
@herodevs

Java in 2025: 
Navigating Migration, 
Security, and 

Long-Term Risk

A White Paper for CIOs, CISOs, and 
Engineering Leaders



Table of Contents

Executive Summary

Java’s Enduring Role in the Enterprise

The New Java Release and Support Paradigm

Migration Realities and Pitfalls

Lessons from Real-World Vulnerabilities

The Expanding Supply-Chain Threat

A Secure Migration Blueprint

Industry Examples

The Economics of Migration vs. Support

Regulatory and Compliance Dimensions

The Role of AI in Java Security

Embedding Governance in Java Programs

Conclusion

References

© 2025 herodevs.com  |  All Rights Reserved 1



Executive summary
Java continues to serve as the backbone of enterprise systems in 2025, powering mission-
critical workloads in banking, government, healthcare, and e-commerce. Although the 
language’s syntax remains familiar, the surrounding ecosystem has changed dramatically. 
Enterprises must now rethink how they approach migration, security, and governance.

Oracle’s two-year Long-Term Support (LTS) cadence now dictates enterprise planning horizons. 
Migration projects once handled once a decade are now recurring every four to six years. Each 
new LTS release introduces breaking changes in JDK internals, module removals, and 
architectural shifts.



Security events such as Log4Shell and Spring4Shell revealed how a single open-source 
dependency can destabilize thousands of applications within hours. A 2024 Synopsys study 
found that 74 percent of codebases contained high-risk open-source vulnerabilities, up from 48 
percent just two years earlier. At the same time, Sonatype reported a 156 percent year-over-year 
surge in malicious open-source packages.



The question for CIOs, CISOs, and engineering leaders is no longer whether to continue relying 
on Java. It is how to migrate safely between LTS versions, reduce exposure in legacy 
environments, and implement governance frameworks that withstand regulatory scrutiny.

This white paper provides detailed analysis of migration realities, real-world breach lessons, 
supply-chain risk, and the economic, regulatory, and vendor dynamics shaping enterprise 
decisions in 2025.

Java’s Enduring Role in the Enterprise
Despite the rise of cloud-native languages such as Go and Rust, Java remains deeply embedded in 
enterprise IT. It consistently ranks among the top three most-used programming languages worldwide 
and boasts more than 12 million active developers.



Mission-critical systems — financial clearinghouses, electronic health record systems, e-commerce 
platforms, and government applications — depend on the JVM. Its longevity has been both a blessing 
and a liability. While stability reassures technology leaders, it also encourages delay. The “if it isn’t 
broken, don’t fix it” mindset has left countless organizations with unsupported runtimes, widening attack 
surfaces, and spiraling compliance risks.

The New Java Release and Support Paradigm
Since 2018, Oracle and the OpenJDK community have adopted a six-month feature release cadence with 
LTS versions every two years. The current LTS releases are Java 8, 11, 17, and 21, with Java 25 expected 
in September 2025.

© 2025 herodevs.com  |  All Rights Reserved 2



Most enterprises adopt a “skip two releases” approach, targeting migrations every four to six years. This 

reduces the number of upgrades but compounds the complexity of each. For example:

Migrating from Java 8 to 11 requires replacing deprecated modules such as CORBA and Java EE.

Migrating from 11 to 17 enforces strong encapsulation of internal APIs and deprecates the Security 

Manager.

Migrating from 17 to 21 introduces new garbage collection strategies and virtual threads that impact 

concurrency models.

Migrating directly to Java 25 will likely require addressing both long-standing deprecations and the 

complete disablement of the Security Manager.

Licensing changes add further disruption. Oracle’s shift to per-employee subscriptions, combined with 

shorter free-support windows, has pushed many organizations to adopt alternatives such as Adoptium, 

Amazon Corretto, or Azul.

Migration Realities and Pitfalls
Migration is rarely a drop-in replacement. Each LTS shift can break frameworks, libraries, and 

deployment models. Legacy systems relying on internal reflection, SOAP bindings, or WAR deployments 

often require major rewrites. Performance profiles shift with new garbage collectors, demanding full 

benchmarking.



Enterprises that delay migrations face amplified risk. Leaping directly from Java 8 or 11 to Java 25 will 

likely require multi-stage upgrades, multiplying costs and elongating timelines. Organizations that 

embed migration planning into their IT roadmaps avoid the high costs of emergency programs.

Lessons from Real-World Vulnerabilities
The last decade has demonstrated how quickly vulnerabilities in Java ecosystems can translate into 

catastrophic consequences.

Equifax (2017): An unpatched Apache Struts vulnerability exposed 147 million consumer records. Patch SLAs 

must be measured in days, not weeks.

Log4Shell (2021): Exploitation began within hours of disclosure, proving that SBOM visibility and dependency 

governance are essential.

Spring4Shell (2022): Deployment topology determined exposure, with WAR deployments on Tomcat 

particularly vulnerable. Security requires both patching and architectural hygiene.

These incidents illustrate that delaying modernization is no longer a viable option. Vulnerabilities 

cascade quickly, exploit campaigns move faster, and regulators expect proactive governance.

© 2025 herodevs.com  |  All Rights Reserved 3



The Expanding Supply-Chain Threat
Modern Java risk extends beyond the runtime itself.

Synopsys OSSRA 2024: 74 percent of audited codebases contained high-risk vulnerabilities, up from 48 

percent in 2022.

Sonatype 2024: Over 500,000 malicious open-source packages were documented in a single year, a 156 

percent increase.

Q2 2025: 16,279 malicious packages were identified, many designed for credential theft and data exfiltration.

Targeted campaigns: Lazarus Group exploited typosquatted packages to compromise over 36,000 developers.

The implication is clear. Even a fully patched JVM can be compromised by vulnerable frameworks, HTTP 

clients, or logging libraries. Governance must extend into dependency chains, with automated SBOMs, 

SCA scans, and repository-level defenses against typosquatting and malicious injections.

A Secure Migration Blueprint
Enterprises that succeed in modernization treat migration as a structured program:

1. Inventory: Generate SBOMs and map dependencies.

2. Remediation: Replace deprecated APIs and unsupported modules.

3. Testing: Validate functional, performance, and security baselines.

4. Deployment: Roll out via canary releases, monitoring for anomalies.

5. Governance: Enforce patch SLAs, automate scans, and retire temporary runtime workarounds.

When immediate migration is not feasible, commercial long-term support and compensating controls 

such as WAF rules, runtime monitoring, and restricted egress policies allow organizations to maintain 

compliance while planning sustainable upgrades.

Industry Examples
Finance: A major bank delayed migrating from Java 8 to 11, only to be forced into an emergency program when 

vendor support ended, costing millions.

Government: A federal agency running Java 7 relied on extended support to maintain FedRAMP and NIST 

compliance while planning a phased migration.

Healthcare: A hospital system incurred HIPAA penalties after unpatched Java applications failed compliance 

audits. Migration to Java 17 combined with backport patching resolved the issue.

© 2025 herodevs.com  |  All Rights Reserved 4



The Economics of Migration vs. Support
Direct Costs of Migration

Every migration carries significant direct costs. Developer hours must be allocated to code rewrites, 

dependency updates, and system testing. External consultants are often engaged at premium rates, 

particularly when migrations occur under time pressure. Licensing expenses for new distributions add 

further burden.

Hidden Costs and Opportunity Loss

Migrations also create hidden expenses. Retraining engineers on new language features, pausing 

innovation projects, and managing downtime during phased rollouts all translate into lost productivity. 

These indirect costs, often unbudgeted, can rival or exceed direct costs.

Long-Term Support as a Financial Strategy

Commercial long-term support provides stability. Instead of incurring a multi-million-dollar migration 

every four years, organizations can spread costs across predictable annual subscriptions. This model 

appeals to CFOs and CIOs seeking to stabilize budgets, avoid emergency spending, and maintain 

compliance without sacrificing strategic agility.

Regulatory and Compliance Dimensions
Compliance Expectations

Frameworks such as PCI DSS, HIPAA, GDPR, and FedRAMP require timely patching of known 

vulnerabilities. Unsupported Java runtimes violate these expectations, triggering audit findings and 

potential penalties.

SBOM and Supply Chain Regulations

The U.S. Executive Order 14028, CISA’s Known Exploited Vulnerabilities catalog, and the EU’s Cyber 

Resilience Act all demand greater transparency into software supply chains. SBOMs are now expected 

artifacts for regulated organizations. Unsupported runtimes undermine compliance with these mandates.

Enforcement Trends

Auditors expect documentation of patching SLAs, SBOMs, and remediation processes. Organizations 

unable to produce evidence face failed audits, reputational damage, and regulatory penalties. In sectors 

such as healthcare and finance, noncompliance can result in blocked operations or fines in the millions.

The Role of AI in Java Security
AI as an Attack Tool

Threat actors use AI to scan dependency graphs, generate exploit proof-of-concepts, and automate 

reconnaissance. Nation-state actors have already deployed AI in campaigns targeting developer 

ecosystems.

© 2025 herodevs.com  |  All Rights Reserved 5



AI in Defensive Security

Defensive tools leverage AI to accelerate SCA scans, identify vulnerable transitive dependencies, and 

prioritize remediation based on exploit likelihood. This improves visibility and response times.

Human-Led Governance

AI cannot decide when to migrate, when to backport, or how to apply compensating controls. 

Governance remains a human responsibility, ensuring compliance and strategic alignment while AI 

provides speed and scale.

Embedding Governance in Java Programs
Governance must be a continuous process, not a one-time initiative.

Align enterprise roadmaps with Oracle’s two-year LTS cadence.

Enforce SLAs that patch KEV-listed vulnerabilities within days.

Automate SBOM generation at every build and release.

Harden deployment strategies by favoring executable JARs over WARs.

Track and remediate temporary runtime exceptions such as .--add-opens

Embedding governance in the Java program itself reduces exposure, strengthens audit resilience, and 

provides long-term operational stability.

Conclusion
Java’s stability has been both its greatest strength and its most dangerous weakness. Organizations that 

fail to modernize in step with LTS cadences face regulatory penalties, technical debt, and catastrophic 

breaches.



The path forward requires a balance of proactive migration planning, comprehensive supply-chain 

governance, and commercial long-term support. HeroDevs believes enterprises should not be forced 

into insecure or rushed migrations. With proactive planning and Never-Ending Support, organizations 

can ensure their Java estates remain secure, compliant, and future-ready.

© 2025 herodevs.com  |  All Rights Reserved 6



References

Synopsys. Open Source Security and Risk Analysis (OSSRA) 2024.


Sonatype. State of the Software Supply Chain Report 2024.


Sonatype. Q2 2025 Malicious Package Activity Report.


ITPro. “North Korean hackers targeting developers via open source malware.” 2025.

© 2025 herodevs.com  |  All Rights Reserved 7


