COVID-19 cases observed over 11 weeks when a
nursing home was “connected” to a new facility by a shared employ-
ee in mid-2020 (19), and is similar to the 13% increase in COVID-19
cases attributed to people cycling in and out of Chicago’'s Cook
County jail in early 2020 (13). Replicating these analyses using pub-
licly available LODES data describing communities where paid pris-
on staff live provides similar results, corresponding to 23% more
new cases in connected zip codes in July 2020 and 37% more new
cases in August 2020 (Fig. 4B, also see Appendix Table S3). Both
the LODES and our smartphone data can be thought of as contain-
ing measurement error in the precise movements of all staff, lead-
ing our estimates of COVID-19 transmission to be lower bounds of
the impact of that movement on disease transmission.
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ected to San Quentin Prison

Fig. 2. Zip code connectivity to California state prisons in June 2020. A) Overall connectivity (quartiles in green) to all 35 California state prisons (shown
with yellow dots) in June 2020 and the top quartile of prisoner origin (outlined in orange), with an inset showing the Los Angeles region is displayed. B) Zip
codes connected (red) or not connected (blue) to San Quentin State Prison in June 2020, with darker blue indicating higher regression-weighting for
unconnected zip codes as matched-controls in our analysis are highlighted. All connected prisons have the same weight equal to one.
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Fig. 3. Weekly COVID-19 cases per 1,000 in California state prisons. The blue line plots new COVID-19 cases per 1,000 people for California Institution for
Men, the red line plots new COVID-19 cases per 1,000 people for San Quentin State Prison, and the gray lines plot new COVID-19 cases per 1,000 people for
other state prisons. The orange line indicates the date (2020 May 28) when the prison transfer happened.

Of course, even when using a DR matching method, this in- codes that were demographically similar to zip codes connected to
creased rate of disease transmission could reflect the progression San Quentin, but not connected to any prison, also had some other
of COVID-19in zip codes that were connected to prisons generally, characteristic not reflected in our census data covariates that

rather than San Quentin specifically. This could be the case if zip drove COVID-19 infections in mid-2020. Examples of this could
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Fig. 4. Monthly COVID-19 case rate and ATE of connecting to San Quentin State Prison. A) The average monthly COVID-19 cases per 100,000 people for
connected and unconnected zip codes defined using the smartphone location data, with COVID-19 case rates weighted by the matching-adjustment
weights for unconnected zip codes are shown. B) The ATE of connecting to San Quentin State Prison in each month, both estimated using the smartphone
location data and using the LODES data is presented. The gray dashed line represents baseline period (May 2020).

include the ability to comply with shelter-in-place orders (25), pro-
pensity to adopt personal protective equipment (26, 27), or polit-
ical affiliation (28).

We explore the potential role of unobserved confounding vari-
ables by permuting our measure of connectivity across zip codes
and reestimating our average treatment effect (ATE). The distri-
bution of possible effect sizes suggests that the observed timing
of COVID-19 transmission is unique to communities connected
to San Quentin, rather than communities connected to any other
California prison. A total of 34 out of 1,000 estimates for August
generated from this permutation test were larger than 81 (Fig. 5).

Additional robustness tests—where we match only on pre-
transfer COVID-19 case rates (and not demographics), exclude
outlier zip codes, vary how we define the treated zip codes, include
interactions between COVID-19 and demographic variables for

matching, and examine zip codes connected to Corcoran prison
(which experienced a more limited outbreak resulting from a
transfer from California Institution for Men)—are included in the
Appendix. None of these alternate specifications substantively
change our findings, suggesting that the data, rather than any mod-
eling assumptions and/or the uniqueness of the San Quentin case,
are driving our estimates.

The fact that we identify a similar—and larger—relationship
in Corcoran prison requires investigation, especially because
infrastructure-based COVID-19 mitigation strategies (specifically,
the ability to house transferred prisoners in cells with solid doors)
were considered at the time to be more effective in Corcoran than
in San Quentin (10). We believe there are three possible explana-
tions for larger effect sizes in the Corcoran analyses: (i) differences
in preexisting COVID-19 case rates in places connected to
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Permutation Result: Matched on COVID-19 Variables and Demographics
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Fig. 5. ATE distributions for San Quentin State Prison connectivity permutation, August 2020. This figure displays DR estimates matched on pretransfer
COVID-19 and demographic variables when permutating the connection between zip codes and San Quentin State Prison.

Corcoran and San Quentin, (ii) differences in the treatment-
control match quality across the two prisons, and (iii) differences
in the amount of staff-prisoner contact in Corcoran and San
Quentin. First, zip codes connected to Corcoran had higher
COVID-19 case rates prior to the prison outbreak in May 2020 com-
pared to those connected to San Quentin. These preexisting higher
COVID-19 case rates, combined with the nonlinear characteristics
of COVID-19 infection, likely contributed to the amplified effect
sizes observed postoutbreak in Corcoran. Second, the matched con-
trol group for Corcoran is less comparable to the treated group than
in the San Quentin case, with a lower COVID-19 case rate in May
before the outbreak started. This reduced matching quality may
lead to an overestimation of the treatment effect, especially given
the nonlinear COVID-19 dynamic. Third, in our smartphone data,
we find that Corcoran is associated with higher contact levels
(i.e. more time spent in Corcoran) among its staff compared to
San Quentin. While Corcoran had robust structural mitigation
measures, this high level of contact may offset some of these bene-
fits, leading to higher overall contact rates and, consequently, larger
observed effects on community transmission.

Discussion

Though the COVID-19 pandemic may be historically unique, the
underlying epidemiology is not; like all upper respiratory infec-
tions, COVID-19 is easily transmitted across individuals who
come into close contact with one another, and the period of infec-
tious transmission frequently precedes the appearance of symp-
toms. In this article, we document geographic variation in how
connected California communities are to prison environments
and show evidence that these connections are relevant to the
spread of infectious diseases from prisons to communities. We
use high-quality, directly observed geographic movements of pris-
on staff to and from their communities, while also illustrating
how publicly available data from the Census Bureau identifies
similar patterns of disease transmission. Our quasiexperimental
setting means we can plausibly estimate the unidirectional vector

of transmission from prison to surrounding communities. Of
course, we focus only on short-term transmission; by construc-
tion, we exclude any subsequent transmission from a staff mem-
ber’s zip code to other zip codes. This means we estimate a lower
bound of the total extent to which prisons accelerated the trans-
mission of COVID-19 among the general population.

To provide context for the size of this potential source of upper
respiratory tract infection transmission, we conducted a hypo-
thetical, back-of-the-envelope calculation. Suppose that a new
upper respiratory tract infection appeared in California prisons,
with infection rates that were equal to COVID-19 in June 2020.
Based on our zip code connectivity matrix and our estimated aver-
age treatment effects, we estimate that the prison staff vector
would lead to a total of 14,724 community infections statewide 1
month later and 19,243 infections statewide 2 months later.a

Our analysis shows that disease outbreaks in prison have first-
order impacts on the communities where prison staff live and
spend time. Without negating the importance of understanding
the implications of incarceration for the public health of the sys-
tematically disadvantaged communities that lose residents to
prison, our research shows that prisons can also lead to negative
public health consequences for the people who work in those fa-
cilities and their communities. This is an under-recognized vector
of disease transmission that can be addressed through careful im-
plementation of existing policies and recommended practices, in-
cluding better enforcement of mask-wearing, routine staff
testing, and paid medical leave for prison staff.

Materials and methods

Measuring prison-zip code connectivity

We measure prison-zip code connectivity by combining smart-
phone location data with prison facility boundary data from the
DHS, with a focus on the 35 state prisons operating in California
in 2020. Given the restrictions on smartphone usage within prison
facilities, we expand the prison boundary to include neighboring
geohash-7 (a 153mx153m grid) areas covering the prison
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boundary. In other words, we define “expanded prison boundary”
as all geohash-7 s covering both the prison fence line and adjacent
spaces, which usually are parking lots (and sometimes highways,
see Appendix Fig. S1). The probability of misidentification is min-
imal, as California state prisons are typically situated in rural
areas and well-separated from other infrastructures.

To identify prison staff, we create a “daily presence filter” that
allows us to exclude smartphones that are simply passing by or
temporarily near a prison facility. For computational reasons,
the first step is to identify all smartphones that are within our ex-
panded prison boundary at any point. Next, we discretize the data
into geohash-7 x half-hour intervals, requiring each smartphone
spend at least 10 min in the same geohash cell during any 30-min
window. This second filter ensures that we only classify phones
belonging to individuals who genuinely stop at the prison, rather
than those who may have entered the boundary momentarily.
We validated this measurement in three ways. First, we compared
the number of phones we identify with public sources, including
LODES data (Fig. 1) and county-level staff counts from the
Bureau of Labor Statistics’ Quarterly Census of Employment and
Wages (QCEW), which provides county-level counts of correction-
al officers as of June 2020. We find that the number of phones we
identify is highly correlated with these data sources (Figs. 1 and
S2). Second, to address the possibility of misclassification, we pre-
sent results when excluding phones with only one ping in the pris-
on (Table S14), which yields similar estimates to our main finding.
Third, in Table S9 we demonstrate the robustness of our findings
by varying the threshold for treated zip codes from 30-min to more
than 10 h and find similar results across these specifications.

To identify connections between prison staff in San Quentin
and zip codes, we link geohash-7 s to zip code tabulation areas
(ZCTAs)—mailing areas covered by zip codes created by the
Census Bureau and referred to as “zip codes” throughout the art-
icle—based on their centroid and define the phone’s home zip
code as the zip code that the phone spent the most time when out-
side of the expanded prison boundaries during June to October
2020. This approach ensures that transient visits, such as phones
passing through a highway, do not lead to misclassification of zip
codes as connected to prisons.

Wereplicate our analysis using the LODES data, which provides
information detailing the number of jobs for each home-work-
place census block pair. This allows us to identify the home loca-
tion of prison staff and create an analogous connectivity measure
between San Quentin State Prison and zip codes.b Specifically, we
calculate the total primary jobs for individuals working in the
block group encompassing San Quentin State Prison in 2020 and
residing in different census tracts.c We then aggregate the tract-
level job to the zip code level using a census tract-zip code cross-
walk based on the proportion of the tract’s population within each
zip code. A zip code is similarly considered connected to a prison if
it has any workers employed at the San Quentin State Prison.

Though LODES offers detailed spatial data on origin-destination
workflow that enables research on disease transmission, it has lim-
itations compared to smartphone location data. LODES data may
reflect the administrative rather than the actual worksite location
(29). Itis released annually and may lack precision about the timing
of geographic movements and is subject to confidentiality protec-
tions that may introduce noise or suppress information. Indeed,
employees working in the block group where Corcoran is located
are not reported in the LODES for this reason. Additionally, while
less common in correctional settings than other industries,
LODES does not differentiate between remote and “on site” work.
All these data concerns could potentially complicate the inferences

about the impact of connectivity between prisons and local com-
munities. For the purposes of tracking disease, either the LODES
or smartphone data could be more precise measures of worker con-
nectivity, depending on the specific context.

Empirical strategy

We investigate the public health impact of prison-zip code con-
nectivity by exploiting an exogenous COVID-19 outbreak in San
Quentin State Prison in June 2020 due to a prisoner transfer
from California Institution for Men. We examine whether the out-
break in San Quentin led to a differential increase in COVID-19
case rates—collected from the CDPH—in zip codes that were con-
nected to San Quentin State Prison (i.e. treated zip codes) com-
pared to those without this connection (i.e. control zip codes).d

We follow Callaway and Li (24) and estimate the effect of con-
necting to San Quentin State Prison after its outbreak in June 2020
using an unconfoundedness-type of strategy that compares con-
nected zip codes with unconnected, matched zip codes that
have similar pretransfer COVID-19 and similar demographic char-
acteristics. This strategy is motivated by the fact that the spread of
local COVID-19 cases is highly nonlinear over time. Common
epidemiological models (e.g. Susceptible-Exposed-Infectious-
Removed [SEIR], Susceptible-Infected-Recovered-Dead [SIRD))
treat COVID-19 transmission as a function of the number of cur-
rently infected individuals, the number of susceptible individuals
in alocation, and the transmission properties of COVID-19 (e.g. in-
fectionrate). Traditional difference-in-differences (DiD) strategies
may introduce bias as different initial COVID-19 conditions be-
tween treated and control zip codes can lead to dynamic differen-
ces in how the pandemic evolves in different locations, violating
the parallel trend assumption underlying the DiD strategy.
Callaway and Li (24) propose an alternative identification strategy
that compares locations with similar pretreatment “states” of
COVID-19 case rates, suggesting this unconfoundedness-type of
strategy is more suited to examine the nonlinearity of COVID-19
transmission.

Specifically, this strategy involves estimating the propensity
score of being connected to San Quentin State Prison (i.e. inverse
probability weighting [I[PW]) and estimating changes in COVID-19
cases among unconnected zip codes (i.e. outcome regression
[OR]), using the same set of covariates: pretransfer COVID-19 case
rates and demographics from the 2015-2019 ACS aggregated to
the zip code level. It provides a DR estimate of the effect of con-
necting to San Quentin prison on community COVID-19 trans-
mission, in the sense that the estimate is consistent if either
the propensity score model or OR model is correctly specified.
To estimate the average treatment effect on the treated (ATT),
we first use [PW by weighting the control zip codes based on
the estimated propensity score, where we estimate the probabil-
ity of being connected to the San Quentin conditional on pre-
transfer covariates:

P(tr=11X) = A(Xp) 1)
__AXp)
lpw_il_[\(xﬁ), ()

where A() represents the logistic function, X denotes the vector
of pretransfer covariates. The ATT using the IPW approach is
given by:

ATTipw = E(Ay(1)) - E(Ay(0); IPW). (3)

Next, we employ the OR approach, estimating changes in the
outcome among the control zip codes conditional on the same
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set of covariates, and averaging over the distribution of covari-
ates for treated zip codes to estimate the ATT:

Ay(0) = Xof +e; )
AY(1) =X )
ATTor = E(Ay(1)) — Xa. (6)

Finally, we integrate both approaches in a DR estimator, which
combines the strengths of IPW and OR:

ATTpg = E(Ay(1) — XaBltr = 1) — E(Ay(0) — XoBltr =0; IPW).  (7)

The estimates under this strategy are consistent if either the
model for the propensity score or OR is correctly specified (i.e.
DR) (30). Moreover, these DR estimates of the impact of prison
connectivity are compatible with epidemiological models that
model the nonlinear spread of COVID-19 cases (24).

In our main analysis, we match treated and control zip codes
on pretransfer COVID-19 variables, including the cubic polyno-
mial functions of the number of cases in May 2020, cumulative
cases in May 2020, and the logarithm of zip code population
from 2015-2019 ACS, as well as demographic characteristics, in-
cluding percentages of Black, White, and Hispanic residents; the
percentage of residents with a college degree; median household
income; and the percentage of residents above age 65, again
from 2015-2019 ACS. Research shows that the transmission rate
of COVID-19 could be influenced by neighborhood demographics
including socioeconomic status such as income and education
(31, 32), race/ethnicity (31-34), and age (35). Moreover, the extent
to which observed case counts reflect the true number of infec-
tions is influenced by availability and access to tests, which are
likely patterned by socioeconomic and demographic factors (36).
Although our preferred specification includes both pretransfer
COVID-19 and demographic characteristics for matching, the
Appendix provides results when we match treated and control
zip codes solely on COVID-19 variables. Appendix Figure S3 illus-
trates propensity score distributions before and after weighting
for treated and control zip codes, showing nearly identical distri-
bution for the propensity score among treated and control zip co-
des after the weighting. Table S2 also suggests that the pretransfer
COVID-19 and demographic characteristics are balanced after the
weighting adjustment.

Notably, our findings are quantitatively similar under alterna-
tive specifications. To account for variations in COVID-19 trans-
mission rate by demographics, in Appendix Table S4, we
additionally include interactions between pretransfer COVID-19
variables and demographic variables during matching in addition
to the existing covariates. In Appendix Tables S5, S6, and S7, we
find consistent estimates when excluding zip codes containing
prisons or excluding zip codes that are linked to other two prisons
(Avenal State Prison and Chuckawalla Valley State Prison) that
had reported COVID-19 outbreaks during June 2020, mitigating
concerns that the results are driven by these specific zip codes.
In Appendix Fig. S4, we find similar estimates matched on pre-
transfer COVID-19 variables when permuting our measure of con-
nectivity across zip codes and reestimating our ATE.

We also explore alternative definitions of treated groups. For
instance, we define a connection in June 2020 using varying time
duration cutoffs (i.e. zip codes are connected to a prison if phones
from that zip code spend more than 0.5, 1, 1.5, 2, 2.5, 5, and 10 hin
prisons) in Appendix Tables S8 and S9. In Appendix Table S10, we
define treated groups based on preperiod connections from March

2020 to May 2020 instead of connections in June 2020. Appendix
Tables S11 and S12 report estimates from alternative estimators
in addition to the DR estimators, including the inverse propensity
weighting estimator and the OR estimator. In Appendix Table S13,
we replicate results when defining home zip codes using the zip
code where the phone spent the most time from January to
October 2020 (instead of the second half of 2020). In Appendix
Table S14, we report results when we exclude phones with only
one ping inside San Quentin State Prison in June 2020. Finally, in
Appendix Table S15, we find a similar increase in case rates for
zip codes connected to Corcoran State Prison compared to uncon-
nected zip codes, which experienced a smaller internal COVID-19
outbreak. Across these analyses, our preferred strategy matches
on both pretransfer COVID-19 and demographics (rather than
COVID-19 case rates alone). Overall, the similarity of our esti-
mates suggests that, in the summer of 2020, facility-level vari-
ation in prisoner protection from COVID-19 was greater than
facility-level variation in protection for staff.

Notes

#Specifically, we define a prison as having experienced an outbreak if
the number of new cases in that prison exceeds 100 in June 2020.
Under this definition, 8 out of 35 state prisons experience a prison
outbreak. We then estimate how these prison outbreaks will lead
to increase in COVID-19 case rates in zip codes that are connected
to prisons experiencing outbreak.

P Actual prison locations are reported in the LODES in California be-
cause of the structure of the California Department of Corrections
and Rehabilitation (CDCR) payroll. This is not the case for govern-
ment employees in all states.

“The boundary of the block group containing San Quentin State
Prison closely matches the boundary of San Quentin itself.

dTechnically, the COVID-19 case rate data are available at the zip
code level, which we matched to ZCTAs using the zip code-ZCTA
crosswalk provided by the department of Housing and Urban
Development. In cases where a single ZCTA is associated with mul-
tiple zip codes (representing <2% of the observations), we use the
maximum COVID-19 case rate among these zip codes.
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Data Availability

All data used in this article are publicly available. ACS 5-year es-
timate and LEHD Origin-Destination Employment Statistics
Data are available from the US Census Bureau (37, 38). Prison
boundary data are available from DHS (39), QCEW are available
from Bureau of Labor Statistics (40). Smartphone ping data are
available by purchase from Veraset LLC (41). Replication materi-
als containing all code required to reproduce our analyses and
results are available at Harvard Dataverse: https:/doi.org/10.
7910/DVN/2PUGRA.
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